Allelopathic Trade-Offs of Rye and Wheat Residues Versus 2-Benzoxazolinone: Impacts on Cotton Growth
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Overview
2.2. Experimental Design
2.2.1. Experiment 1—Dose–Response of Rye and BOA on Cotton (Residue Load as a Management Lever)
2.2.2. Experiment 2—Soil Residue Decomposition and Allelochemical Dynamics (Post-Termination Monitoring Window)
2.2.3. Experiment 3—Long-Term Persistence of Allelopathic Effects (Carryover Risk Under Delayed Planting)
2.2.4. Experiment 4—Comparison of Rye, Wheat, and BOA (Species Choice; Compound vs. Residue)
2.3. Soil and Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Dose-Dependent Effects of Rye Residues and BOA on Cotton Germination (Experiment 1)
3.2. Decomposition of Rye Residues and BOA Dissipation in Soil (Experiment 2)
3.3. Persistent Phytotoxicity After 9-Month Storage (Experiment 3)
3.4. Comparative Phytotoxicity of Rye, Wheat, and BOA (Experiment 4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APO | 2-Amino-3H-phenoxazin-3-one |
BOA | 2-Benzoxazolinone |
DIBOA | 2,4-Dihydroxy-1,4-benzoxazin-3-one |
DIMBOA | 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one |
HBOA | 2-Hydroxy-1,4-benzoxazin-3-one |
HMBOA | 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one |
References
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Petraki, D.; Antonopoulos, N.; Kokkini, M.; Danaskos, M.; Travlos, I. Enhancing Agroecosystem Sustainability by Means of Cover Crops in the Era of Climate Change. Agronomy 2025, 15, 1051. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Holman, J.D.; Creech, C.F.; Obour, A.K. Can Cover Crops Improve Soil Ecosystem Services in Water-Limited Environments? A Review. Soil Sci. Soc. Am. J. 2022, 86, 1–18. [Google Scholar] [CrossRef]
- Burke, J.A.; Lewis, K.L.; DeLaune, P.B.; Cobos, C.J.; Keeling, J.W. Soil Water Dynamics and Cotton Production Following Cover Crop Use in a Semi-Arid Ecoregion. Agronomy 2022, 12, 1306. [Google Scholar] [CrossRef]
- Toler, H.D.; Augé, R.M.; Benelli, V.; Allen, F.L.; Ashworth, A.J. Global Meta-Analysis of Cotton Yield and Weed Suppression from Cover Crops. Crop Sci. 2019, 59, 1248–1261. [Google Scholar] [CrossRef]
- Yousefi, M.; Dray, A.; Ghazoul, J. Assessing the Effectiveness of Cover Crops on Ecosystem Services: A Review of the Benefits, Challenges, and Trade-Offs. Int. J. Agric. Sustain. 2024, 22, 2335106. [Google Scholar] [CrossRef]
- Camargo Silva, G.; Bagavathiannan, M. Mechanisms of Weed Suppression by Cereal Rye Cover Crop: A Review. Agron. J. 2023, 115, 1571–1585. [Google Scholar] [CrossRef]
- Adhikari, L.; Mohseni-Moghadam, M.; Missaoui, A. Allelopathic Effects of Cereal Rye on Weed Suppression and Forage Yield in Alfalfa. Am. J. Plant Sci. 2018, 9, 685–700. [Google Scholar] [CrossRef]
- Rebong, D.; Henriquez Inoa, S.; Moore, V.M.; Reberg-Horton, S.C.; Mirsky, S.; Murphy, J.P.; Leon, R.G. Breeding Allelopathy in Cereal Rye for Weed Suppression. Weed Sci. 2024, 72, 30–40. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, N.; Khan, I.A. Complementing Cultural Weed Control with Plant Allelopathy: Implications for Improved Weed Management in Wheat Crop. Acta Ecol. Sin. 2023, 43, 27–33. [Google Scholar] [CrossRef]
- van der Meulen, A.; Chauhan, B.S. A Review of Weed Management in Wheat Using Crop Competition. Crop Prot. 2017, 95, 38–44. [Google Scholar] [CrossRef]
- Marcos, F.M.; Acharya, J.; Parvej, M.d.R.; Robertson, A.E.; Licht, M.A. Cereal Rye Cover Crop Seeding Method, Seeding Rate, and Termination Timing Effects Corn Development and Seedling Disease. Agron. J. 2023, 115, 1356–1372. [Google Scholar] [CrossRef]
- Koehler-Cole, K.; Everhart, S.E.; Gu, Y.; Proctor, C.A.; Marroquin-Guzman, M.; Redfearn, D.D.; Elmore, R.W. Is Allelopathy from Winter Cover Crops Affecting Row Crops? Agric. Environ. Lett. 2020, 5, e20015. [Google Scholar] [CrossRef]
- Almeida, T.F.; Robinson, E.; Matthiesen-Anderson, R.; Robertson, A.E.; Basche, A. Effect of Cover Crop Species and Termination Timing on Corn Growth and Seedling Disease. Agron. J. 2024, 116, 1792–1803. [Google Scholar] [CrossRef]
- Schandry, N.; Becker, C. Allelopathic Plants: Models for Studying Plant–Interkingdom Interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, U.; Scavo, A. Cropping Systems and Agronomic Management Practices of Field Crops. Agronomy 2023, 13, 2328. [Google Scholar] [CrossRef]
- Hickman, D.T.; Comont, D.; Rasmussen, A.; Birkett, M.A. Novel and Holistic Approaches Are Required to Realize Allelopathic Potential for Weed Management. Ecol. Evol. 2023, 13, e10018. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Marocco, A.; Tabaglio, V.; Macias, F.A.; Molinillo, J.M.G. Benzoxazinoids in Rye Allelopathy—From Discovery to Application in Sustainable Weed Control and Organic Farming. J. Chem. Ecol. 2013, 39, 154–174. [Google Scholar] [CrossRef]
- Kudjordjie, E.N.; Sapkota, R.; Steffensen, S.K.; Fomsgaard, I.S.; Nicolaisen, M. Maize Synthesized Benzoxazinoids Affect the Host Associated Microbiome. Microbiome 2019, 7, 59. [Google Scholar] [CrossRef]
- Ozaki, Y.; Kato-Noguchi, H. Effects of Benzoxazinoids in Wheat Residues May Inhibit the Germination, Growth and Gibberellin-Induced α-Amylase Activity in Rice. Acta Physiol. Plant 2015, 38, 24. [Google Scholar] [CrossRef]
- Laschke, L.; Schütz, V.; Schackow, O.; Sicker, D.; Hennig, L.; Hofmann, D.; Dörmann, P.; Schulz, M. Survival of Plants During Short-Term BOA-OH Exposure: ROS Related Gene Expression and Detoxification Reactions Are Accompanied With Fast Membrane Lipid Repair in Root Tips. J. Chem. Ecol. 2022, 48, 219–239. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Caruso, P.; Lombardo, S.; Mauromicale, G. Allelopathy in Durum Wheat Landraces as Affected by Genotype and Plant Part. Plants 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.P.; Otte, B.A.; Kramer, M.; Schomberg, H.H.; Mirsky, S.B.; Tully, K.L. Benzoxazinoids in Roots and Shoots of Cereal Rye (Secale cereale) and Their Fates in Soil after Cover Crop Termination. Chemoecology 2022, 32, 117–128. [Google Scholar] [CrossRef]
- Lewis, K.L.; Burke, J.A.; Keeling, W.S.; McCallister, D.M.; DeLaune, P.B.; Keeling, J.W. Soil Benefits and Yield Limitations of Cover Crop Use in Texas High Plains Cotton. Agron. J. 2018, 110, 1616–1623. [Google Scholar] [CrossRef]
- Allen, V.G.; Baker, M.T.; Segarra, E.; Brown, C.P. Integrated Irrigated Crop–Livestock Systems in Dry Climates. Agron. J. 2007, 99, 346–360. [Google Scholar] [CrossRef]
- Li, Y.; Allen, V.G.; Chen, J.; Hou, F.; Brown, C.P.; Green, P. Allelopathic Influence of a Wheat or Rye Cover Crop on Growth and Yield of No-Till Cotton. Agron. J. 2013, 105, 1581–1587. [Google Scholar] [CrossRef]
- Li, Y.; Allen, V.G.; Hou, F.; Chen, J.; Brown, C.P. Steers Grazing a Rye Cover Crop Influence Growth of Rye and No-Till Cotton. Agron. J. 2013, 105, 1571–1580. [Google Scholar] [CrossRef]
- Chinchilla, N.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J.M.G.; Macías, F.A. Soil Biodegradation of a Benzoxazinone Analog Proposed as a Natural Products-Based Herbicide. Plant Soil 2015, 393, 207–214. [Google Scholar] [CrossRef]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A.; et al. Root Exudate Metabolites Drive Plant-Soil Feedbacks on Growth and Defense by Shaping the Rhizosphere Microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; van Es, H.M.; Chen, Y.; Wang, B.; Zhao, Y.; Sui, P. Crop Rotational Diversity Influences Wheat–Maize Production Through Soil Legacy Effects in the North China Plain. Int. J. Plant Prod. 2022, 16, 415–427. [Google Scholar] [CrossRef]
- Lou, Y.; Davis, A.S.; Yannarell, A.C. Interactions between Allelochemicals and the Microbial Community Affect Weed Suppression Following Cover Crop Residue Incorporation into Soil. Plant Soil 2016, 399, 357–371. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Adeniji, A.; Lanrewaju, A.A.; Babalola, O.O. Dynamics of Soil Microbiome and Allelochemical Interactions: An Overview of Current Knowledge and Prospects. Ann. Microbiol. 2025, 75, 21. [Google Scholar] [CrossRef]
- Belz, R.G.; Duke, S.O. Modelling Biphasic Hormetic Dose Responses to Predict Sub-NOAEL Effects Using Plant Biology as an Example. Curr. Opin. Toxicol. 2022, 29, 36–42. [Google Scholar] [CrossRef]
- Kostina-Bednarz, M.; Płonka, J.; Barchanska, H. Allelopathy as a Source of Bioherbicides: Challenges and Prospects for Sustainable Agriculture. Rev. Environ. Sci. Biotechnol. 2023, 22, 471–504. [Google Scholar] [CrossRef]
- Schütz, V.; Frindte, K.; Cui, J.; Zhang, P.; Hacquard, S.; Schulze-Lefert, P.; Knief, C.; Schulz, M.; Dörmann, P. Differential Impact of Plant Secondary Metabolites on the Soil Microbiota. Front. Microbiol. 2021, 12, 666010. [Google Scholar] [CrossRef]
- Reberg-Horton, S.C.; Burton, J.D.; Danehower, D.A.; Ma, G.; Monks, D.W.; Murphy, J.P.; Ranells, N.N.; Williamson, J.D.; Creamer, N.G. Changes Over Time in the Allelochemical Content of Ten Cultivars of Rye (Secale cereale L.). J. Chem. Ecol. 2005, 31, 179–193. [Google Scholar] [CrossRef]
- Niculaes, C.; Abramov, A.; Hannemann, L.; Frey, M. Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. Agronomy 2018, 8, 143. [Google Scholar] [CrossRef]
- Hickman, D.T.; Rasmussen, A.; Ritz, K.; Birkett, M.A.; Neve, P. Review: Allelochemicals as Multi-kingdom Plant Defence Compounds: Towards an Integrated Approach. Pest Manag. Sci. 2021, 77, 1121–1131. [Google Scholar] [CrossRef]
- Abbas, T.; Nadeem, M.A.; Tanveer, A.; Chauhan, B.S. Can Hormesis of Plant-Released Phytotoxins Be Used to Boost and Sustain Crop Production? Crop Prot. 2017, 93, 69–76. [Google Scholar] [CrossRef]
- Fomsgaard, I.S.; Mortensen, A.G.; Carlsen, S.C.K. Microbial Transformation Products of Benzoxazolinone and Benzoxazinone Allelochemicals–A Review. Chemosphere 2004, 54, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant Allelochemicals: Agronomic, Nutritional and Ecological Relevance in the Soil System. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Schütz, V.; Bigler, L.; Girel, S.; Laschke, L.; Sicker, D.; Schulz, M. Conversions of Benzoxazinoids and Downstream Metabolites by Soil Microorganisms. Front. Ecol. Evol. 2019, 7, 238. [Google Scholar] [CrossRef]
- Mwendwa, J.M.; Weston, P.A.; Weidenhamer, J.D.; Fomsgaard, I.S.; Wu, H.; Gurusinghe, S.; Weston, L.A. Metabolic Profiling of Benzoxazinoids in the Roots and Rhizosphere of Commercial Winter Wheat Genotypes. Plant Soil 2021, 466, 467–489. [Google Scholar] [CrossRef]
- Wouters, F.C.; Gershenzon, J.; Vassão, D.G. Benzoxazinoids: Reactivity and Modes of Action of a Versatile Class of Plant Chemical Defenses. J. Braz. Chem. Soc. 2016, 27, 1379–1397. [Google Scholar] [CrossRef]
- Singh, A.A.; Rajeswari, G.; Nirmal, L.A.; Jacob, S. Synthesis and Extraction Routes of Allelochemicals from Plants and Microbes: A Review. Rev. Anal. Chem. 2021, 40, 293–311. [Google Scholar] [CrossRef]
- Macías, F.A.; Oliveros-Bastidas, A.; Marín, D.; Castellano, D.; Simonet, A.M.; Molinillo, J.M.G. Degradation Studies on Benzoxazinoids. Soil Degradation Dynamics of 2,4-Dihydroxy-7-Methoxy-(2H)-1,4-Benzoxazin-3(4H)-One (DIMBOA) and Its Degradation Products, Phytotoxic Allelochemicals from Gramineae. J. Agric. Food Chem. 2004, 52, 6402–6413. [Google Scholar] [CrossRef]
- Understrup, A.G.; Ravnskov, S.; Hansen, H.C.B.; Fomsgaard, I.S. Biotransformation of 2-Benzoxazolinone to 2-Amino-(3H)-Phenoxazin-3-One and 2-Acetylamino-(3H)-Phenoxazin-3-One in Soil. J. Chem. Ecol. 2005, 31, 1205–1222. [Google Scholar] [CrossRef]
- Krogh, S.S.; Mensz, S.J.M.; Nielsen, S.T.; Mortensen, A.G.; Christophersen, C.; Fomsgaard, I.S. Fate of Benzoxazinone Allelochemicals in Soil after Incorporation of Wheat and Rye Sprouts. J. Agric. Food Chem. 2006, 54, 1064–1074. [Google Scholar] [CrossRef]
- Morant, A.V.; Jørgensen, K.; Jørgensen, C.; Paquette, S.M.; Sánchez-Pérez, R.; Møller, B.L.; Bak, S. β-Glucosidases as Detonators of Plant Chemical Defense. Phytochemistry 2008, 69, 1795–1813. [Google Scholar] [CrossRef]
- González-García, E.; Sánchez-Moreiras, A.M.; Vieites-Álvarez, Y. Allelopathic Potential and Chemical Profile of Wheat, Rice and Barley against the Herbicide-Resistant Weeds Portulaca Oleracea L. and Lolium Rigidum Gaud. BMC Plant Biol. 2025, 25, 624. [Google Scholar] [CrossRef]
- Worthington, M.; Reberg-Horton, C. Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. J. Chem. Ecol. 2013, 39, 213–231. [Google Scholar] [CrossRef]
- Reiss, A.; Fomsgaard, I.S.; Mathiassen, S.K.; Kudsk, P. Weed Suppressive Traits of Winter Cereals: Allelopathy and Competition. Biochem. Syst. Ecol. 2018, 76, 35–41. [Google Scholar] [CrossRef]
- Siyar, S.; Majeed, A.; Muhammad, Z.; Ali, H.; Inayat, N. Allelopathic Effect of Aqueous Extracts of Three Weed Species on the Growth and Leaf Chlorophyll Content of Bread Wheat. Acta Ecol. Sin. 2019, 39, 63–68. [Google Scholar] [CrossRef]
- Hussain, M.I.; Reigosa, M.J. Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L. Biomolecules 2021, 11, 233. [Google Scholar] [CrossRef]
- Yenish, J.P.; Worsham, A.D.; Chilton, W.S. Disappearance of DIBOA-Glucoside, DIBOA, and BOA from Rye (Secale cereale L.) Cover Crop Residue. Weed Sci. 1995, 43, 18–20. [Google Scholar] [CrossRef]
- Weston, P.A.; Parvin, S.; Hendriks, P.-W.; Gurusinghe, S.; Rebetzke, G.J.; Weston, L.A. Impact of Year and Genotype on Benzoxazinoids and Their Microbial Metabolites in the Rhizosphere of Early-Vigour Wheat Genotypes in Southern Australia. Plants 2025, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Araniti, F.; Schulz, M.; Baerson, S.; Vieites-Álvarez, Y.; Rempelos, L.; Bilsborrow, P.; Chinchilla, N.; Macías, F.A.; Weston, L.A.; et al. Benzoxazinoids in Wheat Allelopathy—From Discovery to Application for Sustainable Weed Management. Environ. Exp. Bot. 2022, 202, 104997. [Google Scholar] [CrossRef]
- Zhou, S.; Richter, A.; Jander, G. Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. Plant Cell Physiol. 2018, 59, 1528–1537. [Google Scholar] [CrossRef]
- Zambelli, A.; Nocito, F.F.; Araniti, F. Unveiling the Multifaceted Roles of Root Exudates: Chemical Interactions, Allelopathy, and Agricultural Applications. Agronomy 2025, 15, 845. [Google Scholar] [CrossRef]
- Geddes, C.M.; Gulden, R.H. Wheat and Cereal Rye Inter-Row Living Mulches Interfere with Early Season Weeds in Soybean. Plants 2021, 10, 2276. [Google Scholar] [CrossRef]
- Won, S.; Rejesus, R.M.; Poncet, A.M.; Aglasan, S.; Thapa, R.; Tulley, K.L.; Reberg-Horton, C.; Cabrera, M.L.; Davis, B.W.; Gaskin, J.; et al. Understanding the Yield Impacts of Alternative Cover Crop Families and Mixtures: Evidence from Side-by-Side Plot-Level Panel Data. Agrosyst. Geosci. Environ. 2024, 7, e70012. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Monnier, Y.; Santonja, M.; Gallet, C.; Weston, L.A.; Prévosto, B.; Saunier, A.; Baldy, V.; Bousquet-Mélou, A. The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species. Front. Plant Sci. 2016, 7, 594. [Google Scholar] [CrossRef]
- Godar, A.S.; Norsworthy, J.K.; Barber, L.T. Effect of Cereal Rye Cover Crop Termination Timings on Weed Control and Corn Yield under a Two-Pass Herbicide Program. Front. Agron. 2024, 6, 1419228. [Google Scholar] [CrossRef]
- Silva, T.S.; Mourtzinis, S.; McMechan, A.J.; Carmona, G.I.; Potter, B.D.; Tilmon, K.J.; Hesler, L.S.; Seiter, N.J.; Wright, R.; Osborne, S.L.; et al. Cereal Rye Cover Crop Termination at or before Soybean Planting Has Minimal Effect on Soybean Yield across the Midwestern US. Field Crops Res. 2024, 312, 109393. [Google Scholar] [CrossRef]
- Bertholdsson, N.-O. Breeding Spring Wheat for Improved Allelopathic Potential. Weed Res. 2010, 50, 49–57. [Google Scholar] [CrossRef]
- Shekoofa, A.; Safikhan, S.; Raper, T.B.; Butler, S.A. Allelopathic Impacts of Cover Crop Species and Termination Timing on Cotton Germination and Seedling Growth. Agronomy 2020, 10, 638. [Google Scholar] [CrossRef]
- Macías, F.A.; Mejías, F.J.; Molinillo, J.M. Recent Advances in Allelopathy for Weed Control: From Knowledge to Applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef]
Allelochemical | Date | Control | 500 BOA | 1000 BOA | Trend * |
---|---|---|---|---|---|
BOA | Day 0 | 0.053 | 5.06 | 99.02 | L |
Day 7 | 0.13 | 0.75 | 0.86 | L | |
Day 21 | 0.66 | 0.66 | 0.7 | NS | |
Day 28 | 0.024 | 0.033 | 0.42 | L | |
DIBOA | Day 0 | 0.0016 | 1.99 | 8.95 | L, Q |
Day 7 | 0.0016 | 0.0041 | 0 | NS | |
Day 21 | 4.04 | 4.29 | 1.72 | NS | |
Day 28 | 3.81 | 3.45 | 5.59 | NS | |
DIMBOA | Day 0 | 0 | 0 | 0 | NS |
Day 7 | 0 | 0 | 0.066 | L, Q | |
Day 21 | 0 | 0 | 0 | NS | |
Day 28 | 0 | 0 | 0 | NS |
Allelochemical | Date | Control | 800 | 1600 | 3200 | 6400 | 12,800 | Trend * |
---|---|---|---|---|---|---|---|---|
BOA | Day 0 | 0.05 | 0.018 | 0.022 | 0.061 | 0.062 | 0.12 | NS |
Day 7 | 0.13 | 0.046 | 0.21 | 0.081 | 0.023 | 0.019 | L, Q | |
Day 21 | 0.63 | 0.31 | 0.22 | 0.092 | 0.061 | 0.051 | L, Q | |
Day 28 | 0.02 | 0.042 | 0.025 | 0.021 | 0.051 | 0.058 | NS | |
DIBOA | Day 0 | 0.0016 | 0.0016 | 0.0041 | 0 | 0.18 | 0.067 | L, Q |
Day 7 | 0.0016 | 0.013 | 0.0017 | 0.0017 | 0.015 | 0.015 | NS | |
Day 21 | 4.04 | 0.21 | 0.52 | 4.16 | 1.02 | 1.26 | NS | |
Day 28 | 3.79 | 5.99 | 1.88 | 4.56 | 3.67 | 0.11 | NS | |
DIMBOA | Day 0 | 0 | 0 | 0 | 0 | 0.77 | 0.95 | L, Q |
Day 7 | 0 | 0 | 0 | 0 | 0 | 0.009 | NS | |
Day 21 | 0 | 0 | 0 | 0.007 | 0 | 0.009 | NS | |
Day 28 | 0 | 0.007 | 0.02 | 0.007 | 0.019 | 0.037 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Allen, V.G.; Chen, J.; Wester, D.B. Allelopathic Trade-Offs of Rye and Wheat Residues Versus 2-Benzoxazolinone: Impacts on Cotton Growth. Biology 2025, 14, 1321. https://doi.org/10.3390/biology14101321
Li Y, Allen VG, Chen J, Wester DB. Allelopathic Trade-Offs of Rye and Wheat Residues Versus 2-Benzoxazolinone: Impacts on Cotton Growth. Biology. 2025; 14(10):1321. https://doi.org/10.3390/biology14101321
Chicago/Turabian StyleLi, Yue, Vivien G. Allen, Junping Chen, and David B. Wester. 2025. "Allelopathic Trade-Offs of Rye and Wheat Residues Versus 2-Benzoxazolinone: Impacts on Cotton Growth" Biology 14, no. 10: 1321. https://doi.org/10.3390/biology14101321
APA StyleLi, Y., Allen, V. G., Chen, J., & Wester, D. B. (2025). Allelopathic Trade-Offs of Rye and Wheat Residues Versus 2-Benzoxazolinone: Impacts on Cotton Growth. Biology, 14(10), 1321. https://doi.org/10.3390/biology14101321