Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. PCR and DNA Sequencing
2.3. DNA Cloning
2.4. DNA Sequence Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.S. Freshwater Snails of Africa and Their Medical Importance; Taylor and Francis Ltd: London, UK, 1994. [Google Scholar]
- World Health Organization. Schistosomiasis (Health Topics). 2014. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 18 March 2021).
- Kane, R.A.; Stothard, J.R.; Emery, A.M.; Rollinson, D. Molecular characterization of freshwater snails in the genus Bulinus: A role for barcodes? Parasit. Vectors 2008, 1, 15. [Google Scholar] [CrossRef]
- Zein-Eddine, R.; Djuikwo-Teukeng, F.F.; Al-Jawhari, M.; Senghor, B.; Huyse, T.; Dreyfuss, G. Phylogeny of seven Bulinus species originating from endemic areas in three African countries, in relation to the human blood fluke Schistosoma haematobium. BMC Evol. Biol. 2014, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, M.J.; de Vlas, S.J.; Brooker, S.; Looman, C.W.; Nagelkerke, N.J.; Habbema, J.D.; Engels, D. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop. 2003, 86, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Aula, O.P.; McManus, D.P.; Jones, M.K.; Gordon, C.A. Schistosomiasis with a Focus on Africa. Trop. Med. Infect. Dis. 2021, 6, 109. [Google Scholar] [CrossRef]
- Wilkinson, S.; Emery, A.M.; Khamis, S.; Mgeni, A.F.; Stothard, J.R.; Rollinson, D. Spatial and temporal population genetic survey of Bulinus globosus from Zanzibar: An intermediate host of Schistosoma haematobium. J. Zool. 2007, 272, 329–339. [Google Scholar] [CrossRef]
- Mkize, L.S.; Mukaratirwa, S.; Zishiri, O.T. Population genetic structure of the freshwater snail, Bulinus globosus, (Gastropoda: Planorbidae) from selected habitats of KwaZulu-Natal, South Africa. Acta Trop. 2016, 161, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Jarne, P.; Finot, L.; Delay, B.; Thaler, L. Self-Fertilization Versus Cross-Fertilization in the Hermaphroditic Freshwater Snail Bulinus globosus. Evolution 1991, 45, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Stothard, J.R.; Llewellyn-Hughes, J.; Griffin, C.E.; Hubbard, S.J.; Kristensen, T.K.; Rollinson, D. Identification of snails within the Bulinus africanus group from East Africa by multiplex SNaPshot trade mark analysis of single nucleotide polymorphisms within the cytochrome oxidase subunit I. Mem. Inst. Oswaldo. Cruz. 2002, 97, 31–36. [Google Scholar] [CrossRef]
- Djuikwo-Teukeng, F.F.; Da Silva, A.; Njiokou, F.; Kamgang, B.; Ekobo, A.S.; Dreyfuss, G. Significant population genetic structure of the Cameroonian fresh water snail, Bulinus globosus, (Gastropoda: Planorbidae) revealed by nuclear microsatellite loci analysis. Acta Trop. 2014, 137, 111–117. [Google Scholar] [CrossRef]
- Saijuntha, W.; Tantrawatpan, C.; Agatsuma, T.; Wang, C.; Intapan, P.M.; Maleewong, W.; Petney, T.N. Revealing genetic hybridization and DNA recombination of Fasciola hepatica and Fasciola gigantica in nuclear introns of the hybrid Fasciola flukes. Mol. Biochem. Parasitol. 2018, 223, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Tantrawatpan, C.; Maleewong, W.; Thanchomnang, T.; Pilap, W.; Agasuma, T.; Andrews, R.H.; Sithithaworn, P.; Saijuntha, W. Intron regions as genetic markers for population genetic investigations of Opisthorchis viverrini sensu lato and Clonorchis sinensis. Animals 2023, 13, 3200. [Google Scholar] [CrossRef] [PubMed]
- Jarilla, B.R.; Uda, K.; Suzuki, T.; Acosta, L.P.; Urabe, M.; Agatsuma, T. Characterization of arginine kinase from the caenogastropod Semisulcospira libertina, an intermediate host of Paragonimus westermani. J. Molluscan Stud. 2014, 80, 444–451. [Google Scholar] [CrossRef]
- Bunchom, N.; Agatsuma, T.; Suganuma, N.; Petney, T.N.; Saijuntha, W. Characterization of arginine kinase intron regions and their potential as molecular markers for population genetic studies of Bithynia snails (Gastropoda: Bithyniidae) in Thailand. Molluscan Res. 2020, 40, 354–362. [Google Scholar] [CrossRef]
- Kariuki, H.C.; Clennon, J.A.; Brady, M.S.; Kitron, U.; Sturrock, R.F.; Ouma, J.H.; Ndzovu, S.T.; Mungai, P.; Hoffman, O.; Hamburger, J.; et al. Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in the Msambweni area, Coast Province, Kenya. Am. J. Trop. Med. Hyg. 2004, 70, 449–456. [Google Scholar] [CrossRef]
- Kristensen, T.K. A Field Guide to African Freshwater Snails, 2nd ed.; Danish Bilharziasis Laboratory: Charlottenlund, Denmark, 1987; p. 51. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, Z.; Dagne, K.; Erko, B.; Siemuri, O. Polyploidy in Bulinid Snails, with Emphasis on Bulinus truncatus/tropicus Complex (Planorbidae: Pulmonate Mollusks) from Various Localities in Ethiopia. World J. Cell Biol. Genet. 2017, 3, 11–20. [Google Scholar]
- Claugher, D. Karyotype analysis of bulinid snails. Bull. World Health Organ. 1971, 45, 855–858. [Google Scholar]
- Tantrawatpan, C.; Saijuntha, W.; Bunchom, N.; Suksavate, W.; Pilap, W.; Walalite, T.; Agatsuma, T.; Tawong, W.; Sithithaworn, P.; Andrews, R.H.; et al. Genetic structure and geographical variation of Bithynia siamensis goniomphalos sensu lato (Gastropoda: Bithyniidae), the snail intermediate host of Opisthorchis viverrini sensu lato (Digenea: Opisthorchiidae) in the Lower Mekong Basin revealed by mitochondrial DNA sequences. Int. J. Parasitol. 2020, 50, 55–62. [Google Scholar] [PubMed]
- Saijuntha, W.; Jarilla, B.; Leonardo, A.K.; Sunico, L.S.; Leonardo, L.R.; Andrews, R.H.; Sithithaworn, P.; Petney, T.N.; Kirinoki, M.; Kato-Hayashi, N.; et al. Genetic structure inferred from mitochondrial 12S ribosomal RNA sequence of Oncomelania quadrasi, the intermediate snail host of Schistosoma japonicum in the Philippines. Am. J. Trop. Med. Hyg. 2014, 90, 1140–1145. [Google Scholar] [CrossRef]
- Morgan, J.A.; Dejong, R.J.; Snyder, S.D.; Mkoji, G.M.; Loker, E.S. Schistosoma mansoni and Biomphalaria: Past history and future trends. Parasitology 2001, 123, S211–S228. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.P.; Woolhouse, M.E.J. Selection and Strain Specificity of Compatibility between Snail Intermediate Hosts and Their Parasitic Schistosomes. Evolution 1998, 52, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Babbitt, C.R.; Laidemitt, M.R.; Mutuku, M.W.; Oraro, P.O.; Brant, S.V.; Mkoji, G.M.; Loker, E.S. Bulinus snails in the Lake Victoria Basin in Kenya: Systematics and their role as hosts for schistosomes. PLoS Negl. Trop. Dis. 2023, 17, e0010752. [Google Scholar] [CrossRef] [PubMed]
- Theron, A.; Rognon, A.; Gourbal, B.; Mitta, G. Multi-parasite host susceptibility and multi-host parasite infectivity: A new approach of the Biomphalaria glabrata/Schistosoma mansoni compatibility polymorphism. Infect. Genet. Evol. 2014, 26, 80–88. [Google Scholar] [CrossRef]
Locality (Sample Number) | Sample Code | COI | AkInt3 | ||||
---|---|---|---|---|---|---|---|
Haplotypes | Homo | Het | Haplotypes | DNA Fragments * | |||
Kinango (26) | KD_1-1 | C1 | ✓ | H14 | II | ||
Habitat: Kinango dam | KD_1-2 | C1 | ✓ | H14 | II | ||
Lat, long: −4.13636, 39.31000 | KD_1-3 | C1 | ✓ | H5 | I | ||
Collection date: 20 April 2011 | H14 | II | |||||
KD_1-4 | C1 | ✓ | H1 | I | |||
H14 | II | ||||||
KD_5-1 | C1 | ✓ | H1 | I | |||
H11 | I + II | ||||||
H14 | II | ||||||
KD_5-2 | C1 | ✓ | H8 | I + II | |||
H14 | II | ||||||
KD_5-3 | C1 | ✓ | H14 | II | |||
H44 | III + II | ||||||
KD_5-4 | C1 | ✓ | H4 | I | |||
H14 | II | ||||||
KD_5-5 | C1 | ✓ | H1 | I | |||
KD_5-6 | C1 | ✓ | H1 | I | |||
KD_5-7 | C1 | ✓ | H31 | III | |||
KD_5-8 | C1 | ✓ | H26 | II+III | |||
H31 | III | ||||||
KD_5-9 | C1 | ✓ | H1 | I | |||
KD_5-10 | C1 | ✓ | H14 | II | |||
H31 | III | ||||||
KD_5-11 | C1 | ✓ | H1 | I | |||
KD_5A | C1 | ✓ | H1 | I | |||
KD_5B | C1 | ✓ | H1 | I | |||
H31 | III | ||||||
KD_5C | C1 | ✓ | H15 | II | |||
H36 | III | ||||||
KD_5D | C1 | ✓ | H1 | I | |||
H31 | III | ||||||
KD_7-1 | C1 | ✓ | H1 | I | |||
H18 | II | ||||||
KD_7-2 | C1 | ✓ | H1 | I | |||
KD_7-3 | C1 | ✓ | H7 | I | |||
H19 | II | ||||||
KD_7-4 | C1 | ✓ | H31 | III | |||
KD_7-6 | C1 | ✓ | H7 | I | |||
H14 | II | ||||||
KD_7-8 | C1 | ✓ | H31 | III | |||
KD_7-9 | C1 | ✓ | H14 | II | |||
Mwachinga (31) | MC_2-1 | C1 | ✓ | H14 | II | ||
Habitat: Natural reservoir | MC_4-1 | C1 | ✓ | H14 | II | ||
Lat, long: −4.1166, 39.3833 | MC_4-2 | C1 | ✓ | H1 | I | ||
Collection date: 18 April 2011 | H31 | III | |||||
MC_4-3 | C1 | ✓ | H14 | II | |||
H31 | III | ||||||
MC_4-4 | C5 | ✓ | H31 | III | |||
MC_4-5 | C1 | ✓ | H14 | II | |||
MC_4-6 | C1 | ✓ | H31 | III | |||
H43 | III + II | ||||||
MC_4-7 | C1 | ✓ | H14 | II | |||
H31 | III | ||||||
MC_4-8 | C6 | ✓ | H1 | I | |||
H39 | III + I | ||||||
MC_4-9 | C1 | ✓ | H1 | I | |||
H31 | III | ||||||
MC_4-10 | C1 | ✓ | H21 | II | |||
H24 | II+I | ||||||
MC_4-11 | C1 | ✓ | H16 | II | |||
H33 | III | ||||||
H34 | III | ||||||
MC_4-12 | C1 | ✓ | H14 | II | |||
H30 | III | ||||||
MC_4-13 | C1 | ✓ | H6 | I | |||
H31 | III | ||||||
MC_4-14 | C1 | ✓ | H14 | II | |||
MC_4-15 | C1 | ✓ | H22 | II + III | |||
H31 | III | ||||||
MC_4-16 | C1 | ✓ | H14 | II | |||
H20 | II + III | ||||||
H25 | II + III | ||||||
MC_4-17 | C1 | ✓ | H14 | II | |||
MC_4-18 | C6 | ✓ | H14 | II | |||
MC_6-1 | C1 | ✓ | H1 | I | |||
MC_6-2 | C1 | ✓ | H31 | III | |||
MC_6-3 | C1 | ✓ | H31 | III | |||
MC_6-4 | C1 | ✓ | H31 | III | |||
MC_6-5 | C6 | ✓ | H14 | II | |||
H29 | III | ||||||
MC_6-6 | C1 | ✓ | H1 | I | |||
H31 | III | ||||||
MC_6-7 | C6 | ✓ | H1 | I | |||
H31 | III | ||||||
H41 | III + I | ||||||
MC_6-8 | C6 | ✓ | H1 | I | |||
H13 | I + II | ||||||
H17 | II | ||||||
MC_6-13 | C1 | ✓ | H10 | I + III | |||
H37 | III | ||||||
MC_6-15 | C1 | ✓ | H31 | III | |||
MC_6-16 | C1 | ✓ | H14 | II | |||
MC_6-18 | C1 | ✓ | H31 | III | |||
Maelinane (24) | ML_3-1 | C2 | ✓ | H1 | I | ||
Habitat: Natural reservoir | H14 | II | |||||
Lat, long: −4.0961, 39.4243 | ML_3-2 | C3 | ✓ | H31 | III | ||
Collection date: 18 April 2011 | ML_3-3 | C3 | ✓ | H14 | II | ||
H40 | III + II | ||||||
ML_3-4 | C3 | ✓ | H14 | II | |||
ML_3-5 | C2 | ✓ | H14 | II | |||
ML_3-6 | C2 | ✓ | H1 | I | |||
ML_3-7 | C4 | ✓ | H1 | I | |||
H31 | III | ||||||
ML_3-8 | C2 | ✓ | H42 | III + II | |||
ML_3-9 | C1 | ✓ | H1 | I | |||
ML_3-10 | C2 | ✓ | H1 | I | |||
ML_3-11 | C3 | ✓ | H9 | I + III | |||
H27 | III | ||||||
ML_3-12 | C2 | ✓ | H31 | III | |||
ML_3-13 | C1 | ✓ | H14 | II | |||
H23 | II + I | ||||||
ML_3-14 | C2 | ✓ | H12 | I + II | |||
H14 | II | ||||||
ML_3-15 | C1 | ✓ | H3 | I | |||
H28 | III | ||||||
ML_3-16 | C2 | ✓ | H14 | II | |||
ML_3-17 | C3 | ✓ | H2 | I | |||
H14 | II | ||||||
ML_3-18 | C2 | ✓ | H1 | I | |||
H31 | III | ||||||
ML_3-19 | C1 | ✓ | H32 | III | |||
H38 | III + I | ||||||
ML_3-20 | C1 | ✓ | H31 | III | |||
H35 | III | ||||||
ML_L1 | C1 | ✓ | H14 | II | |||
ML_L2 | C1 | ✓ | H14 | II | |||
ML_L3 | C1 | ✓ | H14 | II | |||
ML_L4 | C1 | ✓ | H14 | II |
Populations (Code) | n | COI | AkInt3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | H | Uh | Hd ± SD | π ± SD | S | H | Uh | Hd ± SD | π ± SD | |||
Kinango dam (KD) | 26 | 0 | 1 | 0 | 0.000 ± 0.000 | 0.0000 ± 0.0000 | 52 | 14 | 12 | 0.838 ± 0.036 | 0.0203 ± 0.0019 | |
Mwachinga (MC) | 31 | 18 | 3 | 2 | 0.288 ± 0.097 | 0.0079 ± 0.0017 | 60 | 21 | 18 | 0.855 ± 0.033 | 0.0213 ± 0.0020 | |
Maelinane (ML) | 24 | 21 | 4 | 3 | 0.703 ± 0.046 | 0.0154 ± 0.0019 | 56 | 15 | 11 | 0.847 ± 0.046 | 0.0221 ± 0.0021 | |
Total | 81 | 21 | 6 | 5 | 0.419 ± 0.065 | 0.0113 ± 0.0017 | 86 | 44 | 41 | 0.851 ± 0.019 | 0.0212 ± 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tantrawatpan, C.; Vaisusuk, K.; Tanga, C.M.; Pilap, W.; Bunchom, N.; Andrews, R.H.; Thanchomnang, T.; Maleewong, W.; Saijuntha, W. Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses. Biology 2025, 14, 53. https://doi.org/10.3390/biology14010053
Tantrawatpan C, Vaisusuk K, Tanga CM, Pilap W, Bunchom N, Andrews RH, Thanchomnang T, Maleewong W, Saijuntha W. Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses. Biology. 2025; 14(1):53. https://doi.org/10.3390/biology14010053
Chicago/Turabian StyleTantrawatpan, Chairat, Kotchaphon Vaisusuk, Chrysantus M. Tanga, Warayutt Pilap, Naruemon Bunchom, Ross H. Andrews, Tongjit Thanchomnang, Wanchai Maleewong, and Weerachai Saijuntha. 2025. "Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses" Biology 14, no. 1: 53. https://doi.org/10.3390/biology14010053
APA StyleTantrawatpan, C., Vaisusuk, K., Tanga, C. M., Pilap, W., Bunchom, N., Andrews, R. H., Thanchomnang, T., Maleewong, W., & Saijuntha, W. (2025). Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses. Biology, 14(1), 53. https://doi.org/10.3390/biology14010053