Chromosome-Scale Genome Assembly and Genome-Wide Identification of Antimicrobial Peptide-Containing Genes in the Endangered Long-Finned Gudgeon Fish (Rhinogobio ventralis)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Library Construction and Whole-Genome or Transcriptome Sequencing
2.3. Genome Assembly and Evaluation
2.4. Gene Prediction and Annotation
2.5. Genome Comparison and Genomic Synteny
2.6. Genome-Wide Identification of AMP Sequences for Localization of AMP-Containing Genes
3. Results
3.1. Summary of the Genome Sequencing Data and Assembly
3.2. Genome Prediction and Annotation
3.3. Genome Synteny
3.4. Identification and Localization of AMP-Containing Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, X.; Zeng, Y.; Wang, J.W.; Liu, H.Z. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir. Environ. Biol. Fish. 2010, 87, 163–173. [Google Scholar] [CrossRef]
- Li, Y.L.; Yang, J.J.; Wang, Y.H.; Wu, H.C.; Ma, Y.M.; Wu, F.X. Sediment eDNA reveals damming triggered changes in algal and fish communities at the Three Gorges Reservoir in China. Environ. Res. 2025, 276, 121474. [Google Scholar] [CrossRef]
- Yang, H.L.; Shen, L.; He, Y.F.; Tian, H.W.; Gao, L.; Wu, J.M.; Mei, Z.G.; Wei, N.; Lin, W.; Zhu, T.B.; et al. Status of aquatic organisms resources and their environments in Yangtze River system (2017–2021). Aquac. Fish. 2024, 9, 833–850. [Google Scholar] [CrossRef]
- Gao, X.; Masami, F.; Winemiller, K.O.; Lin, P.C.; Li, M.Z.; Liu, H.Z. Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam. Sci. Rep. 2019, 9, 4212–4222. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.Q. Gobioninae. In Fauna Sinica: Osteichthys, Cypriniformes, 2nd ed.; Chen, Y.Y., Ed.; Science Press: Beijing, China, 1998; Volume 2, pp. 232–389. (In Chinese) [Google Scholar]
- Wang, X.Z.; Liu, H.Z. Phylogenetic relationships of the Chinese cyprinid genus Rhinogobio Bleeker (Teleostei: Cyprinidae) based on sequences of the mitochondrial DNA control region, with comments on character adaptations. Hydrobiologia 2005, 532, 215–220. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Cao, W. Long-term changes in fish assemblage following the impoundments of the Three Gorges Reservoir in Hejiang, a protected reach of the upper Yangtze River. Knowl. Manag. Aquat. Ecosyst. 2013, 407, 6–22. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.W.; Liu, H.Z. Seasonal variations in food resource partitioning among four sympatric gudgeon species in the upper Yangtze River. Ecol. Evol. 2019, 9, 7227–7236. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cheng, B.; Xue, M.; Jiang, N.; Li, X.; Hu, X.; Li, X.; Zhu, T.; Zhu, Y.; Zhou, Y. Isolation, Characterization, and Pathogenicity of an Aeromonas veronii Strain Causing Disease in Rhinogobio ventralis. Fishes 2024, 9, 188–201. [Google Scholar] [CrossRef]
- Huang, K.; Wang, R.; Hu, G.; Zhou, W.; Li, W.; Zou, H.; Wang, G.; Li, M. Immune response of Rhinogobio ventralis to Ichthyophthirius multifiliis infection: Insights from histopathological and real-time gene expression analyses. Fish Shellfish Immunol. 2024, 153, 109801. [Google Scholar] [CrossRef]
- Li, H.; Niu, J.; Wang, X.; Niu, M.; Liao, C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023, 15, 2278–2315. [Google Scholar] [CrossRef]
- Masso-Silva, J.A.; Diamond, G. Antimicrobial peptides from fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, H.; Zhu, W.; Zhang, Y.; Huo, X.; Yang, C.; Xiao, S.; Zhang, Y.; Su, J.A. Novel Antimicrobial Peptide Derived from Bony Fish IFN1 Exerts Potent Antimicrobial and Anti-Inflammatory Activity in Mammals. Microbiol. Spectr. 2022, 10, e02013-21. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Zhang, X.; Li, J.; Yi, Y.; Bian, C.; Shi, Q.; Lin, H.; Li, S.; Zhang, Y.; et al. Whole Genome Sequencing of the Giant Grouper (Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes. Mar. Drugs 2019, 17, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, Y.; You, X.; Liu, J.; Shi, Q. High-Throughput Identification of Putative Antimicrobial Peptides from Multi-Omics Data of the Lined Seahorse (Hippocampus erectus). Mar. Drugs 2019, 18, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; You, X.; Bian, C.; Chen, S.; Lv, Z.; Qiu, L.; Shi, Q. High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. Mar. Drugs 2017, 15, 364–381. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, M.; Xiu, Y.; Fu, Q.; Yang, N.; Su, B.; Li, C. Identification of Antimicrobial Peptide Genes in Black Rockfish Sebastes schlegelii and Their Responsive Mechanisms to Edwardsiella tarda Infection. Biology 2021, 10, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Wei, X.; Chen, J.; Li, Y.; Zhou, B.; Zhang, C.; Fu, P.; Prathomya, P.; Li, R.; Lv, Y.; et al. Chromosome-level genome assemblies of vulnerable male and female elongate loach (Leptobotia elongata). Sci. Data 2024, 11, 924–931. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; Wen, Z.; Shi, Q.; Song, Z. A chromosome-scale reference genome assembly for Triplophysa lixianensis. Sci. Data 2024, 11, 1404–1410. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Y.; Huang, Y.; Wang, J.; Tian, Z.; He, Y.; Shi, J.; Huang, Z.; Wen, Z.; Shi, Q.; et al. Deciphering genome-wide molecular pathways for exogenous Aeromonas hydrophila infection in wide-bodied sand loach (Sinibotia reevesae). Aquac. Rep. 2024, 35, 102033–102043. [Google Scholar] [CrossRef]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef]
- Liu, B.; Shi, Y.; Yuan, J.; Hu, X.; Zhang, H.; Li, N.; Li, Z.; Chen, Y.; Mu, D.; Wei, F. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant. Biol. 2013, 35, 62–67. [Google Scholar]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.; Vert, J.P.; Heard, E.; Job Dekker, J.; Barillot, E. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015, 16, 259–269. [Google Scholar]
- Zhou, C.; McCarthy, S.A.; Durbin, R. YaHS: Yet another Hi-C scaffolding tool. Bioinformatics 2023, 39, btac808. [Google Scholar] [CrossRef] [PubMed]
- Durand, N.C.; Robinson, J.T.; Shamim, M.S.; Machol, I.; Mesirov, J.P.; Lander, E.S.; Aiden, E.L. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016, 3, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Guo, L.; Gu, S.; Wang, O.; Zhang, R.; Peters, B.A.; Fan, G.; Liu, X.; Xu, X.; Deng, L.; et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 2020, 9, giaa094. [Google Scholar] [CrossRef]
- Li, K.; Xu, P.; Wang, J.; Yi, X.; Jiao, Y. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. Nat. Commun. 2023, 14, 6556–6567. [Google Scholar] [CrossRef]
- Rhie, A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020, 21, 245–271. [Google Scholar] [CrossRef]
- Huang, N.; Li, H. compleasm: A faster and more accurate reimplementation of BUSCO. Bioinformatics 2023, 39, btad595. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2009, 5, 4–10. [Google Scholar]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef]
- Keilwagen, J.; Hartung, F.; Grau, J. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. In Gene Prediction; Springer: New York, NY, USA, 2019; pp. 161–177. [Google Scholar]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Jiang, C.; Du, Y.; Lou, Z.; Zhang, Y.; Wang, T. Telomere-to-telomere reference genome of Rhinogobio nasutus, an endangered endemic fish from the Yellow River. Sci. Data 2025, 12, 462–471. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Bidwell, S.; Rosen, B.; Chan, A.; Zhou, S.; Gentzbittel, L.; Childs, K.L.; Yandell, M.; Gundlach, H.; et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genom. 2014, 15, 312–325. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Quality measures for protein alignment benchmarks. Nucleic Acids Res. 2010, 38, 2145–2153. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Liang, Y.; Pan, J.M.; Zhu, K.C.; Xian, L.; Guo, H.Y.; Liu, B.S.; Zhang, N.; Yang, J.W.; Zhang, D.C. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar. Drugs 2023, 21, 505–532. [Google Scholar] [CrossRef]
- Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994, 269, 10444–104450. [Google Scholar] [CrossRef] [PubMed]
- Garibotto, F.M.; Garro, A.D.; Rodríguez, A.M.; Raimondi, M.; Zacchino, S.A.; Perczel, A.; Somlai, C.; Penke, B.; Enriz, R.D. Penetratin analogues acting as antifungal agents. Eur. J. Med. Chem. 2011, 46, 370–377. [Google Scholar] [CrossRef]
- Bahnsen, J.S.; Franzyk, H.; Sandberg-Schaal, A.; Nielsen, H.M. Antimicrobial and cell-penetrating properties of penetratin analogs: Effect of sequence and secondary structure. Biochim. Biophys. Acta 2013, 1828, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.L.; Lan, H.; Park, I.S.; Kim, J.I.; Jin, H.Z.; Hahm, K.S.; Shin, S.Y. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 2006, 349, 769–774. [Google Scholar] [CrossRef]
- Zhu, W.L.; Shin, S.Y. Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem. Biol. Drug Des. 2009, 73, 209–215. [Google Scholar] [CrossRef]
- Duong, L.; Gross, S.P.; Siryaporn, A. A novel antibacterial strategy: Histone and antimicrobial peptide synergy. Microb. Cell 2020, 7, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Beloglazova, N.; Brown, G.; Zimmerman, M.D.; Proudfoot, M.; Makarova, K.S.; Kudritska, M.; Kochinyan, S.; Wang, S.; Chruszcz, M.; Minor, W.; et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 2008, 283, 20361–20371. [Google Scholar] [CrossRef]
- Torres, M.D.T.; Brooks, E.F.; Cesaro, A.; Sberro, H.; Gill, M.O.; Nicolaou, C.; Bhatt, A.S.; de la Fuente-Nunez, C. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell 2024, 187, 5453–5467.e15. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Lindbom, L. Neutrophil-derived azurocidin alarms the immune system. J. Leukoc. Biol. 2009, 85, 344–351. [Google Scholar] [CrossRef] [PubMed]




| Sequencing | Library Type | Raw Data (Gb) | Clean Data (Gb) | Read N50/Length (bp) | Coverage (×) | |
|---|---|---|---|---|---|---|
| Whole-genome sequencing | MGI | 55.78 | 30.78 | 150 | 30.78 | |
| PacBio-HiFi | - | 42.53 | 15,765 * | 41.90 | ||
| Hi-C | 106.45 | 95.77 | 150 | 94.35 | ||
| Transcriptome sequencing | RNA | Brain | 9.24 | 7.94 | 150 | |
| Eye | 8.25 | 7.42 | 150 | |||
| Gill | 7.69 | 6.84 | 150 | |||
| Muscle | 6.68 | 6.02 | 150 | |||
| Heart | 6.69 | 6.08 | 150 | |||
| Intestine | 7.98 | 6.78 | 150 | |||
| Kidney | 6.29 | 5.67 | 150 | |||
| Liver | 7.72 | 6.91 | 150 | |||
| Ovary | 10.01 | 8.97 | 150 | |||
| Category | Data |
|---|---|
| Genome survey (Gb) | 1.01 |
| Genome length (bp) | 1,015,928,399 |
| Longest scaffold (bp) | 54,161,874 |
| Number of scaffolds | 48 |
| Contig N50 | 25.91 |
| Scaffold N50 | 39.99 |
| GC content | 38.8% |
| CRAQ score | R-AQI = 95.47, S-AQI = 99.70 |
| Merqury QV score | 49.213 (short-read NGS), 64.056 (HiFi long-reads) |
| Completeness score | S: 99.42%, D: 0.30%, F: 0.14%, I: 0.00%, M: 0.14% |
| Anchor ratio | 97.19% |
| Number of chromosomes | 25 |
| Chromosome length (bp) | 987,426,077 |
| Repetitive sequence | 51.00% |
| Chromosome No. | Length (bp) | Chromosome No. | Length (bp) |
|---|---|---|---|
| Chr 1 | 54,161,874 | Chr 14 | 39,366,162 |
| Chr 2 | 51,912,737 | Chr 15 | 38,936,029 |
| Chr 3 | 46,659,604 | Chr 16 | 38,319,520 |
| Chr 4 | 45,454,307 | Chr 17 | 37,929,373 |
| Chr 5 | 43,671,396 | Chr 18 | 37,250,726 |
| Chr 6 | 42,439,934 | Chr 19 | 36,383,716 |
| Chr 7 | 41,984,274 | Chr 20 | 34,013,917 |
| Chr 8 | 41,542,622 | Chr 21 | 33,990,390 |
| Chr 9 | 41,012,051 | Chr 22 | 33,137,678 |
| Chr 10 | 40,964,245 | Chr 23 | 31,155,457 |
| Chr 11 | 40,208,822 | Chr 24 | 28,609,039 |
| Chr 12 | 39,998,020 | Chr 25 | 28,453,069 |
| Chr 13 | 39,871,115 |
| Category | Number | Percentage (%) |
|---|---|---|
| Total | 23,171 | 99.79 |
| Swissprot | 18,889 | 81.35 |
| KEGG | 14,759 | 63.56 |
| KOG | 13,592 | 58.54 |
| GO | 14,078 | 60.63 |
| NCBI NR | 23,168 | 99.78 |
| Completeness | 3424 | 94.07 |
| Category | R. ventralis | R. nasutus |
|---|---|---|
| Penetratin | 122 | 166 |
| Histone | 32 | 154 |
| E6AP | 23 | 27 |
| Scolopendin 1 | 15 | 15 |
| D38 | 13 | 17 |
| WBp-1 | 12 | 15 |
| Defensin | 12 | 14 |
| Claudin 1 | 10 | 25 |
| AZU1 | 10 | 13 |
| Ubiquitin | 9 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, X.; Li, Y.; Lv, Y.; You, X.; Shi, Q.; Wen, Z. Chromosome-Scale Genome Assembly and Genome-Wide Identification of Antimicrobial Peptide-Containing Genes in the Endangered Long-Finned Gudgeon Fish (Rhinogobio ventralis). Biology 2025, 14, 1486. https://doi.org/10.3390/biology14111486
Chen J, Zhang X, Li Y, Lv Y, You X, Shi Q, Wen Z. Chromosome-Scale Genome Assembly and Genome-Wide Identification of Antimicrobial Peptide-Containing Genes in the Endangered Long-Finned Gudgeon Fish (Rhinogobio ventralis). Biology. 2025; 14(11):1486. https://doi.org/10.3390/biology14111486
Chicago/Turabian StyleChen, Jieming, Xinhui Zhang, Yanping Li, Yunyun Lv, Xinxin You, Qiong Shi, and Zhengyong Wen. 2025. "Chromosome-Scale Genome Assembly and Genome-Wide Identification of Antimicrobial Peptide-Containing Genes in the Endangered Long-Finned Gudgeon Fish (Rhinogobio ventralis)" Biology 14, no. 11: 1486. https://doi.org/10.3390/biology14111486
APA StyleChen, J., Zhang, X., Li, Y., Lv, Y., You, X., Shi, Q., & Wen, Z. (2025). Chromosome-Scale Genome Assembly and Genome-Wide Identification of Antimicrobial Peptide-Containing Genes in the Endangered Long-Finned Gudgeon Fish (Rhinogobio ventralis). Biology, 14(11), 1486. https://doi.org/10.3390/biology14111486

