Heavy Metal Contamination in Adaptogenic Herbal Dietary Supplements: Experimental, Assessment and Regulatory Safety Perspectives
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Analyzed Dietary Supplements
2.2. Sample Preparation
2.3. Scanning Electron Microscopy Analysis (SEM-EDS)
2.4. Atomic Absorption Spectroscopy (AAS) Analysis
2.5. Mercury Analysis by AMA 254
2.6. Method Validation and Quality Control
2.7. Comparison of Obtained Results with Reference Values and Statistical Analysis
3. Results
3.1. Analysis of Morphology and Elemental Composition of Dietary Supplements (SEM/EDS)
3.2. Quantitative Analysis of Heavy Metals Content (AAS and AMA)
3.3. Impact of Pharmaceutical Form and Raw Material Origin on the Profile of Metals Contamination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerontakos, S.; Casteleijn, D.; Wardle, J. Clinician Perspectives and Understanding of the Adaptogenic Concept: A Focus Group Study with Naturopaths and Western Herbalists. Integr. Med. Res. 2021, 10, 100433. [Google Scholar] [CrossRef] [PubMed]
- Todorova, V.; Ivanov, K.; Ivanova, S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties (Rhaponticum Carthamoides, Lepidium Meyenii, Eleutherococcus Senticosus and Panax Ginseng). Plants 2021, 11, 64. [Google Scholar] [CrossRef]
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.; et al. Evolution of the Adaptogenic Concept from Traditional Use to Medical Systems: Pharmacology of Stress- and Aging-related Diseases. Med. Res. Rev. 2021, 41, 630–703. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Evidence-Based Efficacy of Adaptogens in Fatigue, and Molecular Mechanisms Related to Their Stress-Protective Activity. Curr. Clin. Pharmacol. 2009, 4, 198–219. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals 2010, 3, 188–224. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant Adaptogens—History and Future Perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Rawat, N.; Chandra, M.; Mitra, S.; Sharma, K.C. Globalization of Ayurveda Pharmaceutics: Emerging Trends. Int. J. Sci. Res. Arch. 2024, 11, 413–421. [Google Scholar] [CrossRef]
- Global Ayurvedic Market Size (2022–2028) | Booming. Available online: https://www.globenewswire.com/news-release/2022/04/12/2421136/0/en/Global-Ayurvedic-Market-Size-2022-2028-Booming-Worldwide-At-A-CAGR-of-12-0-Consumer-Demands-Leading-Players-Updates-Emerging-Technologies-Dominant-Sectors-Top-Countries-Data-and-Qu.html (accessed on 10 September 2025).
- Wróbel, K.; Milewska, A.J.; Marczak, M.; Kozłowski, R. The Impact of the COVID-19 Pandemic on the Composition of Dietary Supplements and Functional Foods Notified in Poland. Int. J. Environ. Res. Public Health 2021, 18, 11751. [Google Scholar] [CrossRef]
- Chandra, S.; Saklani, S.; Kumar, P.; Kim, B.; Coutinho, H.D.M. Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. Biomed. Res. Int. 2022, 2022, 2051017. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021, 12, 43. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Roșca, M.; Hagiu-Zaleschi, L.; Simion, I.M.; Daraban, G.M.; Stoleru, V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics 2022, 10, 499. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, F.-J. Toxic Metals and Metalloids in Food: Current Status, Health Risks, and Mitigation Strategies. Curr. Environ. Health Rep. 2024, 11, 468–483. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Zarei, A.; Qasemi, M.; Mardaneh, J.; Taghavi, M.; Farhang, M.; Allahdadi, M.; Talebi, F.; Safari, M.; Bazrafshan, M.; Zarei, A. Metal(Oid)s in Vegetables: Human Health Risks Though Vegetable Consumption. Biol. Trace Elem. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Peirovi-Minaee, R.; Alami, A.; Esmaeili, F.; Zarei, A. Analysis of Trace Elements in Processed Products of Grapes and Potential Health Risk Assessment. Environ. Sci. Pollut. Res. 2024, 31, 24051–24063. [Google Scholar] [CrossRef] [PubMed]
- Samiullah; Bhanbhro, U.; Shaikh, K. Ecological Risks Assessment Arising from the Atmospheric Deposition of Heavy Metals in the River Indus Near Kotri Barrage, Sindh, Pakistan. Soil Sediment Contam. Int. J. 2024, 33, 1334–1347. [Google Scholar] [CrossRef]
- Xin, X.; Shentu, J.; Zhang, T.; Yang, X.; Baligar, V.C.; He, Z. Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability 2022, 14, 15878. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy Metal Contaminations in Herbal Medicines: Determination, Comprehensive Risk Assessments, and Solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef]
- Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 973878. [Google Scholar] [CrossRef]
- Rojas, P.; Ruiz-Sánchez, E.; Ríos, C.; Ruiz-Chow, Á.; Reséndiz-Albor, A.A. A Health Risk Assessment of Lead and Other Metals in Pharmaceutical Herbal Products and Dietary Supplements Containing Ginkgo Biloba in the Mexico City Metropolitan Area. Int. J. Environ. Res. Public Health 2021, 18, 8285. [Google Scholar] [CrossRef]
- Ćwieląg-Drabek, M.; Piekut, A.; Szymala, I.; Oleksiuk, K.; Razzaghi, M.; Osmala, W.; Jabłońska, K.; Dziubanek, G. Health Risks from Consumption of Medicinal Plant Dietary Supplements. Food Sci. Nutr. 2020, 8, 3535–3544. [Google Scholar] [CrossRef]
- Kowalska, G. The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland. Int. J. Environ. Res. Public Health 2021, 18, 5779. [Google Scholar] [CrossRef]
- European Commission. Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplements; European Parliament and the Council of the European Union: Brussels, Belgium, 2002; Volume L 215, pp. 51–57. [Google Scholar]
- European Commission. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating to Medicinal Products for Human Use; European Parliament and the Council of the European Union: Brussels, Belgium, 2001; Volume L 364, pp. 67–128. [Google Scholar]
- European Medicines Agency Herbal Medicinal Products Committee (HMPC). Guideline on Quality of Herbal Medicinal Products / Traditional Herbal Medicinal Products (Revision 3); European Medicines Agency: Amsterdam, The Netherlands, 2020; Volume L 364. [Google Scholar]
- Roos-Barraclough, F.; Givelet, N.; Martinez-Cortizas, A.; Goodsite, M.E.; Biester, H.; Shotyk, W. An Analytical Protocol for the Determination of Total Mercury Concentrations in Solid Peat Samples. Sci. Total Environ. 2002, 292, 129–139. [Google Scholar] [CrossRef]
- Soriano, S.; Netto, A.D.P.; Cassella, R.J. Determination of Cu, Fe, Mn and Zn by Flame Atomic Absorption Spectrometry in Multivitamin/Multimineral Dosage Forms or Tablets after an Acidic Extraction. J. Pharm. Biomed. Anal. 2007, 43, 304–310. [Google Scholar] [CrossRef]
- EDQM. European Pharmacopoeia 10.0, Chapter 5.20: Elemental Impurities and Chapter 2.4.20: Determination of Elemental Impurities; EDQM: Strasbourg, Franch, 2019. [Google Scholar]
- World Health Organization. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- European Food Safety Authority (EFSA). Cadmium in food—Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [Google Scholar] [CrossRef]
- CONTAM. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority: Parma, Italy, 2006. [Google Scholar]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Foodstuffs and Repealing Regulation (EC) No 1881/2006; European Commission: Brussels, Belgium, 2023; Volume L 119, pp. 103–157. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Commission: Brussels, Belgium, 2006; Volume L 364, pp. 5–24. [Google Scholar]
- EDQM. Monograph 04/2019:2619; Elemental Impurities—Limits; EDQM: Strasbourg, France, 2019. [Google Scholar]
- European Commission. Discussion Paper on the Setting of Maximum and Minimum Amounts for Vitamins and Minerals in Foodstuffs; European Communities: Brussels, Belgium, 2006. [Google Scholar]
- Akhbarizadeh, R.; Dobaradaran, S.; Spitz, J.; Mohammadi, A.; Tekle-Röttering, A.; De-la-Torre, G.E.; Keshtkar, M. Metal(Loid)s in Herbal Medicines and Their Infusions: Levels, Transfer Rate, and Potential Risks to Human Health. Hyg. Environ. Health Adv. 2023, 5, 100042. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia dla Populacji Polski i ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Chocimska, Warsaw, 2020. [Google Scholar]
- European Commission. Commission Recommendation (EU) 2024/907 of 22 March 2024; European Commission: Brussels, Belgium, 2024. [Google Scholar]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel Toxicity in Plants: Reasons, Toxic Effects, Tolerance Mechanisms, and Remediation Possibilities—A Review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef] [PubMed]
- Darsow, U.; Fedorov, M.; Schwegler, U.; Twardella, D.; Schaller, K.; Habernegg, R.; Fromme, H.; Ring, J.; Behrendt, H. Influence of Dietary Factors, Age and Nickel Contact Dermatitis on Nickel Excretion. Contact Dermat. 2012, 67, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Błoniarz, J.; Zaręba, S. Determination of the Level of Chromium and Nickel in Selected Dietary Supplements Stimulating the Immune System of the Human Body. Curr. Issues Pharm. Med. Sci. 2012, 25, 10–14. [Google Scholar] [CrossRef]
- Kulhari, A.; Sheorayan, A.; Bajar, S.; Sarkar, S.; Chaudhury, A.; Kalia, R.K. Investigation of Heavy Metals in Frequently Utilized Medicinal Plants Collected from Environmentally Diverse Locations of North Western India. Springerplus 2013, 2, 676. [Google Scholar] [CrossRef]
- Singh, G.; Patel, N.; Jindal, T.; Ranjan, M.R. Heavy Metal Contamination in Soils and Crops Irrigated by Kali River in Uttar Pradesh, India. Bull. Environ. Contam. Toxicol. 2021, 107, 931–937. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Fong, H.H.S.; Farnsworth, N.R. The Role of Quality Assurance and Standardization in the Safety of Botanical Dietary Supplements. Chem. Res. Toxicol. 2007, 20, 577–582. [Google Scholar] [CrossRef]
- Chan, K. Some Aspects of Toxic Contaminants in Herbal Medicines. Chemosphere 2003, 52, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Evans, B.; Schöneich, C.; Singh, S.K. Biotherapeutic Formulation Factors Affecting Metal Leachables from Stainless Steel Studied by Design of Experiments. AAPS PharmSciTech 2012, 13, 284–294. [Google Scholar] [CrossRef]
- Jairoun, A.A.; Shahwan, M.; Zyoud, S.H. Heavy Metal Contamination of Dietary Supplements Products Available in the UAE Markets and the Associated Risk. Sci. Rep. 2020, 10, 18824. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current Knowledge of Schisandra Chinensis (Turcz.) Baill. (Chinese Magnolia Vine) as a Medicinal Plant Species: A Review on the Bioactive Components, Pharmacological Properties, Analytical and Biotechnological Studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef]
- Shin, M.-Y.; Cho, Y.-E.; Park, C.; Sohn, H.-Y.; Lim, J.-H.; Kwun, I.-S. The Contents of Heavy Metals (Cd, Cr, As, Pb, Ni, and Sn) in the Selected Commercial Yam Powder Products in South Korea. Prev. Nutr. Food Sci. 2013, 18, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Nessa, F.; Khan, S.; Abu shawish, K.Y.I. Lead, Cadmium and Nickel Contents of Some Medicinal Agents. Indian. J. Pharm. Sci. 2016, 78, 111. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.; Greenfield, J.; Cumberford, G.; Grant, J.; Stewart, J. Extraction Efficiencies of Heavy Metals in Hydroethanolic Solvent from Herbs of Commerce. J. AOAC Int. 2010, 93, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Efferth, T. Network Pharmacology of Adaptogens in the Assessment of Their Pleiotropic Therapeutic Activity. Pharmaceuticals 2022, 15, 1051. [Google Scholar] [CrossRef]
- Poveda, O.M.P. Regulation of Herbal (Traditional) Medicinal Products in the European Union. Pharm. Regul. Aff. 2015, 4, 1–5. [Google Scholar] [CrossRef]

| Sample Code | Adaptogenic Plant Species | Pharmaceutical Form | Country of Raw Material Origin |
|---|---|---|---|
| 1A | Withania somnifera (Ashwagandha) | Powder | India |
| 2A | Withania somnifera (Ashwagandha) | Capsule | India |
| 3A | Withania somnifera (Ashwagandha) | Tablet | India |
| 1R | Rhodiola rosea (Rhodiola) | Dried root | China |
| 2R | Rhodiola rosea (Rhodiola) | Tablet | China |
| 3R | Rhodiola rosea (Rhodiola) | Capsule | China |
| 1Z | Panax ginseng (Korean ginseng) | Dried root | China |
| 2Z | Panax ginseng (Korean ginseng) | Dried root | China |
| 3Z | Panax ginseng (Korean ginseng) | Tablet | China |
| 1C | Schisandra chinensis (Schisandra) | Dried fruit | China |
| 2C | Schisandra chinensis (Schisandra) | Tablet | China |
| Metal | IDL | IQL |
|---|---|---|
| Mn | 0.0016 | 0.020 |
| Fe | 0.0043 | 0.050 |
| Ni | 0.0043 | 0.050 |
| Cu | 0.0045 | 0.033 |
| Zn | 0.0033 | 0.010 |
| Cd | 0.0028 | 0.013 |
| Pb | 0.0130 | 0.070 |
| Metal | BCR-414 Plankton Concentration ± Uncertainty [mg/kg d.m.] | AAS Mean ± SD * [mg/kg d.m.] | Dev. [%] ** |
|---|---|---|---|
| Mn | 299 ± 12 | 284 ± 13 | −5.0 |
| Fe | 1.85 ± 0.19 | 1.79 ± 0.20 | −3.2 |
| Ni | 18.8 ± 0.8 | 18.2 ± 0.9 | −3.2 |
| Cu | 29.5 ± 1.3 | 28.4 ± 1.6 | −3.7 |
| Zn | 112 ± 3 | 107 ± 3 | −4.5 |
| Cd | 0.383 ± 0.014 | 0.371 ± 0.018 | −3.1 |
| Pb | 3.97 ± 0.19 | 3.75 ± 0.21 | −5.5 |
| Parameter | Mn | Fe | Ni | Cu | Zn | Cd | Pb |
|---|---|---|---|---|---|---|---|
| RSD [%] | 0.17 | 0.32 | 1.12 | 0.48 | 0.18 | 2.14 | 1.54 |
| Sample Code | Cu | Mn | Zn | Fe | Ni | Pb | Cd | Hg |
|---|---|---|---|---|---|---|---|---|
| 1A | 4.876 ± 1.911 | 18.534 ± 2.573 | 31.192 ± 4.584 | 252.202 ± 65.895 | 1.218 ± 0.173 a | <1.4 c | 0.444 ± 0.111 | 0.00125 ± 0.00006 |
| 2A | 2.604 ± 1.021 | 7.746 ± 1.075 | 13.842 ± 2.034 | 53.284 ± 13.922 | 1.320 ± 0.243 a | 2.284 ± 0.287 | 0.414 ± 0.072 | 0.00141 ± 0.00034 |
| 3A | 10.936 ± 0.429 | 14.906 ± 0.207 | 22.658 ± 0.333 | 21.278 ± 0.556 | 2.166 ± 0.198 a | 5.146 ± 0.647 b | 0.460 ± 0.080 | 0.00368 ± 0.00020 |
| 1R | 1.618 ± 0.063 | 40.624 ± 0.564 | 8.544 ± 0.126 | 34.470 ± 0.901 | <1 c | <1.4 c | 0.644 ± 0.113 | 0.00343 ± 0.00141 |
| 2R | 0.672 ± 0.026 | 6.420 ± 0.089 | 2.388 ± 0.035 | 28.792 ± 0.752 | <1 c | 3.656 ± 0.460 b | 0.446 ± 0.078 | 0.00104 ± 0.00005 |
| 3R | 2.270 ± 0.089 | 9.314 ± 0.129 | 4.888 ± 0.072 | 44.486 ± 1.162 | 1.518 ± 0.139 a | <1.4 c | 0.452 ± 0.079 | 0.00161 ± 0.00026 |
| 1Z | 2.374 ± 0.093 | 68.164 ± 0.946 d | 7.542 ± 0.111 | 28.138 ± 0.818 | 1.304 ± 0.119 a | 2.326 ± 0.292 | 0.500 ± 0.087 | 0.00283 ± 0.00046 |
| 2Z | 2.308 ± 0.905 | 16.334 ± 2.267 | 5.758 ± 0.846 | 35.890 ± 9.377 | <1 c | 1.692 ± 0.213 | 0.444 ± 0.078 | 0.00221 ± 0.00040 |
| 3Z | 0.788 ± 0.031 | 0.960 ± 0.133 | 4.140 ± 0.608 | 36.980 ± 9.662 | <1 c | 7.836 ± 0.985 b | 0.420 ± 0.073 | 0.00272 ± 0.00029 |
| 1C | 4.678 ± 1.833 | 76.832 ± 10.665 | 12.746 ± 1.873 | 161.544 ± 42.208 | 1.648 ± 0.151 a | 10.048 ± 1.263 b | 0.454 ± 0.008 | 0.00485 ± 0.00012 |
| 2C | 1.026 ± 0.040 | 41.832 ± 5.806 | 7.534 ± 1.107 | 207.888 ± 5.432 | 1.682 ± 0.154 a | 8.192 ± 1.030 b | 0.486 ± 0.008 | 0.00235 ± 0.00024 |
| Element | MPL [mg/kg d.m.] [35,36,37] | MSL [mg/day] [38] | RDI in Herbal Medicines [mg/day] [39] | UL [mg/day] [40] | ML in Plant Material [mg/kg d.m.] [39,41] |
|---|---|---|---|---|---|
| Pb | ≤3.0 | – | 0.25 | – | – |
| Cd | ≤1.0 | – | 0.07 | – | – |
| Hg | ≤0.1 | – | – | – | – |
| Mn | – | 2 | 2–5 | – | – |
| Zn | – | 10–15 | 15 | 25 | – |
| Fe | – | 14–20 | – | 50–60 LOAEL | – |
| Ni | – | – | – | – | 0.4 (fruits)/0.9 (roots and tubers) |
| Cu | – | 1–2 | 1.5–3 | 5 | – |
| Sample Code | Element | Measured Concentration [mg/kg d.m.] | Permissible Limit [mg/kg d.m.] | Status | Exceedance [%] |
|---|---|---|---|---|---|
| 1A | Ni | 1.218 ± 0.173 | 0.9 | Exceeded | 35% |
| 2A | Ni | 1.320 ± 0.243 | 0.9 | Exceeded | 47% |
| 3A | Ni | 2.166 ± 0.198 | 0.9 | Exceeded | 141% |
| 3A | Pb | 5.146 ± 0.647 | 3.0 | Exceeded | 72% |
| 2R | Pb | 3.656 ± 0.460 | 3.0 | Exceeded | 22% |
| 3R | Ni | 1.518 ± 0.139 | 0.9 | Exceeded | 69% |
| 1Z | Ni | 1.304 ± 0.119 | 0.9 | Exceeded | 45% |
| 3Z | Pb | 7.836 ± 0.985 | 3.0 | Exceeded | 161% |
| 1C | Ni | 1.648 ± 0.151 | 0.4 | Exceeded | 312% |
| 1C | Pb | 10.048 ± 1.263 | 3.0 | Exceeded | 235% |
| 2C | Ni | 1.682 ± 0.154 | 0.4 | Exceeded | 321% |
| 2C | Pb | 8.192 ± 1.030 | 3.0 | Exceeded | 173% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasińska-Balwierz, A.; Krypel, P.; Świsłowski, P.; Rajfur, M.; Balwierz, R.; Ochędzan-Siodłak, W. Heavy Metal Contamination in Adaptogenic Herbal Dietary Supplements: Experimental, Assessment and Regulatory Safety Perspectives. Biology 2025, 14, 1479. https://doi.org/10.3390/biology14111479
Jasińska-Balwierz A, Krypel P, Świsłowski P, Rajfur M, Balwierz R, Ochędzan-Siodłak W. Heavy Metal Contamination in Adaptogenic Herbal Dietary Supplements: Experimental, Assessment and Regulatory Safety Perspectives. Biology. 2025; 14(11):1479. https://doi.org/10.3390/biology14111479
Chicago/Turabian StyleJasińska-Balwierz, Agata, Patrycja Krypel, Paweł Świsłowski, Małgorzata Rajfur, Radosław Balwierz, and Wioletta Ochędzan-Siodłak. 2025. "Heavy Metal Contamination in Adaptogenic Herbal Dietary Supplements: Experimental, Assessment and Regulatory Safety Perspectives" Biology 14, no. 11: 1479. https://doi.org/10.3390/biology14111479
APA StyleJasińska-Balwierz, A., Krypel, P., Świsłowski, P., Rajfur, M., Balwierz, R., & Ochędzan-Siodłak, W. (2025). Heavy Metal Contamination in Adaptogenic Herbal Dietary Supplements: Experimental, Assessment and Regulatory Safety Perspectives. Biology, 14(11), 1479. https://doi.org/10.3390/biology14111479

