The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Light Characteristics
2.3. Light Treatments and Experimental Design
2.4. Morphological Leaf Traits Analysis
2.5. Gene Expression Levels Analysis
2.6. Statistical Analysis
3. Results
3.1. Long-Term Light Treatment
3.2. Short-Term Light Treatment
3.3. Loss-of-Function Mutant Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-Regulated Plant Growth and Development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Larner, V.S.; Whitelam, C.C. The Signal Transducing Photoreceptors of Plants. Int. J. Dev. Biol. 2005, 49, 653–664. [Google Scholar] [CrossRef]
- Galvão, V.C.; Fankhauser, C. Sensing the Light Environment in Plants: Photoreceptors and Early Signaling Steps. Curr. Opin. Neurobiol. 2015, 34, 46–53. [Google Scholar] [CrossRef]
- Canamero, R.C.; Bakrim, N.; Bouly, J.P.; Garay, A.; Dudkin, E.E.; Habricot, Y.; Ahmad, M. Cryptochrome Photoreceptors Cry1 and Cry2 Antagonistically Regulate Primary Root Elongation in Arabidopsis thaliana. Planta 2006, 224, 995–1003. [Google Scholar] [CrossRef]
- Łabuz, J.; Sztatelman, O.; Banaś, A.K.; Gabryś, H. The Expression of Phototropins in Arabidopsis Leaves: Developmental and Light Regulation. J. Exp. Bot. 2012, 63, 1763–1771. [Google Scholar] [CrossRef]
- Fraser, D.P.; Hayes, S.; Franklin, K.A. Photoreceptor Crosstalk in Shade Avoidance. Curr. Opin. Plant Biol. 2016, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.L.; Chen, H.C.; Ku, L.W. Mechanistic Studies of the Phytochromobilin Synthase HY2 from Arabidopsis. J. Biol. Chem. 2008, 283, 27555–27564. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.W.; Nagpal, P.; Poo1e, D.S.; Furuya, M.; Chory, J. Mutations in the Gene for the Red/Far-Red Light Receptor Phytochrome B Alter Cell Elongation and Physiological Responses throughout Arabidopsis Development. Plant Cell 1993, 5, 147–157. [Google Scholar]
- Bhatnagar, A.; Singh, S.; Khurana, J.P.; Burman, N. HY5-COP1: The Central Module of Light Signaling Pathway. J. Plant Biochem. Biotechnol. 2020, 29, 590–610. [Google Scholar] [CrossRef]
- Gangappa, S.N.; Botto, J.F. The Multifaceted Roles of HY5 in Plant Growth and Development. Mol. Plant 2016, 9, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Lau, O.S.; Deng, X.W. The Photomorphogenic Repressors COP1 and DET1: 20 Years Later. Trends Plant Sci. 2012, 17, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.C.; Yang, J.Y.; Seo, H.S.; Chua, N.H. HFR1 Is Targeted by COP1 E3 Ligase for Post-Translational Proteolysis During Phytochrome A Signaling. Genes Dev. 2005, 19, 593–602. [Google Scholar] [CrossRef]
- Choi, H.; Oh, E. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis. Mol. Cells 2016, 39, 587–593. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Z. Pif4 and Pif4-interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int. J. Mol. Sci. 2021, 22, 10304. [Google Scholar] [CrossRef]
- Pham, V.N.; Kathare, P.K.; Huq, E. Dynamic Regulation of PIF5 by COP1–SPA Complex to Optimize Photomorphogenesis in Arabidopsis. Plant J. 2018, 96, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Hähn, N.; Essah, E.; Blanusa, T. Biophilic Design and Office Planting: A Case Study of Effects on Perceived Health, Well-Being and Performance Metrics in the Workplace. Intell. Build. Int. 2021, 13, 241–260. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chen, P.K. Human Response to Window Views and Indoor Plants in the Workplace. HortScience 2005, 40, 1354–1359. [Google Scholar] [CrossRef]
- Farley, K.M.J.; Veitch, J.A. A Room with a View: A Review of the Effects of Windows on Work and Well-Being; Institute for Research in Construction: Ottawa, ON, Canada, 2001. [Google Scholar] [CrossRef]
- Di Trapani, P.; Magatti, D. Artificial Lighting System for Simulating Natural Lighting. U.S. Patent US20140133125A1, 15 May 2014. [Google Scholar]
- Di Trapani, P.; Magatti, D. Artificial Illumination Device. U.S. Patent 9,709,245 B2, 18 July 2017. [Google Scholar]
- Canazei, M.; Laner, M.; Staggl, S.; Pohl, W.; Ragazzi, P.; Magatti, D.; Martinelli, E.; Di Trapani, P. Room- and Illumination-Related Effects of an Artificial Skylight. Light. Res. Technol. 2016, 48, 539–558. [Google Scholar] [CrossRef]
- Beatrice, P.; Terzaghi, M.; Chiatante, D.; Scippa, G.S.; Montagnoli, A. Morpho-Physiological Responses of Arabidopsis thaliana L. to the LED-Sourced CoeLux® System. Plants 2021, 10, 1310. [Google Scholar] [CrossRef]
- Beatrice, P.; Miali, A.; Baronti, S.; Chiatante, D.; Montagnoli, A. Plant Growth in LED-Sourced Biophilic Environments Is Improved by the Biochar Amendment of Low-Fertility Soil, the Reflection of Low-Intensity Light, and a Continuous Photoperiod. Plants 2023, 12, 3319. [Google Scholar] [CrossRef]
- Beatrice, P.; Saviano, G.; Reguzzoni, M.; Divino, F.; Fantasma, F.; Chiatante, D.; Montagnoli, A. Light Spectra of Biophilic LED-Sourced System Modify Essential Oils Composition and Plant Morphology of Mentha piperita L. and Ocimum basilicum L. Front. Plant Sci. 2023, 14, 1093883. [Google Scholar] [CrossRef]
- Beatrice, P.; Chiatante, D.; Scippa, G.S.; Montagnoli, A. Photoreceptors’ Gene Expression of Arabidopsis thaliana Grown with Biophilic LED-Sourced Lighting Systems. PLoS ONE 2022, 17, e0269868. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R.; et al. Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science (1979) 2003, 301, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Pinho, P.; Jokinen, K.; Halonen, L. Horticultural Lighting—Present and Future Challenges. Light. Res. Technol. 2012, 44, 427–437. [Google Scholar] [CrossRef]
- Osterlund, M.T.; Hardtke, C.S.; Wei, N.; Deng, X.W. Targeted Destabilization of HY5 during Light-Regulated Development of Arabidopsis. Nature 2000, 405, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Sellaro, R.; Yanovsky, M.J.; Casal, J.J. Repression of Shade-Avoidance Reactions by Sunfleck Induction of HY5 Expression in Arabidopsis. Plant J. 2011, 68, 919–928. [Google Scholar] [CrossRef]
- Senapati, D.; Kushwaha, R.; Dutta, S.; Maurya, J.P.; Biswas, S.; Gangappa, S.N.; Chattopadhyay, S. COP1 Regulates the Stability of CAM7 to Promote Photomorphogenic Growth. Plant Direct 2019, 3, e00144. [Google Scholar] [CrossRef]
- Sibout, R.; Sukumar, P.; Hettiarachchi, C.; Holm, M.; Muday, G.K.; Hardtke, C.S. Opposite Root Growth Phenotypes of Hy5 versus Hy5 Hyh Mutants Correlate with Increased Constitutive Auxin Signaling. PLoS Genet. 2006, 2, 1898–1911. [Google Scholar] [CrossRef]
- Holm, M.; Ma, L.G.; Qu, L.J.; Deng, X.W. Two Interacting BZIP Proteins Are Direct Targets of COP1-Mediated Control of Light-Dependent Gene Expression in Arabidopsis. Genes Dev. 2002, 16, 1247–1259. [Google Scholar] [CrossRef]
- Sharma, A.; Pridgeon, A.J.; Liu, W.; Segers, F.; Sharma, B.; Jenkins, G.I.; Franklin, K.A. ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) Maintain Shade Avoidance Suppression in UV-B. Plant J. 2023, 115, 1394–1407. [Google Scholar] [CrossRef]
- Ponnu, J.; Hoecker, U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. Front. Plant Sci. 2021, 12, 662793. [Google Scholar] [CrossRef]
- Burko, Y.; Seluzicki, A.; Zander, M.; Pedmale, U.V.; Ecker, J.R.; Chory, J. Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. Plant Cell 2020, 32, 967–983. [Google Scholar] [CrossRef]
- Oakenfull, R.J.; Davis, S.J. Shining a Light on the Arabidopsis Circadian Clock. Plant Cell Environ. 2017, 40, 2571–2585. [Google Scholar] [CrossRef] [PubMed]
- Hornitschek, P.; Kohnen, M.V.; Lorrain, S.; Rougemont, J.; Ljung, K.; López-Vidriero, I.; Franco-Zorrilla, J.M.; Solano, R.; Trevisan, M.; Pradervand, S.; et al. Phytochrome Interacting Factors 4 and 5 Control Seedling Growth in Changing Light Conditions by Directly Controlling Auxin Signaling. Plant J. 2012, 71, 699–711. [Google Scholar] [CrossRef]
- Sessa, G.; Carabelli, M.; Possenti, M.; Morelli, G.; Ruberti, I. Multiple Pathways in the Control of the Shade Avoidance Response. Plants 2018, 7, 102. [Google Scholar] [CrossRef]
- Keller, M.M.; Jaillais, Y.; Pedmale, U.V.; Moreno, J.E.; Chory, J.; Ballaré, C.L. Cryptochrome 1 and Phytochrome B Control Shade-Avoidance Responses in Arabidopsis via Partially Independent Hormonal Cascades. Plant J. 2011, 67, 195–207. [Google Scholar] [CrossRef]
- Zhang, X.N.; Wu, Y.; Tobias, J.W.; Brunk, B.P.; Deitzer, G.F.; Liu, D. HFR1 Is Crucial for Transcriptome Regulation in the Cryptochrome 1-Mediated Early Response to Blue Light in Arabidopsis thaliana. PLoS ONE 2008, 3, e3563. [Google Scholar] [CrossRef] [PubMed]
- Sessa, G.; Carabelli, M.; Sassi, M.; Ciolfi, A.; Possenti, M.; Mittempergher, F.; Becker, J.; Morelli, G.; Ruberti, I. A Dynamic Balance between Gene Activation and Repression Regulates the Shade Avoidance Response in Arabidopsis. Genes Dev. 2005, 19, 2811–2815. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.K.Y.; Chaturvedi, A.K.; Sng, B.J.R.; Van Vu, K.; Jang, I.C. Organ-Specific Transcriptional Regulation by HFR1 and HY5 in Response to Shade in Arabidopsis. Front. Plant Sci. 2024, 15, 1430639. [Google Scholar] [CrossRef]
- Yang, J.; Lin, R.; Sullivan, J.; Hoecker, U.; Liu, B.; Xu, L.; Xing, W.D.; Wang, H. Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis. Plant Cell 2005, 17, 804–821. [Google Scholar] [CrossRef]
- Hornitschek, P.; Lorrain, S.; Zoete, V.; Michielin, O.; Fankhauser, C. Inhibition of the Shade Avoidance Response by Formation of Non-DNA Binding BHLH Heterodimers. EMBO J. 2009, 28, 3893–3902. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y. Regulation of PIF4-Mediated Thermosensory Growth. Plant Sci. 2020, 297, 110541. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hwang, G.; Kim, S.; Thi, T.N.; Kim, H.; Jeong, J.; Kim, J.; Kim, J.; Choi, G.; Oh, E. The Epidermis Coordinates Thermoresponsive Growth through the PhyB-PIF4-Auxin Pathway. Nat. Commun. 2020, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, S.; Allen, T.; Duek, P.D.; Whitelam, G.C.; Fankhauser, C. Phytochrome-Mediated Inhibition of Shade Avoidance Involves Degradation of Growth-Promoting BHLH Transcription Factors. Plant J. 2008, 53, 312–323. [Google Scholar] [CrossRef]
- Nozue, K.; Covington, M.F.; Duek, P.D.; Lorrain, S.; Fankhauser, C.; Harmer, S.L.; Maloof, J.N. Rhythmic Growth Explained by Coincidence between Internal and External Cues. Nature 2007, 448, 358–361. [Google Scholar] [CrossRef]
- Khanna, R.; Shen, Y.; Marion, C.M.; Tsuchisaka, A.; Theologis, A.; Schäfer, E.; Quail, P.H. The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms. Plant Cell 2007, 19, 3915–3929. [Google Scholar] [CrossRef]
Color | Wavelength Range (nm) | Relative Intensity (%) | |
---|---|---|---|
CoeLux® | HPS | ||
Blue | 400–490 | 14.02 ± 0.57 | 23.62 ± 0.36 |
Green | 490–560 | 24.12 ± 0.17 | 24.22 ± 0.64 |
Yellow | 560–590 | 14.47 ± 0.47 | 10.94 ± 0.12 |
Red | 590–700 | 41.06 ± 0.51 | 34.71 ± 0.56 |
Far-red | 700–780 | 6.33 ± 0.19 | 6.50 ± 0.12 |
Gene | Locus | Primer Sequence (5′ > 3′) | Source |
---|---|---|---|
HFR1 | AT1G02340 | AGTGATGATGAATCGGAGGAGTT | This study |
CCGAAACCTTGTCCGTCTTG | |||
COP1 | AT2G32950 | GGGAAGCACTACAAAGGGGT | This study |
CTGGAGATCAGTTTGCACCTCA | |||
HY5 | AT5G11260 | AAGCGGCTGAAGAGGTTGTT | This study |
TCCAACTCGCTCAAGTAAGCC | |||
PIF4 | AT2G43010 | AACGGACTCATGGACTTGCT | This study |
TGGTGTTCCATGTCAGATCTAAGG | |||
PIF5 | AT3G59060 | AATCTTCCATCCATTCAGAGGCT | This study |
TCCACTAATTCATCTTCTGGTCTGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beatrice, P.; Agosto, G.; Miali, A.; Chiatante, D.; Montagnoli, A. The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems. Biology 2025, 14, 1315. https://doi.org/10.3390/biology14101315
Beatrice P, Agosto G, Miali A, Chiatante D, Montagnoli A. The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems. Biology. 2025; 14(10):1315. https://doi.org/10.3390/biology14101315
Chicago/Turabian StyleBeatrice, Peter, Gustavo Agosto, Alessio Miali, Donato Chiatante, and Antonio Montagnoli. 2025. "The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems" Biology 14, no. 10: 1315. https://doi.org/10.3390/biology14101315
APA StyleBeatrice, P., Agosto, G., Miali, A., Chiatante, D., & Montagnoli, A. (2025). The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems. Biology, 14(10), 1315. https://doi.org/10.3390/biology14101315