The Biological Functions and Mode of Action of Transcription Factor ELF4: A Promising Target for Treating Intestinal Homeostasis Disorder-Related Diseases
Simple Summary
Abstract
1. Introduction
2. Methods
3. The Protein Structure of E26 Transformation-Specific (ETS)
4. ELF4’s Biological Functions
4.1. Antiviral Innate Immunity of ELF4
4.2. ELF4 Resistance to Pathogenic Microorganism Infection
4.3. ELF4 Regulates Effects on Immune Cells
4.4. The Roles of ELF4 in Development and Differentiation
4.5. The Roles of ELF4 in DNA Damage Repair and Cancer
5. ELF4 Related Diseases
5.1. Colorectal Cancer
5.2. Monogenic Autoinflammatory Diseases (mAIDs)
5.3. Human Autoinflammatory Diseases: Interaction Between ELF4 and Early-Onset IBD
5.4. The Role of ELF4 in Intestinal Homeostasis, Mainly Barrier Function and Gut Microbiota
6. The Role and Significance of ELF4 Extend from Human Health to Overall Animal Health
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AA | amino acid |
| ACT | artemisinin combination therapy |
| ALD | alcoholic liver disease |
| AML1 | acute myeloid leukemia protein |
| CAC | colitis-associated colon cancer |
| EICE | enhancer element |
| ELF4 | E74-like Factor 4 |
| ESE | epithelium-specific ETS |
| ETS | E26 transformation-specific |
| GLP-2 | glucagon-like peptide-2 |
| GM-CSF | granulocyte macrophage colony-stimulating factor |
| HFD | high-fat diet |
| HSCs | hematopoietic stem cells |
| HβD2 | β-defensin 2 |
| IBD | inflammatory disease |
| IFN | interferon |
| IHDs | intestinal homeostasis disorders |
| IRF3 | IFN regulatory factor 3 |
| KLB | Klotho |
| MAVS | mitochondria antiviral signaling |
| MEF | myeloid elf-1-like factor |
| MetS | metabolic disorders |
| PAMPs | pathogen-associated molecular patterns |
| PML | promyelocytic leukemia protein |
| PPARγ | peroxisome proliferator-activated receptor γ |
| PRRs | pattern recognition receptors |
| RLRs | RIG-I-like receptors |
| SeV | Sendai virus |
| STING | stimulate of interferon genes |
| TANK | TRAF family member-associated NF-kappa-B |
| TBK1 | TANK-binding kinase 1 |
| TF | transcription factor |
| TJPs | tight junction proteins |
| TLRs | toll-like receptors |
| VSV | vesicular stomatitis virus |
| WNV | West Nile virus |
| Xq26 | X chromosome |
References
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef]
- El Belghiti, I.; Hammani, O.; Moustaoui, F.; Aghrouch, M.; Lemkhente, Z.; Boubrik, F.; Belmouden, A. Halicin: A New Approach to Antibacterial Therapy, a Promising Avenue for the Post-Antibiotic Era. Antibiotics 2025, 14, 698. [Google Scholar] [CrossRef]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure—activity relationships of polymyxin antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Anna, M.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Mao, C.; Shen, J.; Zhu, K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol. 2022, 30, 761–777. [Google Scholar] [CrossRef]
- Gollan, B.; Grabe, G.; Michaux, C.; Helaine, S. Bacterial Persisters and Infection: Past, Present, and Progressing. Annu. Rev. Microbiol. 2019, 73, 359–385. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 24 August 2025).
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.; Zhu, K.; Huang, X.; Huang, Y.; Shen, Z.; Ding, S.-Y.; Gu, D.-X.; Yang, Q.-W.; Sun, H.-L.; et al. Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium. Nat. Commun. 2022, 13, 1888. [Google Scholar] [CrossRef]
- Xu, W.; Fang, Y.; Zhu, K. Enterococci facilitate polymicrobial infections. Trends Microbiol. 2023, 32, 162–177. [Google Scholar] [CrossRef]
- Murphy, T.F.; Sethi, S. Bacterial infection in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1992, 146, 1067–1083. [Google Scholar] [CrossRef]
- Davis, M.F.; Iverson, S.A.; Baron, P.A.; Vasse, A.; Silbergeld, E.K.; Lautenbach, E.; Morris, D.O. Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infect. Dis. 2012, 12, 703–716. [Google Scholar] [CrossRef]
- Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Soolingen, D.V.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010, 375, 1830–1843. [Google Scholar] [CrossRef]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Toru, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 2001, 413, 523–527. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr.; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 x ‘20 Progress—development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, 1685–1694. [Google Scholar] [CrossRef]
- Chin, C.-S.; Sorenson, J.; Harris, J.B.; Robins, W.P.; Charles, R.C.; Jean-Charles, R.R.; Bullard, J.; Webster, D.R.; Kasarskis, A.; Peluso, P.; et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 2011, 364, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Lo, B.C.; Núñez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020, 20, 411–426. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, F.; Madera, L.; Afacan, N.; Okumura, K.; Ogawa, H.; Hancock, R.E. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J. Leukoc. Biol. 2013, 94, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Mariscalco, M.M. Innate immunity in critical care. Semin. Pediatr. Infect. Dis. 2006, 17, 25–35. [Google Scholar] [CrossRef]
- Wehkamp, J.; Harder, J.; Weichenthal, M.; Mueller, O.; Herrlinger, K.R.; Fellermann, K.; Schroeder, J.M.; Stange, E.F. Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm. Bowel. Dis. 2003, 9, 215–223. [Google Scholar] [CrossRef]
- Kinnebrew, M.A.; Pamer, E.G. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 2012, 245, 113–131. [Google Scholar] [CrossRef]
- Kamada, N.; Kim, Y.G.; Sham, H.P.; Vallance, B.A.; Puente, J.L.; Martens, E.C.; Núñez, G. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012, 336, 1325–1329. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Behnsen, J.; Jellbauer, S.; Wong, C.P.; Edwards, R.A.; George, M.D.; Ouyang, W.; Raffatellu, M. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 2014, 40, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.L.; Poon, G.F.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host defense peptide LL-37 selectively reduces proinflmmator macrophage reponses. J. Immunol. 2011, 186, 5497–5505. [Google Scholar] [CrossRef]
- You, F.; Wang, P.; Yang, L.; Yang, G.; Zhao, Y.O.; Qian, F.; Walker, W.; Sutton, R.; Montgomery, R.; Lin, R.-T.; et al. ELF4 is critical for induction of type I interferon and the host antiviral response. Nat. Immunol. 2013, 14, 1237–1246. [Google Scholar] [CrossRef]
- Aggrey, A.A.; Srivastava, K.; Ture, S.; Field, D.J.; Morrell, C.N. Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria. J. Immunol. 2013, 190, 4685–4691. [Google Scholar] [CrossRef] [PubMed]
- Sashida, G.; Liu, Y.; Elf, S.; Miyata, Y.; Ohyashiki, K.; Izumi, M. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation. Mol. Cell. Biol. 2009, 29, 3687–3699. [Google Scholar] [CrossRef]
- Sashida, G.; Bae, N.; Di Giandomenico, S.; Asai, T.; Gurvich, N.; Bazzoli, E. The mef/elf4 transcription factor fine tunes the DNA damage response. Cancer Res. 2011, 71, 4857–4865. [Google Scholar] [CrossRef]
- Yamada, T.; Park, C.S.; Mamonkin, M.; Lacorazza, H.D. Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Kruppel-like factors KLF4 and KLF2. Nat. Immunol. 2009, 10, 618–626. [Google Scholar] [CrossRef]
- Tyler, P.M.; Bucklin, M.L.; Zhao, M.; Maher, T.J.; Rice, A.J.; Ji, W.; Warner, N.; Pan, J.; Morotti, R.; McCarthy, P.; et al. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat. Immunol. 2021, 22, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Rocha, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.K.; Rose, D.; Ashwood, P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr. Neurol. Neurosci. Rep. 2018, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Betrapally, N.S.; Gillevet, P.M. Decompensated cirrhosis and microbiome interpretation. Nature 2015, 525, E1–E2. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Slack, E.; Geuking, M.B.; McCoy, K.D. The mucosal firewalls against commensal intestinal microbes. Semin. Immunopathol. 2009, 31, 145–149. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Newberry, R.D.; Lorenz, R.G. Organizing a mucosal defense. Immunol. Rev. 2005, 206, 6–21. [Google Scholar] [CrossRef]
- Maloy, K.J.; Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.A. Development of the intestinal mucosal barrier. J. Pediatr. Gastroenterol. Nutr. 2002, 34, 33–39. [Google Scholar] [CrossRef]
- Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 2011, 32, 256–264. [Google Scholar] [CrossRef]
- Wang, G.; Huang, S.; Wang, Y.; Cai, S.; Yu, H.; Liu, H.; Zeng, X.-F.; Zhang, G.-L.; Qiao, S.-Y. Bridging intestinal immunity and gut microbiota by metabolites. Cell. Mol. Life Sci. 2019, 76, 3917–3937. [Google Scholar] [CrossRef]
- Liu, H.B.; Zeng, X.F.; Zhang, G.L.; Hou, C.L.; Li, N.; Yu, H.T.; Shang, L.-J.; Zhang, X.-Y.; Trevisi, P.; Yang, F.-Y.; et al. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol. 2019, 17, 106. [Google Scholar] [CrossRef]
- Connor, E.E.; Evock-Clover, C.M.; Wall, E.H.; Baldwin, R.L., 6th; Santin-Duran, M.; Elsasser, T.H.; Bravo, D.M. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest. Anim. Endocrinol. 2016, 56, S56–S65. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.-P.; Ding, Q.-Y.; Li, Y.-Q.; Zhao, Z.-B.; Yan, F.; Li, Y.-P.; Wang, X.-X.; Xu, J.-Y.; Chen, W.-T.; Wu, G.-C.; et al. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury. EBioMedicine 2022, 82, 104181. [Google Scholar] [CrossRef]
- Shao, T.; Zhao, C.-Q.; Li, F.-Y.; Gu, Z.-L.; Liu, L.-M.; Zhang, L.-H.; Wang, Y.-H.; He, L.-Q.; Liu, Q. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J. Hepatol. 2018, 69, 886–895. [Google Scholar] [CrossRef]
- Yang, M.; Gao, L.; Xu, B.; Li, W.; Chen, C.; Chen, J.; Zhou, J. Role of the E26 transformation specific transcription factor family in metabolic disorders. J. Endocrinol. Investig. 2025. [Google Scholar] [CrossRef]
- Suico, M.A.; Shuto, T.; Kai, H. Roles and regulations of the ETS transcription factor ELF4/MEF. J. Mol. Cell Biol. 2017, 9, 168–177. [Google Scholar] [CrossRef]
- Zhang, C.; Gadue, P.; Scott, E.; Atchison, M.; Poncz, M. Activation of the megakaryocyte-specific gene platelet basic protein (PBP) by the Ets family factor PU.1. J. Biol. Chem. 1997, 272, 26236–26246. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.-H.; Badis, G.; Berger, M.F.; Kivioja, T.; Palin, K.; Enge, M.; Bonke, M.; Jolma, A.; Varjosalo, M.; Gehrke, A.R.; et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 2010, 29, 2147–2160. [Google Scholar] [CrossRef]
- Karim, F.D.; Urness, L.D.; Thummel, C.S.; Klemsz, M.J.; McKercher, S.R.; Celada, A.; Beveren, C.V.; Maki, R.A.; Gunther, C.V.; Nye, J.A. The ETS-domain: A new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes 1990, 4, 1451–1453. [Google Scholar] [CrossRef]
- Hollenhorst, P.C.; Mcintosh, L.P.; Graves, B.J. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu. Rev. Biochem. 2011, 80, 437–471. [Google Scholar] [CrossRef] [PubMed]
- Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell. Biol. 2001, 2, 827–837. [Google Scholar] [CrossRef]
- Oikawa, T. ETS transcription factors: Possible targets for cancer therapy. Cancer Sci. 2004, 95, 626–633. [Google Scholar] [CrossRef]
- Jedlicka, P.; Gutierrez-Hartmann, A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol. Histopathol. 2008, 23, 1417–1424. [Google Scholar] [CrossRef]
- Yamada, T.; Gierach, K.; Lee, P.H.; Wang, X.; Lacorazzaet, H.D. Cutting edge: Expression of the transcription factor E74-like factor 4 is regulated by the mammalian target of rapamycin pathway in CD8+ T cells. J. Immunol. 2010, 185, 3824–3828. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Geng, Y.; Cho, H.; Li, S.; Giri, P.K.; Felio, K. Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood 2011, 117, 1880–1887. [Google Scholar] [CrossRef]
- Wurster, A.L.; Siu, G.; Leiden, J.M.; Hedrick, S.M. Elf-1 binds to a critical element in a second CD4 enhancer. Mol. Cell. Biol. 1994, 14, 6452–6463. [Google Scholar] [CrossRef]
- Calero-Nieto, F.J.; Wood, A.D.; Wilson, N.K.; Kinston, S.; Landry, J.R.; Göttgens, B. Transcriptional regulation of Elf-1: Locus-wide analysis reveals four distinct promoters, a tissue-specific enhancer, control by PU.1 and the importance of Elf-1 downregulation for erythroid maturation. Nucleic Acids Res. 2010, 38, 6363–6374. [Google Scholar] [CrossRef]
- Zhang, B.; Tomita, Y.; Qiu, Y.; He, J.; Morii, E.; Noguchi, S.; Aozasa, K. E74-like factor 2 regulates valosin-containing protein expression. Biochem. Biophys. Res. Commun. 2007, 356, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Sun, X.; Uchida, H.; Zhang, J.; Nimer, S. MEF, a novel transcription factor with an Elf-1 like DNA binding domain but distinct transcriptional activating properties. Oncogene 1996, 13, 1721–1729. [Google Scholar] [PubMed]
- Aryee, D.N.; Petermann, R.; Kos, K.; Henn, T.; Haas, O.A.; Kovar, H. Cloning of a novel human ELF-1-related ETS transcription factor, ELFR, its characterization and chromosomal assignment relative to ELF-1. Gene 1998, 210, 71–78. [Google Scholar] [CrossRef]
- Bagger, F.O.; Sasivarevic, D.; Sohi, S.H.; Laursen, L.G.; Pundhir, S.; Sønderby, C.K.; Winther, Q.; Rapin, N.; Porse, B.T. BloodSpot: A database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016, 44, D917–D924. [Google Scholar] [CrossRef]
- Suico, M.A.; Koyanagi, T.; Ise, S.; Lu, Z.; Hisatsune, A.; Seki, Y.; Shuto, T.; Isohama, Y.; Miyata, T.; Kai, H. Functional dissection of the ETS transcription factor MEF. Biochim. Biophys. Acta 2002, 1577, 113–120. [Google Scholar] [CrossRef]
- Taura, M.; Suico, M.A.; Fukuda, R. MEF/ELF4 transactivation by E2F1 is inhibited by p53. Nucleic Acids Res. 2011, 39, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Kim, K.A.; Suico, M.A.; Shuto, T.; Li, J.D.; Kai, H. MEF upregulates humanbeta-defensin 2 expression in epithelial cells. FEBS Lett. 2004, 561, 117–121. [Google Scholar] [CrossRef]
- Seki, Y.; Suico, M.A.; Uto, A.; Hisatsune, A.; Shuto, T.; Isohama, Y.; Kai, H. The ETS transcription factor MEF is a candidate tumor suppressor gene on the X chromosome. Cancer Res. 2002, 62, 6579–6586. [Google Scholar]
- Koga, T.; Suico, M.A.; Nakamura, H.; Taura, M.; Lu, Z.; Shuto, T.; Okiyoneda, T.; Kai, H. Sp1-dependent regulation of Myeloid Elf-1 like factor in human epithelial cells. FEBS Lett. 2005, 579, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Suico, M.A.; Lu, Z.; Shuto, T.; Koga, T.; Uchikawa, T.; Yoshida, H.; Matsuzaki, K.; Nakao, M.; Li, J.-G.; Kai, H. The regulation of human beta-defensin 2 by the ETS transcription factor MEF (myeloid Elf-1-like factor) is enhanced by promyelocytic leukemia protein. J. Pharmacol. Sci. 2004, 95, 466–470. [Google Scholar] [CrossRef]
- Suico, M.A.; Nakamura, H.; Lu, Z.; Saitoh, H.; Shuto, T.; Nakao, M.; Kai, H. SUMO down-regulates the activity of Elf4/myeloid Elf-1-like factor. Biochem. Biophys. Res. Commun. 2006, 348, 880–888. [Google Scholar] [CrossRef]
- Cao, L.; Yang, G.; Gao, S.; Jing, C.; Montgomery, R.R.; Yin, Y.; Wang, P.-H.; Fikrig, E.; You, F.-P. HIPK2 is necessary for type I interferon-mediated antiviral immunity. Sci. Signal. 2019, 12, eaau4604. [Google Scholar] [CrossRef]
- Szabo, A.; Rajnavolgyi, E. Finding a fairy in the forest: ELF4, a novel and critical element of type I interferon responses. Cell. Mol. Immunol. 2014, 11, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Lacorazza, H.D.; Miyazaki, Y.; Di Cristofano, A.; Deblasio, A.; Hedvat, C.; Zhang, J.; Cardo, C.C.; Mao, S.-F.; Pandolfi, P.P.; Nimer, S.D. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 2002, 17, 437–449. [Google Scholar] [CrossRef]
- Barbalat, R.; Ewald, S.E.; Mouchess, M.L.; Barton, G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 2011, 29, 185–214. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci. 2008, 1143, 1–20. [Google Scholar] [CrossRef]
- Wang, L.; Wen, M.; Cao, X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019, 365, eaav0758. [Google Scholar] [CrossRef]
- Cao, L.-L.; Liu, S.-D.; Li, Y.-F.; Yang, G.; Luo, Y.-J.; Li, S.-J.; Du, H.-Q.; Zhao, Y.-C.; Qang, D.-D.; Chen, J.-X.; et al. The nuclear matrix protein SAFA surveils viral RNA and facilitates immunity by activating antiviral enhancers and super-enhancers. Cell Host Microbe 2019, 26, 369–384.E8. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Rajnavolgyi, E. Collaboration of Toll-like and RIG-Ilike receptors in human dendritic cells: TRIGgering antiviral innate immune responses. Am. J. Clin. Exp. Immunol. 2013, 2, 195–207. [Google Scholar]
- Wolf, A.J.; Reyes, C.N.; Liang, W.; Becker, C.; Shimada, K.; Wheeler, M.L.; Cho, H.C.; Popescu, N.I.; Coggeshall, K.M.; Arditi, M.; et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 2016, 166, 624–636. [Google Scholar] [CrossRef]
- Shi, J.-J.; Zhao, Y.; Wang, Y.-P.; Gao, W.-Q.; Ding, J.-J.; Li, P.; Hu, L.-Y.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514, 187–192. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Szabo, A.; Bene, K.; Gogolák, P.; Réthi, B.; Lányi, Á.; Jankovich, I.; Dezső, B.; Dezső, B.; Rajnavölgyi, É. RLR-mediated production of interferon-beta by a human dendritic cell subset and its role in virus-specific immunity. J. Leukoc. Biol. 2012, 92, 159–169. [Google Scholar] [CrossRef]
- Hall, J.C.; Rosen, A. Type I interferons: Crucial participants indisease amplification in autoimmunity. Nat. Rev. Rheumatol. 2010, 6, 40–49. [Google Scholar] [CrossRef]
- Ye, L.; Schnepf, D.; Staeheli, P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019, 19, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-D.; Zhang, Z.-M.; Cui, S.; Zhao, Y.-C.; Craft, S.; Fikrig, E.; You, F.-P. ELF4 facilitates innate host defenses against Plasmodium by activating transcription of Pf4 and Ppbp. J. Biol. Chem. 2019, 294, 7787–7796. [Google Scholar] [CrossRef]
- Murray, C.J.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fukllman, N.; Naghavi, M.; Lozano, P.R.; Lopez, P.A. DGlobal malaria mortality between 1980 and 2010: A systematic analysis. Lancet 2012, 379, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Reyburn, H. New WHO guidelines for the treatment of malaria. BMJ 2010, 340, c2637. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and disease. Cell 2016, 167, 610–624. [Google Scholar] [CrossRef]
- Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M.; You, F.-P. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 2008, 359, 2619–2620. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wu, M.; Lv, Q. A multicenter cohort study of immune dysregulation disorders caused by ELF4 variants in China. J. Clin. Immunol. 2023, 43, 933–939. [Google Scholar] [CrossRef]
- Hedvat, C.V.; Yao, J.; Sokolic, R.A.; Nimer, S.D. Myeloid ELF1-like factor is a potent activator of interleukin-8 expression in hematopoietic cells. J. Biol. Chem. 2004, 279, 6395–6400. [Google Scholar] [CrossRef] [PubMed]
- Mamonkin, M.; Puppi, M.; Lacorazza, H.D. Transcription factorELF4 promotes development and function of memory CD8 (+) Tcells in Listeria monocytogenes infection. Eur. J. Immunol. 2014, 44, 715–727. [Google Scholar] [CrossRef]
- Chaix, J.; Nish, S.A.; Lin, W.H.; Rothman, N.J.; Ding, L.; Wherry, E.J.; Reiner, S.L. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. J. Immunol. 2014, 193, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Papatriantafyllou, M. T cells: Maintaining T cell homeostasis. Nat. Rev. Immunol. 2013, 13, 546–547. [Google Scholar] [CrossRef]
- Lee, P.H.; Puppi, M.; Schluns, K.S.; Yu-Lee, L.Y.; Dong, C.; Lacorazza, H.D. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J. Immunol. 2014, 192, 178–188. [Google Scholar] [CrossRef]
- Stewart, D.M.; Tian, L.; Notarangelo, L.D.; Nelson, D.L. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: An update. Immunol. Res. 2008, 40, 262–270. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, B.G.; Lee, S.J.; Lee, H.K.; Lee, S.H.; Ryoo, H.M.; Cho, J.Y. The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation. J. Cell. Physiol. 2007, 211, 253–260. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Olsen, B.R. Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell. Mol. Life. Sci. 2014, 71, 493–497. [Google Scholar] [CrossRef]
- Zhuang, H.-L.; Zhang, X.; Zhu, C.-T.; Tang, X.-S.; Yu, F.; Shang, G.W.; Cao, X.-X. Molecular Mechanisms of PPAR-gamma Governing MSC Osteogenic and Adipogenic Differentiation. Curr. Stem Cell Res. Ther. 2016, 11, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.J.; Sementchenko, V.I.; Watson, D.K. The epithelial-specific Ets factors occupy a unique position in defining epithelial proliferation, differentiation and carcinogenesis. Anticancer. Res. 2003, 23, 2125–2131. [Google Scholar] [PubMed]
- Liu, Y.; Hedvat, C.V.; Mao, S.; Zhu, X.-H.; Yao, J.; Nguyen, H.; Koff, A.; Nimer, S.D. The ETS protein MEF is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Mol. Cell. Biol. 2006, 26, 3114–3123. [Google Scholar] [CrossRef]
- Lacorazza, H.D.; Yamada, T.; Liu, Y.; Miyata, Y.; Sivina, M.; Nunes, J.; Nimer, S.D. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 2006, 9, 175–187. [Google Scholar] [CrossRef]
- Liu, Y.; Elf, S.E.; Miyata, Y.; Sashida, G.; Liu, Y.-H.; Huang, G.; Giandomenico, S.D.; Lee, J.M.; Deblasio, A. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009, 4, 37–48. [Google Scholar] [CrossRef]
- Sivina, M.; Yamada, T.; Park, C.S.; Puppi, M.; Coșkun, S.; Hirschi, K.K.; Daniel, H. The transcription factor E74-like factor controls quiescence of endothelial cells and their resistance to myeloablative treatments in bone marrow. Arter. Thromb. Vasc. Biol. 2011, 31, 1185–1191. [Google Scholar] [CrossRef]
- Du, H.-Q.; Xia, H.-W.; Liu, T.-T.; Li, Y.-J.; Liu, J.-L.; Xie, B.-T.; Chen, J.-X.; Liu, T.; Cao, L.-L.; Liu, S.-D.; et al. Suppression of ELF4 in ulcerative colitis predisposes host to colorectal cancer. iScience 2021, 24, 102169. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-J.; Liu, Y.; Lacorazza, H.D.; Soslow, R.A.; Scandura, J.M.; Nimer, S.D.; Hedvat, C.V. Tumor promoting properties of the ETS protein MEF in ovarian cancer. Oncogene 2007, 26, 4032–4037. [Google Scholar] [CrossRef]
- Bazzoli, E.; Pulvirenti, T.; Oberstadt, M.C.; Perna, F.; Wee, B.; Schultz, N. MEF promotes stemness in the pathogenesis of gliomas. Cell Stem Cell 2012, 11, 836–844. [Google Scholar] [CrossRef]
- Kosti, A.; Chiou, J.; Guardia, G.D.A.; Lei, X.-F.; Balinda, H.; Landry, T.; Lu, X.-Y.; Qiao, M.; Gilbert, A.; Brenner, A.; et al. ELF4 is a critical component of a miRNA-transcription factor network and is a bridge regulator of glioblastoma receptor signaling and lipid dynamics. Neuro Oncol. 2023, 25, 459–470. [Google Scholar] [CrossRef]
- Asai, T.; Hatlen, M.A.; Lossos, C.; Ndiaye-Lobry, D.; Deblasio, A.; Murata, K.; Fleisher, M.; Cortizas, E.M.; Verdun, R.E.; Petrini, J.; et al. Generation of a novel, multi-stage, progressive, and transplantable model of plasma cell neoplasms. Sci. Rep. 2016, 6, 22760. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Frank, R.C.; Zhang, J.; Miyazaki, Y.; Nimer, S.D. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: Implications for the pathogenesis of t(8;21)-positive leukemias. Mol. Cell. Biol. 1999, 19, 3635–3644. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.D.; Offor, O.; Ferry, J.A.; Amrein, P.C.; Morton, C.C.; Cin, P.D. ELF4 is fused to ERG in a case of acute myeloid leukemia with a t(X;21)(q25-26;q22). Leuk. Res. 2006, 30, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Totoki, Y.; Tatsuno, K.; Yamamoto, S.; Arai, Y.; Hosoda, F.; Ishikawa, S.; Tsutsumi, S.; Sonoda, K.; Totsuka, H.; Shirakihara, T.; et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 2011, 43, 464–469. [Google Scholar] [CrossRef]
- Duhagon, M.A.; Hurt, E.M.; Sotelo-Silveira, J.R.; Zhang, X.; Farrar, W.L. Genomic profiling of tumor initiating prostatospheres. BMC Genom. 2010, 11, 324. [Google Scholar] [CrossRef]
- Ando, M.; Kawazu, M.; Ueno, T.; Koinuma, D.; Ando, K.; Koya, J.; Kataoka, K.; Yasuda, T.; Yamaguchi, H.; Fukumura, K.; et al. Mutational Landscape and Antiproliferative Functions of ELF Transcription Factors in Human Cancer. Cancer Res. 2016, 76, 1814–1824. [Google Scholar] [CrossRef]
- Suico, M.A.; Taura, M.; Kudo, E.; Gotoh, K.; Shuto, T.; Okada, S.; Kai, H. The ETS Factor Myeloid Elf-1-Like Factor (MEF)/Elf4 Is Transcriptionally and Functionally Activated by Hypoxia. Biol. Pharm. Bull. 2016, 39, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Garçon, L.; Lacout, C.; Svinartchouk, F.; Le Couédic, J.P.; Villeval, J.L.; Vainchenker, W.; Duménil, D. Gfi-1B plays a critical role in terminal differentiation of normal and transformed erythroid progenitor cells. Blood 2005, 105, 1448–1455. [Google Scholar] [CrossRef]
- Kafita, D.; Daka, V.; Nkhoma, P.; Zulu, M.; Zulu, E.; Tembo, R. High ELF4 expression in human cancers is associated with worse disease outcomes and increased resistance to anticancer drugs. PLoS ONE 2021, 16, e0248984. [Google Scholar] [CrossRef]
- Suico, M.A.; Fukuda, R.; Miyakita, R.; Koyama, K. The transcription factor MEF/Elf4 is dually modulated by p53-MDM2 axis and MEF-MDM2 autoregulatory mechanism. J. Biol. Chem. 2014, 289, 26143–26154. [Google Scholar] [CrossRef]
- Stewart, D.M.; Tian, L.; Notarangelo, L.D.; Nelson, D.L. Update on X-linked hypogammaglobulinemia with isolated growth hormone deficiency. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 510–512. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Gerner, R.R.; Moschen, A.R. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018, 33, 954–964. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacol. Res. 2018, 129, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Kim, H.J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. USA 2018, 115, E10539–E10547. [Google Scholar] [CrossRef]
- Martinon, F.; Aksentijevich, I. New players driving infammation in monogenic autoinfammatory diseases. Nat. Rev. Rheumatol. 2015, 11, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Bourla, A.B.; Kastner, D.L.; Colbert, R.A.; Siegel, R.M. Lighting the fres within: The cell biology of autoinfammatory diseases. Nat. Rev. Immunol. 2012, 12, 570–580. [Google Scholar] [CrossRef]
- Sun, G.; Qiu, L.-Y.; Yu, L.; An, Y.-F.; Ding, Y.; Zhou, L.-N.; Wu, J.; Yang, X.; Zhang, Z.-Y.; Tang, X.-M.; et al. Loss of Function Mutation in ELF4 Causes Autoinflammatory and Immunodeficiency Disease in Human. J. Clin. Immunol. 2022, 42, 798–810. [Google Scholar] [CrossRef]
- Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar] [CrossRef]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Chatila, T.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Ochs, H.D.; et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2020, 40, 24–64. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Miranda, P.J.; DeFronzo, R.A.; Califf, R.M.; Guyton, J.R. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am. Heart J. 2005, 149, 33–45. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Sarafidis, P.A.; Nilsson, P.M. The metabolic syndrome: A glance at its history. J. Hypertens. 2006, 24, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Touhy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Cani, P.D.; Neyrinck, A.M.; Maton, N.; Delzenne, N.M. Oligofructose promotes satiety in rats fed a high-fat diet: Involvement of glucagon-like Peptide-1. Obes. Res. 2005, 13, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019, 129, 4050–4057. [Google Scholar] [CrossRef]
- Sutar, S.B.; Nageswar, M. Gut Microbiota as a Therapeutic Target in Alcoholic Liver Disease: A Narrative Review. Eur. J. Cardiovasc. Med. 2025, 15, 872–876. [Google Scholar]
- Mukherjee, S.; Hooper, L.V. Antimicrobial defense of the intestine. Immunity 2015, 42, 28–39. [Google Scholar] [CrossRef]
- Schroeder, B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019, 7, 3–12. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.; Chen, W.C.; Schnabl, B. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Front. Physiol. 2012, 3, 402. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, H.; Zhang, Z.; Xie, Y.; Yang, L.; You, F. Intestinal ELF4 Deletion Exacerbates Alcoholic Liver Disease by Disrupting Gut Homeostasis. Int. J. Mol. Sci. 2022, 23, 4825. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef]
- Yang, A.M.; Inamine, T.; Hochrath, K.; Chen, P.; Wang, L.; Llorente, C.; Bluemel, S.; Hartmann, P.; Xu, J.; Koyama, Y.; et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 2017, 127, 2829–2841. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Stärkel, P.; Turner, J.R.; Ho, S.B.; Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015, 61, 883–894. [Google Scholar] [CrossRef]
- Bajaj, J.S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 235–246. [Google Scholar] [CrossRef]
- Hou, N.; Du, X.; Wu, S. Advances in pig models of human diseases. Anim. Model. Exp. Med. 2022, 5, 141–152. [Google Scholar] [CrossRef]
- Smith, F.; Clark, J.E.; Overman, B.L.; Tozel, C.C.; Huang, J.H.; Blisklager, A.T.; Moeser, A.J. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G352–G363. [Google Scholar] [CrossRef]
- Johnson, A.M.; Kaushik, R.S.; Hardwidge, P.R. Disruption of transepithelial resistance by enterotoxigenic Escherichia coli. Vet. Microbiol. 2010, 141, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, K.J.; Wu, Y.J.; Yang, Y.; Tso, P.; Wu, Z.-L. Interactions between intestinal microbiota and host immune response in inflammatory bowl disease. Front. Immunol. 2017, 14, 942. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Bai, H.; Bai, Z.; Fu, L.; Yu, H. The Biological Functions and Mode of Action of Transcription Factor ELF4: A Promising Target for Treating Intestinal Homeostasis Disorder-Related Diseases. Biology 2025, 14, 1480. https://doi.org/10.3390/biology14111480
Xie L, Bai H, Bai Z, Fu L, Yu H. The Biological Functions and Mode of Action of Transcription Factor ELF4: A Promising Target for Treating Intestinal Homeostasis Disorder-Related Diseases. Biology. 2025; 14(11):1480. https://doi.org/10.3390/biology14111480
Chicago/Turabian StyleXie, Linjiang, Haixin Bai, Ziyi Bai, Lv Fu, and Haitao Yu. 2025. "The Biological Functions and Mode of Action of Transcription Factor ELF4: A Promising Target for Treating Intestinal Homeostasis Disorder-Related Diseases" Biology 14, no. 11: 1480. https://doi.org/10.3390/biology14111480
APA StyleXie, L., Bai, H., Bai, Z., Fu, L., & Yu, H. (2025). The Biological Functions and Mode of Action of Transcription Factor ELF4: A Promising Target for Treating Intestinal Homeostasis Disorder-Related Diseases. Biology, 14(11), 1480. https://doi.org/10.3390/biology14111480
