Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Somatic Mutations Among Various Cancers
2.2. Protein Sequences
2.3. Identification of Phase-Separating Proteins
2.4. Pathway Enrichment Analysis of Cancer-Related Genes
2.5. Kinase and TF Enrichment Analysis
2.6. Survival Analysis
3. Results
3.1. Distribution of Phase Separation-Affecting Mutations Among Cancer Types
3.2. GO and KEGG Enrichment Analysis for Genes Harboring Phase Separation-Affecting Mutations
3.3. Protein-Level Analyses on Affected Phase-Separating Proteins
3.4. Survival Analysis of Phase Separation-Affecting Mutations in Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; van den Bosch, L.; et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef]
- López-Palacios, T.P.; Andersen, J.L. Kinase regulation by liquid–liquid phase separation. Trends Cell Biol. 2022, 33, 649–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.G.; Elnatan, D.; Keenen, M.M.; Trnka, M.J.; Johnston, J.B.; Burlingame, A.L.; Agard, D.A.; Redding, S.; Narlikar, G.J. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 2017, 547, 236–240. [Google Scholar] [CrossRef]
- Strom, A.R.; Emelyanov, A.V.; Mir, M.; Fyodorov, D.V.; Darzacq, X.; Karpen, G.H. Phase separation drives heterochromatin domain formation. Nature 2017, 547, 241–245. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, X.; Zeng, M.; Zhang, M. Phase separation as a mechanism for assembling dynamic postsynaptic density signalling complexes. Curr. Opin. Neurobiol. 2019, 57, 1–8. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Du, Z.; Zhang, H. mTOR Regulates Phase Separation of PGL Granules to Modulate Their Autophagic Degradation. Cell 2018, 174, 1492–1506.e22. [Google Scholar] [CrossRef]
- Boehning, M.; Dugast-Darzacq, C.; Rankovic, M.; Hansen, A.S.; Yu, T.; Marie-Nelly, H.; McSwiggen, D.T.; Kokic, G.; Dailey, G.M.; Cramer, P.; et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 2018, 25, 833–840. [Google Scholar] [CrossRef]
- Sun, D.; Wu, R.; Li, P.; Yu, L. Phase Separation in Regulation of Aggrephagy. J. Mol. Biol. 2020, 432, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Davis, E.S.; Daugird, T.A.; Zhao, S.; Quiroga, I.Y.; Uryu, H.; Li, J.; Storey, A.J.; Tsai, Y.-H.; Keeley, D.P.; et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 2021, 595, 591–595. [Google Scholar] [CrossRef]
- Tsang, B.; Pritišanac, I.; Scherer, S.W.; Moses, A.M.; Forman-Kay, J.D. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020, 183, 1742–1756. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Yan, Q.; Liao, S.; Tang, W.; Xu, P.; Zhang, Z.; Li, Q.; Dou, Z.; Yang, W.; et al. LLPSDB v2.0: An updated database of proteins undergoing liquid-liquid phase separation in vitro. Bioinformatics 2022, 38, 2010–2014. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Guo, Y.; Lin, S.; Mei, B.; Wu, Y.; Jiang, P.; Tan, X.; Zhang, W.; Chen, G.; Peng, D.; et al. DrLLPS: A data resource of liquid–liquid phase separation in eukaryotes. Nucleic Acids Res. 2019, 48, D288–D295. [Google Scholar] [CrossRef]
- You, K.; Huang, Q.; Yu, C.; Shen, B.; Sevilla, C.; Shi, M.; Hermjakob, H.; Chen, Y.; Li, T. PhaSepDB: A database of liquid–liquid phase separation related proteins. Nucleic Acids Res. 2019, 48, D354–D359. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Liu, Z.; Cheng, H.; Li, S.; Zhang, Q.; Liu, J.; Ju, H.-Q.; Zuo, Z.; Zhao, Q.; Kang, S.; et al. dSCOPE: A software to detect sequences critical for liquid–liquid phase separation. Brief. Bioinform. 2022, 24, bbac550. [Google Scholar] [CrossRef]
- Liu, J.; Pei, S.; Zhang, P.; Jiang, K.; Luo, B.; Hou, Z.; Yao, G.; Tang, J. Liquid-liquid phase separation throws novel insights into treatment strategies for skin cutaneous melanoma. BMC Cancer 2023, 23, 388. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, X.-P.; Yan, X.; Wu, S.; Tang, X.; Chen, C.; Li, G.; Hu, H.; Wang, D.; Li, S. Identification of molecular subtypes based on liquid–liquid phase separation and cross-talk with immunological phenotype in bladder cancer. Front. Immunol. 2022, 13, 1059568. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Pan, T.; Gao, Y.; Chen, R.; Li, S.; Guo, J.; Li, Y.; Xu, G.; Xu, J.; Ma, Y.; et al. Pan-cancer assessment of mutational landscape in intrinsically disordered hotspots reveals potential driver genes. Nucleic Acids Res. 2022, 50, e49. [Google Scholar] [PubMed]
- Feng, M.; Wei, X.; Zheng, X.; Liu, L.; Lin, L.; Xia, M.; He, G.; Shi, Y.; Lu, Q. Decoding Missense Variants by Incorporating Phase Separation via Machine Learning. Nat. Commun. 2024, 15, 8279. [Google Scholar] [CrossRef] [PubMed]
- Klausen, M.S.; Jespersen, M.C.; Nielsen, H.; Jensen, K.K.; Jurtz, V.I.; Sønderby, C.K.; Sommer, M.O.A.; Winther, O.; Nielsen, M.; Petersen, B.; et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins Struct. Funct. Bioinform. 2019, 87, 520–527. [Google Scholar] [CrossRef]
- Lancaster, A.K.; Nutter-Upham, A.; Lindquist, S.; King, O.D. PLAAC: A web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 2014, 30, 2501–2502. [Google Scholar] [CrossRef]
- Dosztanyi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, 3433–3434. [Google Scholar] [CrossRef]
- Taniue, K.; Akimitsu, N. Aberrant phase separation and cancer. FEBS J. 2021, 289, 17–39. [Google Scholar] [CrossRef]
- Ahmed, R.; Forman-Kay, J.D. Aberrant phase separation: Linking IDR mutations to disease. Cell Res. 2023, 33, 583–584. [Google Scholar] [CrossRef]
- Verdile, V.; De Paola, E.; Paronetto, M.P. Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Front. Genet. 2019, 10, 173. [Google Scholar] [CrossRef]
- Hall, A.C.; Ostrowski, L.A.; Mekhail, K. Phase Separation as a Melting Pot for DNA Repeats. Trends Genet. 2019, 35, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Ullo, M.F.; Case, L.B. Reconstitution of Phase-Separated Signaling Clusters and Actin Polymerization on Supported Lipid Bilayers. Front. Cell Dev. Biol. 2022, 10, 932483. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, Y.; Chen, X.; Hu, S.; Cheng, W.; Cao, Y.; Gao, J.; Chen, X.; Xiong, D.; Li, H.; et al. RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models. IET Syst. Biol. 2022, 16, 43–58. [Google Scholar] [CrossRef]
- Hindson, J. Glycogen phase separation and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 831. [Google Scholar] [CrossRef]
- Quiroz, F.G.; Fiore, V.F.; Levorse, J.; Polak, L.; Wong, E.; Pasolli, H.A.; Fuchs, E. Liquid-liquid phase separation drives skin barrier formation. Science 2020, 367, eaax9554. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.-K.; Spille, J.-H.; Hecht, M.; Lee, C.; Li, C.; Grube, V.; Cisse, I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 2018, 361, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Sabari, B.R.; Dall’Agnese, A.; Boija, A.; Klein, I.A.; Coffey, E.L.; Shrinivas, K.; Abraham, B.J.; Hannett, N.M.; Zamudio, A.V.; Manteiga, J.C.; et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361, eaar3958. [Google Scholar] [CrossRef]
- Plys, A.J.; Kingston, R.E. Dynamic condensates activate transcription. Science 2018, 361, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Dugast-Darzacq, C.; Liu, Z.; Dong, P.; Dailey, G.M.; Cattoglio, C.; Heckert, A.; Banala, S.; Lavis, L.; Darzacq, X.; et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 2018, 361, aar2555. [Google Scholar] [CrossRef]
- Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 2017, 8, 275. [Google Scholar] [CrossRef]
- Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018, 37, e98049. [Google Scholar] [CrossRef]
- Keenan, A.B.; Torre, D.; Lachmann, A.; Leong, A.K.; Wojciechowicz, M.L.; Utti, V.; Jagodnik, K.M.; Kropiwnicki, E.; Wang, Z.; Ma’aYan, A. ChEA3: Transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019, 47, W212–W224. [Google Scholar] [CrossRef]
- Sun, Y.; Tseng, W.-C.; Fan, X.; Ball, R.; Dougan, S.T. Extraembryonic Signals under the Control of MGA, Max, and Smad4 Are Required for Dorsoventral Patterning. Dev. Cell 2014, 28, 322–334. [Google Scholar] [CrossRef]
- Bach, D.-H.; Park, H.J.; Lee, S.K. The Dual Role of Bone Morphogenetic Proteins in Cancer. Mol. Ther.-Oncolytics 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Yu, C.; Lang, Y.; Hou, C.; Yang, E.; Ren, X.; Li, T. Distinctive Network Topology of Phase-Separated Proteins in Human Interactome. J. Mol. Biol. 2022, 434, 167292. [Google Scholar] [CrossRef]
- Mehta, S.; Zhang, J. Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nat. Rev. Cancer 2022, 22, 239–252. [Google Scholar] [CrossRef]
- Gu, X.; Zhuang, A.; Yu, J.; Chai, P.; Jia, R.; Ruan, J. Phase separation drives tumor pathogenesis and evolution: All roads lead to Rome. Oncogene 2022, 41, 1527–1535. [Google Scholar] [CrossRef]
- Chakravarty, A.K.; McGrail, D.J.; Lozanoski, T.M.; Dunn, B.S.; Shih, D.J.; Cirillo, K.M.; Cetinkaya, S.H.; Zheng, W.J.; Mills, G.B.; Yi, S.S.; et al. Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discov. 2022, 12, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, X.; Wu, H.; Zhang, M. Phase separation at the synapse. Nat. Neurosci. 2020, 23, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Winkler, F. Insights and opportunities at the crossroads of cancer and neuroscience. Nat. Cell Biol. 2022, 24, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- He, W.A.; Berardi, E.; Cardillo, V.M.; Acharyya, S.; Aulino, P.; Thomas-Ahner, J.; Wang, J.; Bloomston, M.; Muscarella, P.; Nau, P.; et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J. Clin. Investig. 2013, 123, 4821–4835. [Google Scholar] [CrossRef]
- Sponga, A.; Arolas, J.L.; Rodriguez-Chamorro, A.; Ribeiro, E.D.A.; Geist, L.; Drepper, F.; Peterbauer, T.; Mlynek, G.; Warscheid, B.; Konrat, R.; et al. Structure of α-actinin-2/FATZ-1 fuzzy complex and implications in Z-disk formation via phase separation. Acta Crystallogr. Sect. A Found. Adv. 2019, 75, e143. [Google Scholar] [CrossRef]
- Alberti, S. Phase separation in biology. Curr. Biol. 2017, 27, R1097–R1102. [Google Scholar] [CrossRef]
- Zhuge, L.; Zhang, K.; Zhang, Z.; Guo, W.; Li, Y.; Bao, Q. A novel model based on liquid-liquid phase separation–Related genes correlates immune microenvironment profiles and predicts prognosis of lung squamous cell carcinoma. J. Clin. Lab. Anal. 2021, 36, e24135. [Google Scholar] [CrossRef]
- Francis, N.J.; Kingston, R.E.; Woodcock, C.L. Chromatin Compaction by a Polycomb Group Protein Complex. Science 2004, 306, 1574–1577. [Google Scholar] [CrossRef]
- Gao, Z.; Lee, P.; Stafford, J.M.; von Schimmelmann, M.; Schaefer, A.; Reinberg, D. An AUTS2–Polycomb complex activates gene expression in the CNS. Nature 2014, 516, 349–354. [Google Scholar] [CrossRef]
- Petronilho, E.C.; Pedrote, M.M.; Marques, M.A.; Passos, Y.M.; Mota, M.F.; Jakobus, B.; de Sousa, G.d.S.; da Costa, F.P.; Felix, A.L.; Ferretti, G.D.S.; et al. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem. Sci. 2021, 12, 7334–7349. [Google Scholar] [CrossRef]
- Liu, B.; Abdel-Wahab, O. Oncogenic splicing regulated by phase separation. Nat. Cell Biol. 2020, 22, 916–918. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Liu, X.; Jiang, S.; Fan, L.; Ding, J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. Cell Regen. 2022, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shan, Y.; Zhang, M.; Pei, D. Phase separating cell fate. Cell Stem Cell 2021, 28, 1677–1678. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Fu, G.; Guo, Q.; Xue, S.; Luo, S.-Z. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Int. J. Biol. Macromol. 2022, 222, 207–216. [Google Scholar] [CrossRef]
- Putnam, A.; Seydoux, G. Chapter 13—Intrinsically disordered regions: A platform for regulated assembly of biomolecular condensates. In Droplets of Life; Uversky, V.N., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 397–430. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, X.; Wang, L.; Yu, K.; Yang, H.; Eils, R.; Dong, W.; Lin, H.; Liu, Z. Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications. Biology 2025, 14, 1320. https://doi.org/10.3390/biology14101320
Cen X, Wang L, Yu K, Yang H, Eils R, Dong W, Lin H, Liu Z. Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications. Biology. 2025; 14(10):1320. https://doi.org/10.3390/biology14101320
Chicago/Turabian StyleCen, Xiaoping, Lulu Wang, Kai Yu, Huanming Yang, Roland Eils, Wei Dong, Huan Lin, and Zexian Liu. 2025. "Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications" Biology 14, no. 10: 1320. https://doi.org/10.3390/biology14101320
APA StyleCen, X., Wang, L., Yu, K., Yang, H., Eils, R., Dong, W., Lin, H., & Liu, Z. (2025). Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications. Biology, 14(10), 1320. https://doi.org/10.3390/biology14101320