Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. CIH Protocol
2.3. Hematoxylin–Eosin (HE) Staining
2.4. Immunohistochemistry (IHC) Staining
2.5. Protein Extraction and Trypsin Digestion
2.6. Acetylated Peptide Enrichment and High-Performance Liquid Chromatography (HPLC) Separation and Mass Spectrometry (MS)
2.7. Statistical Analysis
3. Results
3.1. Identification of Numerous Proteins Exhibiting Differential Expression in the Proteome of the Hypothalamus under CIH
3.2. Identification of Kac Proteins and Sites in the in the CIH–Hypothalamic Complex
3.3. Analysis of Characteristic Motifs at Acetylation Sites within the CIH–Hypothalamic Complex
3.4. Subcellular Distribution and GO Analysis of Significantly Up- and Down-Regulated Acetylated Proteins in CIH–Hypothalamic Tissue
3.5. Enrichment Clustering Protein Domain and Biological Function Analysis of the Kac Proteome in CIH–Hypothalamic Tissue
3.6. Effects of Acetylated Lysine in CIH on Key Hypothalamic Cellular Metabolism and Synapse Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehsan, Z.; Ishman, S.L.; Soghier, I.; Almeida, F.R.; Boudewyns, A.; Camacho, M.; Carno, M.-A.; Coppelson, K.; Ersu, R.H.; Ho, A.T.N.; et al. Management of Persistent, Post-Adenotonsillectomy Obstructive Sleep Apnea in Children: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2024, 209, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, J.; Montellier, E.; Vial, G.; Chuffart, F.; Guellerin, M.; Bouyon, S.; Lemarie, E.; Yamaryo-Botté, Y.; Dirani, A.; Messaoud, R.B.; et al. Long-Term Intermittent Hypoxia in Mice Induces Inflammatory Pathways Implicated in Sleep Apnea and Steatohepatitis in Humans. iScience 2024, 27, 108837. [Google Scholar] [CrossRef] [PubMed]
- Magnusdottir, S.; Hill, E.A. Prevalence of Obstructive Sleep Apnea (OSA) among Preschool Aged Children in the General Population: A Systematic Review. Sleep Med. Rev. 2024, 73, 101871. [Google Scholar] [CrossRef] [PubMed]
- Castillo-García, M.; Solano-Pérez, E.; Coso, C.; Romero-Peralta, S.; García-Borreguero, D.; Izquierdo, J.L.; Mediano, O. Impact of Obstructive Sleep Apnea in Cardiovascular Risk in the Pediatric Population: A Systematic Review. Sleep Med. Rev. 2023, 71, 101818. [Google Scholar] [CrossRef] [PubMed]
- Koren, D.; Gozal, D.; Philby, M.F.; Bhattacharjee, R.; Kheirandish-Gozal, L. Impact of Obstructive Sleep Apnoea on Insulin Resistance in Nonobese and Obese Children. Eur. Respir. J. 2016, 47, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Menzies, B.; Teng, A.; Burns, M.; Lah, S. Neurocognitive Outcomes of Children with Sleep Disordered Breathing: A Systematic Review with Meta-Analysis. Sleep Med. Rev. 2022, 63, 101629. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yuan, X.-S.; Zhou, J.-C.; Chen, H.; Li, S.-Q.; Qu, W.-M.; Huang, Z.-L. Whole-Brain Monosynaptic Inputs to Hypoglossal Motor Neurons in Mice. Neurosci. Bull. 2020, 36, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Mansukhani, M.P.; Kara, T.; Caples, S.M.; Somers, V.K. Chemoreflexes, Sleep Apnea, and Sympathetic Dysregulation. Curr. Hypertens. Rep. 2014, 16, 476. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Tachikawa, R.; Matsumoto, T.; Murase, K.; Tanizawa, K.; Inouchi, M.; Handa, T.; Oga, T.; Hirai, T.; Chin, K. Adrenal Gland Size in Obstructive Sleep Apnea: Morphological Assessment of Hypothalamic Pituitary Adrenal Axis Activity. PLoS ONE 2019, 14, e0222592. [Google Scholar] [CrossRef]
- Kritikou, I.; Basta, M.; Vgontzas, A.N.; Pejovic, S.; Fernandez-Mendoza, J.; Liao, D.; Bixler, E.O.; Gaines, J.; Chrousos, G.P. Sleep Apnoea and the Hypothalamic–Pituitary–Adrenal Axis in Men and Women: Effects of Continuous Positive Airway Pressure. Eur. Respir. J. 2016, 47, 531–540. [Google Scholar] [CrossRef]
- Fong, H.; Zheng, J.; Kurrasch, D. The Structural and Functional Complexity of the Integrative Hypothalamus. Science 2023, 382, 388–394. [Google Scholar] [CrossRef]
- Domingos-Souza, G.; Martinez, D.; Sinkler, S.; Heesch, C.M.; Kline, D.D. Alpha Adrenergic Receptor Signaling in the Hypothalamic Paraventricular Nucleus Is Diminished by the Chronic Intermittent Hypoxia Model of Sleep Apnea. Exp. Neurol. 2021, 335, 113517. [Google Scholar] [CrossRef]
- Dergacheva, O.; Dyavanapalli, J.; Piñol, R.A.; Mendelowitz, D. Chronic Intermittent Hypoxia and Hypercapnia Inhibit the Hypothalamic Paraventricular Nucleus Neurotransmission to Parasympathetic Cardiac Neurons in the Brain Stem. Hypertension 2014, 64, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.L.; Calderon, A.S.; Andrade, M.A.; Cunningham, J.T.; Mifflin, S.W.; Toney, G.M. Chronic Intermittent Hypoxia Increases Sympathetic Control of Blood Pressure: Role of Neuronal Activity in the Hypothalamic Paraventricular Nucleus. Am. J. Physiol.-Heart Circ. Physiol. 2013, 305, H1772–H1780. [Google Scholar] [CrossRef]
- Maruyama, N.O.; Mitchell, N.C.; Truong, T.T.; Toney, G.M. Activation of the Hypothalamic Paraventricular Nucleus by Acute Intermittent Hypoxia: Implications for Sympathetic Long-Term Facilitation Neuroplasticity. Exp. Neurol. 2019, 314, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marciante, A.B.; Wang, L.A.; Little, J.T.; Cunningham, J.T. Caspase Lesions of PVN-Projecting MnPO Neurons Block the Sustained Component of CIH-Induced Hypertension in Adult Male Rats. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H34–H48. [Google Scholar] [CrossRef] [PubMed]
- Shell, B.; Farmer, G.E.; Nedungadi, T.P.; Wang, L.A.; Marciante, A.B.; Snyder, B.; Cunningham, R.L.; Cunningham, J.T. Angiotensin Type 1a Receptors in the Median Preoptic Nucleus Support Intermittent Hypoxia-Induced Hypertension. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2019, 316, R651–R665. [Google Scholar] [CrossRef]
- Edwards, K.M.; Kamat, R.; Tomfohr, L.M.; Ancoli-Israel, S.; Dimsdale, J.E. Obstructive Sleep Apnea and Neurocognitive Performance: The Role of Cortisol. Sleep Med. 2014, 15, 27–32. [Google Scholar] [CrossRef]
- Tarasiuk, A.; Berdugo-Boura, N.; Troib, A.; Segev, Y. Role of Growth Hormone-Releasing Hormone in Sleep and Growth Impairments Induced by Upper Airway Obstruction in Rats. Eur. Respir. J. 2011, 38, 870–877. [Google Scholar] [CrossRef]
- Ciriello, J.; Moreau, J.M.; Caverson, M.M.; Moranis, R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front. Physiol. 2022, 12, 767318. [Google Scholar] [CrossRef]
- Ciriello, J.; Moreau, J.M.; McCoy, A.; Jones, D.L. Effect of Intermittent Hypoxia on Arcuate Nucleus in the Leptin-Deficient Rat. Neurosci. Lett. 2016, 626, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Pho, H.; Kirkness, J.; Ladenheim, E.E.; Bi, S.; Moran, T.H.; Fuller, D.D.; Schwartz, A.R.; Polotsky, V.Y. Localizing Effects of Leptin on Upper Airway and Respiratory Control during Sleep. Sleep 2016, 39, 1097–1106. [Google Scholar] [CrossRef]
- Deribe, Y.L.; Pawson, T.; Dikic, I. Post-Translational Modifications in Signal Integration. Nat. Struct. Mol. Biol. 2010, 17, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Xu, W.; Jiang, W.; Yu, W.; Lin, Y.; Zhang, T.; Yao, J.; Zhou, L.; Zeng, Y.; Li, H.; et al. Regulation of Cellular Metabolism by Protein Lysine Acetylation. Science 2010, 327, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Su, X.; Sams, D.; Prabhakar, N.R.; Nanduri, J. P300/CBP Regulates HIF-1–Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am. J. Respir. Cell Mol. Biol. 2024, 70, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Peng, Y.-J.; Su, X.; Prabhakar, N.R.; Nanduri, J. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front. Physiol. 2021, 12, 688322. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yan, W.; Chen, C.; Zeng, Y.; Kong, Y.; He, X.; Pei, P.; Wang, S.; Zhang, T. Acetylome Analyses Provide Novel Insights into the Effects of Chronic Intermittent Hypoxia on Hippocampus-Dependent Cognitive Impairment. Front. Mol. Neurosci. 2024, 17, 1324458. [Google Scholar] [CrossRef] [PubMed]
- Poulain, L.; Thomas, A.; Rieusset, J.; Casteilla, L.; Levy, P.; Arnaud, C.; Dematteis, M. Visceral White Fat Remodelling Contributes to Intermittent Hypoxia-Induced Atherogenesis. Eur. Respir. J. 2014, 43, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, J.; Lin, S.; Deng, W.; Zhang, Y.; Xue, Y. PLMD: An Updated Data Resource of Protein Lysine Modifications. J. Genet. Genom. Yi Chuan Xue Bao 2017, 44, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, M.; Zhang, S.; Zhao, Y.; Wang, Q.; Jiang, M.; Du, M.; Shao, Z.; Yuan, H. Neuroprotective Effects of Bone Marrow Sca-1+ Cells against Age-Related Retinal Degeneration in OPTN E50K Mice. Cell Death Dis. 2021, 12, 613. [Google Scholar] [CrossRef]
- Song, T.; Song, X.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.; Forester, B.P.; et al. Mitochondrial Dysfunction, Oxidative Stress, Neuroinflammation, and Metabolic Alterations in the Progression of Alzheimer’s Disease: A Meta-Analysis of in Vivo Magnetic Resonance Spectroscopy Studies. Ageing Res. Rev. 2021, 72, 101503. [Google Scholar] [CrossRef] [PubMed]
- Vgontzas, A.N.; Kales, A. Sleep and Its Disorders. Annu. Rev. Med. 1999, 50, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.; Rosen, D. The Diagnosis and Management of Common Sleep Disorders in Adolescents. Curr. Opin. Pediatr. 2014, 26, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Brito, V.N.; Canton, A.P.M.; Seraphim, C.E.; Abreu, A.P.; Macedo, D.B.; Mendonca, B.B.; Kaiser, U.B.; Argente, J.; Latronico, A.C. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr. Rev. 2023, 44, 193–221. [Google Scholar] [CrossRef] [PubMed]
- Yossifoff, M.; Kisliouk, T.; Meiri, N. Dynamic Changes in DNA Methylation during Thermal Control Establishment Affect CREB Binding to the Brain-Derived Neurotrophic Factor Promoter. Eur. J. Neurosci. 2008, 28, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-J.; Cai, T.-H.; Fang, C.-L.; Lin, S.-Z.; Yang, W.-Q.; Wei, Y.; Zhou, F.; Liu, L.; Luo, Y.; Guo, Z.-Y.; et al. Long-Term Exercise Training down-Regulates m6A RNA Demethylase FTO Expression in the Hippocampus and Hypothalamus: An Effective Intervention for Epigenetic Modification. BMC Neurosci. 2022, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Szyf, M. Perinatal Stress and Epigenetics. Handb. Clin. Neurol. 2021, 180, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, R.; Chen, H.-Z.; Xiao, Q.; Wang, W.-J.; He, J.-P.; Li, X.-X.; Yu, X.-W.; Li, L.; Wang, P.; et al. Enhancement of Hypothalamic STAT3 Acetylation by Nuclear Receptor Nur77 Dictates Leptin Sensitivity. Diabetes 2015, 64, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Tsunekawa, T.; Banno, R.; Mizoguchi, A.; Sugiyama, M.; Tominaga, T.; Onoue, T.; Hagiwara, D.; Ito, Y.; Iwama, S.; Goto, M.; et al. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia. EBioMedicine 2017, 16, 172–183. [Google Scholar] [CrossRef]
- Kabra, D.G.; Pfuhlmann, K.; García-Cáceres, C.; Schriever, S.C.; Casquero García, V.; Kebede, A.F.; Fuente-Martin, E.; Trivedi, C.; Heppner, K.; Uhlenhaut, N.H.; et al. Hypothalamic Leptin Action Is Mediated by Histone Deacetylase 5. Nat. Commun. 2016, 7, 10782. [Google Scholar] [CrossRef]
- Yoon, M.J.; Yoshida, M.; Johnson, S.; Takikawa, A.; Usui, I.; Tobe, K.; Nakagawa, T.; Yoshino, J.; Imai, S. SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice. Cell Metab. 2015, 21, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Nagamatsu, S.; Nakamichi, Y.; Yamamura, C.; Matsushima, S.; Watanabe, T.; Ozawa, S.; Furukawa, H.; Ishida, H. Decreased Expression of T-SNARE, Syntaxin 1, and SNAP-25 in Pancreatic Beta-Cells Is Involved in Impaired Insulin Secretion from Diabetic GK Rat Islets: Restoration of Decreased t-SNARE Proteins Improves Impaired Insulin Secretion. Diabetes 1999, 48, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Pathak, A.; Schueler, K.L.; Alsharif, H.; Michl, A.; Alexander, J.; Kim, J.-A.; Bhatnagar, S. Genetic Ablation of Synaptotagmin-9 Alters Tomosyn-1 Function to Increase Insulin Secretion from Pancreatic β-Cells Improving Glucose Clearance. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2023, 37, e23075. [Google Scholar] [CrossRef]
- Liang, T.; Qin, T.; Xie, L.; Dolai, S.; Zhu, D.; Prentice, K.J.; Wheeler, M.; Kang, Y.; Osborne, L.; Gaisano, H.Y. New Roles of Syntaxin-1A in Insulin Granule Exocytosis and Replenishment. J. Biol. Chem. 2017, 292, 2203–2216. [Google Scholar] [CrossRef] [PubMed]
- Minakhina, S.; De Oliveira, V.; Kim, S.Y.; Zheng, H.; Wondisford, F.E. Thyroid Hormone Receptor Phosphorylation Regulates Acute Fasting-Induced Suppression of the Hypothalamic-Pituitary-Thyroid Axis. Proc. Natl. Acad. Sci. USA 2021, 118, e2107943118. [Google Scholar] [CrossRef] [PubMed]
- Jochems, J.; Teegarden, S.L.; Chen, Y.; Boulden, J.; Challis, C.; Ben-Dor, G.A.; Kim, S.F.; Berton, O. Enhancement of Stress Resilience through Histone Deacetylase 6-Mediated Regulation of Glucocorticoid Receptor Chaperone Dynamics. Biol. Psychiatry 2015, 77, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, N.; Thamotharan, S.; Srinivasan, M.; Mahmood, S.; Patel, M.S.; Devaskar, S.U. Postnatal Exposure to a High-Carbohydrate Diet Interferes Epigenetically with Thyroid Hormone Receptor Induction of the Adult Male Rat Skeletal Muscle Glucose Transporter Isoform 4 Expression. J. Nutr. Biochem. 2014, 25, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Warnecke, A.; Weder, J.; Preller, M.; Zeilinger, C. Triiodothyronine Acts as a Smart Influencer on Hsp90 via a Triiodothyronine Binding Site. Int. J. Mol. Sci. 2022, 23, 7150. [Google Scholar] [CrossRef] [PubMed]
- Backe, S.J.; Sager, R.A.; Woodford, M.R.; Makedon, A.M.; Mollapour, M. Post-Translational Modifications of Hsp90 and Translating the Chaperone Code. J. Biol. Chem. 2020, 295, 11099–11117. [Google Scholar] [CrossRef]
- Lemche, E.; Chaban, O.S.; Lemche, A.V. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front. Neurosci. 2016, 10, 142. [Google Scholar] [CrossRef]
- Spindler, M.; Thiel, C.M. Hypothalamic Microstructure and Function Are Related to Body Mass, but Not Mental or Cognitive Abilities across the Adult Lifespan. GeroScience 2023, 45, 277–291. [Google Scholar] [CrossRef]
- Jais, A.; Brüning, J.C. Hypothalamic Inflammation in Obesity and Metabolic Disease. J. Clin. Investig. 2017, 127, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Mehay, D.; Silberman, Y.; Arnold, A.C. The Arcuate Nucleus of the Hypothalamus and Metabolic Regulation: An Emerging Role for Renin-Angiotensin Pathways. Int. J. Mol. Sci. 2021, 22, 7050. [Google Scholar] [CrossRef]
- Papazoglou, I.; Lee, J.-H.; Cui, Z.; Li, C.; Fulgenzi, G.; Bahn, Y.J.; Staniszewska-Goraczniak, H.M.; Piñol, R.A.; Hogue, I.B.; Enquist, L.W.; et al. A Distinct Hypothalamus-to-β Cell Circuit Modulates Insulin Secretion. Cell Metab. 2022, 34, 285–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Duan, L.; Yuan, G.; Liang, W.; Li, Q.; Zhang, X.; Pan, Y. SLC1A2 Mediates Refractory Temporal Lobe Epilepsy with an Initial Precipitating Injury by Targeting the Glutamatergic Synapse Pathway. IUBMB Life 2019, 71, 213–222. [Google Scholar] [CrossRef]
- Leem, K.H.; Kim, S.A.; Park, H.J. Antimania-Like Effect of Panax Ginseng Regulating the Glutamatergic Neurotransmission in REM-Sleep Deprivation Rats. BioMed Res. Int. 2020, 2020, 3636874. [Google Scholar] [CrossRef]
- López-Bayghen, E.; Ortega, A. Glial Glutamate Transporters: New Actors in Brain Signaling. IUBMB Life 2011, 63, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.M.; Buchanan, G.F.; Tischkau, S.A.; Chen, D.; Kuriashkina, L.; Faiman, L.E.; Alster, J.M.; McPherson, P.S.; Campbell, K.P.; Gillette, M.U. A Neuronal Ryanodine Receptor Mediates Light-Induced Phase Delays of the Circadian Clock. Nature 1998, 394, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Plante, A.E.; Rao, V.P.; Rizzo, M.A.; Meredith, A.L. Comparative Ca2+ Channel Contributions to Intracellular Ca2+ Levels in the Circadian Clock. Biophys. Rep. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Küry, S.; van Woerden, G.M.; Besnard, T.; Proietti Onori, M.; Latypova, X.; Towne, M.C.; Cho, M.T.; Prescott, T.E.; Ploeg, M.A.; Sanders, S.; et al. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. Am. J. Hum. Genet. 2017, 101, 768–788. [Google Scholar] [CrossRef]
- Kushnir, A.; Todd, J.J.; Witherspoon, J.W.; Yuan, Q.; Reiken, S.; Lin, H.; Munce, R.H.; Wajsberg, B.; Melville, Z.; Clarke, O.B.; et al. Intracellular Calcium Leak as a Therapeutic Target for RYR1-Related Myopathies. Acta Neuropathol. 2020, 139, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Gamble, K.L.; Ciarleglio, C.M. Ryanodine Receptors Are Regulated by the Circadian Clock and Implicated in Gating Photic Entrainment. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 11717–11719. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Ji, J.; Zhan, X.; Yan, W.; Liu, F.; Ye, P.; Wang, S.; Tai, J. Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment. Biology 2024, 13, 559. https://doi.org/10.3390/biology13080559
Kong Y, Ji J, Zhan X, Yan W, Liu F, Ye P, Wang S, Tai J. Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment. Biology. 2024; 13(8):559. https://doi.org/10.3390/biology13080559
Chicago/Turabian StyleKong, Yaru, Jie Ji, Xiaojun Zhan, Weiheng Yan, Fan Liu, Pengfei Ye, Shan Wang, and Jun Tai. 2024. "Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment" Biology 13, no. 8: 559. https://doi.org/10.3390/biology13080559
APA StyleKong, Y., Ji, J., Zhan, X., Yan, W., Liu, F., Ye, P., Wang, S., & Tai, J. (2024). Acetylome Analyses Provide New Insights into the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent Endocrine Metabolism Impairment. Biology, 13(8), 559. https://doi.org/10.3390/biology13080559