Phytoplankton Assemblage over a 14-Year Period in the Adriatic Sea: Patterns and Trends
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Sampling and Analysis
2.3. Phytoplankton Analysis
2.4. Chlorophyll a Analysis
2.5. Statistical Analysis
2.5.1. Neural Gas Analysis
2.5.2. Solar Radiation and Sea Surface Temperature Analysis
3. Results
3.1. Interannual and Seasonal Distribution of Main Phytoplankton Groups
3.2. Neural Gas Classification
3.3. Phytoplankton Community Composition and Diversity Indices
3.4. Chlorophyll a
4. Discussion
4.1. Phytoplankton Groups—Interannual and Seasonal Distribution
4.2. Phytoplankton Community Composition and Diversity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boero, F.; Kraberg, A.C.; Krause, G.; Wiltshire, K.H. Time Is an Affliction: Why Ecology Cannot Be as Predictive as Physics and Why It Needs Time Series. J. Sea Res. 2015, 101, 12–18. [Google Scholar] [CrossRef]
- Longobardi, L. From Data to Knowledge: Integrating Observational Data to Trace Phytoplankton Dynamics in a Changing World. Ph.D. Thesis, The Open University, Milton Keynes, UK, 2020. [Google Scholar]
- Henson, S.A.; Beaulieu, C.; Lampitt, R. Observing Climate Change Trends in Ocean Biogeochemistry: When and Where. Glob. Chang. Biol. 2016, 22, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy 2000. Off. J. Eur. Union 2000, L327, 1–72.
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive) 2008. Off. J. Eur. Union 2008, L164, 19–40.
- Marić, D.; Kraus, R.; Godrijan, J.; Supić, N.; Djakovac, T.; Precali, R. Phytoplankton Response to Climatic and Anthropogenic Influences in the North-Eastern Adriatic during the Last Four Decades. Estuar. Coast. Shelf Sci. 2012, 115, 98–112. [Google Scholar] [CrossRef]
- Skejić, S.; Bojanić, N.; Matijević, S.; Vidjak, O.; Grbec, B.; Ninčević Gladan, Ž.; Šestanović, S.; Šantić, D.; Matijević, S.; Vidjak, O.; et al. Analysis of the Phytoplankton Community in the Vicinity of Domestic Sewage Outflow during Stratified Conditions. Mediterr. Mar. Sci. 2014, 15, 574–586. [Google Scholar] [CrossRef]
- Totti, C.; Romagnoli, T.; Accoroni, S.; Coluccelli, A.; Pellegrini, M.; Campanelli, A.; Grilli, F.; Marini, M. Phytoplankton Communities in the Northwestern Adriatic Sea: Interdecadal Variability over a 30-Years Period (1988–2016) and Relationships with Meteoclimatic Drivers. J. Mar. Syst. 2019, 193, 137–153. [Google Scholar] [CrossRef]
- Ninčević Gladan, Ž.; Matić, F.; Arapov, J.; Skejić, S.; Bužančić, M.; Bakrač, A.; Straka, M.; Dekneudt, Q.; Grbec, B.; Garber, R.; et al. The Relationship between Toxic Phytoplankton Species Occurrence and Environmental and Meteorological Factors along the Eastern Adriatic Coast. Harmful Algae 2020, 92, 101745. [Google Scholar] [CrossRef] [PubMed]
- Neri, F.; Romagnoli, T.; Accoroni, S.; Campanelli, A.; Marini, M.; Grilli, F.; Totti, C. Phytoplankton and Environmental Drivers at a Long-Term Offshore Station in the Northern Adriatic Sea (1988–2018). Cont. Shelf Res. 2022, 242, 104746. [Google Scholar] [CrossRef]
- Francé, J.; Varkitzi, I.; Stanca, E.; Cozzoli, F.; Skejić, S.; Ungaro, N.; Vascotto, I.; Mozetič, P.; Ninčević Gladan, Ž.; Assimakopoulou, G.; et al. Large-Scale Testing of Phytoplankton Diversity Indices for Environmental Assessment in Mediterranean Sub-Regions (Adriatic, Ionian and Aegean Seas). Ecol. Indic. 2021, 126, 107630. [Google Scholar] [CrossRef]
- Barth, A.; RK, W.; Robbins, I.; Pasulka, A. Seasonal and Interannual Variability of Phytoplankton Abundance and Community Composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 2020, 637, 29–43. [Google Scholar] [CrossRef]
- Grilli, F.; Accoroni, S.; Acri, F.; Bernardi Aubry, F.; Bergami, C.; Cabrini, M.; Campanelli, A.; Giani, M.; Guicciardi, S.; Marini, M.; et al. Seasonal and Interannual Trends of Oceanographic Parameters over 40 Years in the Northern Adriatic Sea in Relation to Nutrient Loadings Using the EMODnet Chemistry Data Portal. Water 2020, 12, 2280. [Google Scholar] [CrossRef]
- Ninčević Gladan, Ž.; Marasović, I.; Grbec, B.; Skejić, S.; Bužančić, M.; Kušpilić, G.; Matijevic, S.; Matić, F. Inter-Decadal Variability in Phytoplankton Community in the Middle Adriatic (Katela Bay) in Relation to the North Atlantic Oscillation. Estuaries Coasts 2010, 33, 376–383. [Google Scholar] [CrossRef]
- Zampieri, M.; Giorgi, F.; Lionello, P.; Nikulin, G. Regional Climate Change in the Northern Adriatic. Phys. Chem. Earth Parts A/B/C 2012, 40–41, 32–46. [Google Scholar] [CrossRef]
- Branković, Č.; Güttler, I.; Gajić-Čapka, M. Evaluating Climate Change at the Croatian Adriatic from Observations and Regional Climate Models’ Simulations. Clim. Dyn. 2013, 41, 2353–2373. [Google Scholar] [CrossRef]
- Grbec, B.; Morović, M.; Matić, F.; Ninčević Gladan, Ž.; Marasović, I.; Vidjak, O.; Bojanić, N.; Keč, V.; Zorica, B.; Kušpilić, G.; et al. Climate Regime Shifts and Multi-Decadal Variability of the Adriatic Sea Pelagic Ecosystem. Acta Adriat. 2015, 56, 47–66. [Google Scholar]
- Šolić, M.; Krstulović, N.; Kušpilić, G.; Ninčević Gladan, Ž.; Bojanić, N.; Šestanović, S.; Šantić, D.; Ordulj, M. Changes in Microbial Food Web Structure in Response to Changed Environmental Trophic Status: A Case Study of the Vranjic Basin (Adriatic Sea). Mar. Environ. Res. 2010, 70, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton Methodik; Schweizerbart Science Publishers: Stuttgart, Germany, 1958; ISBN 9783510520091. [Google Scholar]
- ISO/IEC 17043:2023; Conformity Assessment—General Requirements for the Competence of Proficiency Testing Providers. ISO: Geneva, Switzerland, 2023.
- Arar, E.J.; Collins, G.B. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence; U.S. Environmental Protection Agency: Washington, DC, USA, 1997; pp. 1–22.
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- De Cáceres, M.; Legendre, P. Associations between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.; Gorley, R. PRIMER Version 7: User Manual/Tutorial. PRIMER-E 2015, 192. Available online: https://learninghub.primer-e.com/books/primer-v7-user-manual-tutorial/page/download (accessed on 28 June 2024).
- Bernardi Aubry, F.; Acri, F.; Bastianini, M.; Finotto, S.; Pugnetti, A. Differences and Similarities in the Phytoplankton Communities of Two Coupled Transitional and Marine Ecosystems (the Lagoon of Venice and the Gulf of Venice—Northern Adriatic Sea). Front. Mar. Sci. 2022, 9, 974967. [Google Scholar] [CrossRef]
- Neri, F.; Romagnoli, T.; Accoroni, S.; Ubaldi, M.; Garzia, A.; Pizzuti, A.; Campanelli, A.; Grilli, F.; Marini, M.; Totti, C. Phytoplankton Communities in a Coastal and Offshore Stations of the Northern Adriatic Sea Approached by Network Analysis and Different Statistical Descriptors. Estuar. Coast. Shelf Sci. 2023, 282, 108224. [Google Scholar] [CrossRef]
- Fritzke, B. Growing Cell Structures—A Self-Organizing Network for Unsupervised and Supervised Learning. Neural Netw. 1994, 7, 1441–1460. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Marasović, I.; Ninčević, Ž.; Kušpilić, G.; Marinović, S.; Marinov, S. Long-Term Changes of Basic Biological and Chemical Parameters at Two Stations in the Middle Adriatic. J. Sea Res. 2005, 54, 3–14. [Google Scholar] [CrossRef]
- Bužančić, M.; Ninčević Gladan, Ž.; Marasović, I.; Kušpilić, G.; Grbec, B. Eutrophication Influence on Phytoplankton Community Composition in Three Bays on the Eastern Adriatic Coast. Oceanologia 2016, 58, 302–316. [Google Scholar] [CrossRef]
- Ninčević-Gladan, Ž.; Bužančić, M.; Kušpilić, G.; Grbec, B.; Matijević, S.; Skejić, S.; Marasović, I.; Morović, M. The Response of Phytoplankton Community to Anthropogenic Pressure Gradient in the Coastal Waters of the Eastern Adriatic Sea. Ecol. Indic. 2015, 56, 106–115. [Google Scholar] [CrossRef]
- Cabrini, M.; Fornasaro, D.; Cossarini, G.; Lipizer, M.; Virgilio, D. Phytoplankton Temporal Changes in a Coastal Northern Adriatic Site during the Last 25 Years. Estuar. Coast. Shelf Sci. 2012, 115, 113–124. [Google Scholar] [CrossRef]
- Mozetič, P.; Francé, J.; Kogovšek, T.; Talaber, I.; Malej, A. Plankton Trends and Community Changes in a Coastal Sea (Northern Adriatic): Bottom-up vs. Top-down Control in Relation to Environmental Drivers. Estuar. Coast. Shelf Sci. 2012, 115, 138–148. [Google Scholar] [CrossRef]
- Cerino, F.; Fornasaro, D.; Kralj, M.; Giani, M.; Cabrini, M. Phytoplankton Temporal Dynamics in the Coastal Waters of the North-Eastern Adriatic Sea (Mediterranean Sea) from 2010 to 2017. Nat. Conserv. 2019, 34, 343–372. [Google Scholar] [CrossRef]
- Vascotto, I.; Mozetič, P.; Francé, J. Phytoplankton Time-Series in a LTER Site of the Adriatic Sea: Methodological Approach to Decipher Community Structure and Indicative Taxa. Water 2021, 13, 2045. [Google Scholar] [CrossRef]
- Rousseaux, C.S.; Gregg, W.W. Recent Decadal Trends in Global Phytoplankton Composition. Glob. Biogeochem. Cycles 2015, 29, 1674–1688. [Google Scholar] [CrossRef]
- Derolez, V.; Soudant, D.; Nathalie, M.; Chiantella, C.; Richard, M.; Abadie, E.; Aliaume, C.; Bec, B. Two Decades of Oligotrophication: Evidence for a Phytoplankton Community Shift in the Coastal Lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 2020, 241, 106810. [Google Scholar] [CrossRef]
- Ljubimir, S.; Jasprica, N.; Čalić, M.; Hrustić, E.; Dupčić Radić, I.; Car, A.; Batistić, M. Interannual (2009–2013) Variability of Winter-Spring Phytoplankton in the Open South Adriatic Sea: Effects of Deep Convection and Lateral Advection. Cont. Shelf Res. 2017, 143, 311–321. [Google Scholar] [CrossRef]
- Gačić, M.; Eusebi Borzelli, G.L.; Civitarese, G.; Cardin, V.; Yari, S. Can Internal Processes Sustain Reversals of the Ocean Upper Circulation? The Ionian Sea Example. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Šupraha, L.; Ljubešić, Z.; Henderiks, J. Combination Coccospheres from the Eastern Adriatic Coast: New, Verified and Possible Life-Cycle Associations. Mar. Micropaleontol. 2018, 141, 23–30. [Google Scholar] [CrossRef]
- Godrijan, J.; Young, J.R.; Marić Pfannkuchen, D.; Precali, R.; Pfannkuchen, M. Coastal Zones as Important Habitats of Coccolithophores: A Study of Species Diversity, Succession, and Life-Cycle Phases. Limnol. Oceanogr. 2018, 63, 1692–1710. [Google Scholar] [CrossRef]
- Skejić, S.; Arapov, J.; Bužančić, M.; Ninčević Gladan, Ž.; Bakrač, A.; Straka, M.; Mandić, J. First Evidence of an Intensive Bloom of the Coccolithophore Syracosphaera Halldalii in a Highly Variable Estuarine Environment (Krka River, Adriatic Sea). Mar. Ecol. 2021, 42, e12641. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Raitsos, D.E.; Edwards, M.; Attrill, M. Spatial Patterns of Diatom and Dinoflagellate Seasonal Cycles in the NE Atlantic Ocean. Mar. Ecol. Ser. Mar. Ecol.-Progr. Ser. 2007, 339, 301–306. [Google Scholar] [CrossRef]
- Mozetič, P.; Solidoro, C.; Cossarini, G.; Socal, G.; Precali, R.; Francé, J.; Bianchi, F.; De Vittor, C.; Smodlaka, N.; Fonda Umani, S. Recent Trends Towards Oligotrophication of the Northern Adriatic: Evidence from Chlorophyll a Time Series. Estuaries Coasts 2010, 33, 362–375. [Google Scholar] [CrossRef]
- Ninčević, Ž.; Marasović, I.; Kušpilić, G. Deep Chlorophyll-a Maximum at One Station in the Middle Adriatic Sea. J. Mar. Biol. Assoc. 2002, 82, 9–19. [Google Scholar] [CrossRef]
- Ciavatta, S.; Kay, S.; Brewin, R.J.W.; Cox, R.; Di Cicco, A.; Nencioli, F.; Polimene, L.; Sammartino, M.; Santoleri, R.; Skákala, J.; et al. Ecoregions in the Mediterranean Sea Through the Reanalysis of Phytoplankton Functional Types and Carbon Fluxes. J. Geophys. Res. Ocean. 2019, 124, 6737–6759. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Ribera d’Alcalà, M. On the Trophic Regimes of the Mediterranean Sea: A Satellite Analysis. Biogeosciences 2009, 6, 139–148. [Google Scholar] [CrossRef]
- Talaber, I.; Francé, J.; Mozetič, P. How Phytoplankton Physiology and Community Structure Adjust to Physical Forcing in a Coastal Ecosystem (Northern Adriatic Sea). Phycologia 2014, 53, 74–85. [Google Scholar] [CrossRef]
- Colella, S.; Falcini, F.; Rinaldi, E.; Sammartino, M.; Santoleri, R. Mediterranean Ocean Colour Chlorophyll Trends. PLoS ONE 2016, 11, e0155756. [Google Scholar] [CrossRef]
- Mihanović, H.; Vilibić, I.; Carniel, S.; Tudor, M.; Russo, A.; Bergamasco, A.; Bubić, N.; Ljubešić, Z.; Viličić, D.; Boldrin, A.; et al. Exceptional Dense Water Formation on the Adriatic Shelf in the Winter of 2012. Ocean Sci. 2013, 9, 561–572. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Racault, M.-F.; Font-Muñoz, J.S.; Basterretxea, G. Trends in Phytoplankton Phenology in the Mediterranean Sea Based on Ocean-Colour Remote Sensing. Remote Sens. Environ. 2019, 221, 50–64. [Google Scholar] [CrossRef]
- Skejić, S.; Vilibić, I.; Matijevic, S.; Jozić, S.; Ninčević Gladan, Ž.; Morović, M.; Marasović, I.; Prelesnik, H. Long-Term Regulating Mechanisms of Phytoplankton Biomass in a Traditional Shellfish Aquaculture Area. Fresenius Environ. Bull. 2015, 24, 3001–3013. [Google Scholar]
- Ćatipović, L.; Sathyendranath, S.; Matić, F.; Kovač, Ž.; Kovačić, L.; Ninčević Gladan, Ž.; Skejić, S.; Kalinić, H. Sources of Uncertainty in Satellite-Derived Chlorophyll-a Concentration—An Adriatic Sea Case Study. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103727. [Google Scholar] [CrossRef]
- Mozetič, P.; Cangini, M.; Francé, J.; Bastianini, M.; Bernardi Aubry, F.; Bužančić, M.; Cabrini, M.; Cerino, F.; Čalić, M.; D’Adamo, R.; et al. Phytoplankton Diversity in Adriatic Ports: Lessons from the Port Baseline Survey for the Management of Harmful Algal Species. Mar. Pollut. Bull. 2019, 147, 117–132. [Google Scholar] [CrossRef]
- Bernardi Aubry, F.; Cossarini, G.; Acri, F.; Bastianini, M.; Bianchi, F.; Camatti, E.; De Lazzari, A.; Pugnetti, A.; Solidoro, C.; Socal, G. Plankton Communities in the Northern Adriatic Sea: Patterns and Changes over the Last 30 Years. Estuar. Coast. Shelf Sci. 2012, 115, 125–137. [Google Scholar] [CrossRef]
- Ljubešić, Z.; Viličić, D.; Mihalić, K.; Carić, M.; Kralj Borojevic, K.; Ljubeŝić, N. Pseudo-Nitzschia Blooms in the Zrmanja River Estuary (Eastern Adriatic Sea). Diatom Res. 2008, 23, 51–63. [Google Scholar] [CrossRef]
- Turk Dermastia, T.; Cerino, F.; Stanković, D.; Francé, J.; Ramšak, A.; Tušek-Žnidarič, M.; Beran, A.; Natali, V.; Cabrini, M.; Mozetič, P. Ecological Time Series and Integrative Taxonomy Unveil Seasonality and Diversity of the Toxic Diatom Pseudo-Nitzschia H. Peragallo in the Northern Adriatic Sea. Harmful Algae 2020, 93, 101773. [Google Scholar] [CrossRef] [PubMed]
- Arapov, J.; Bužančić, M.; Penna, A.; Casabianca, S.; Capellacci, S.; Andreoni, F.; Skejić, S.; Bakrač, A.; Straka, M.; Mandic, J.; et al. High Proliferation of Pseudo-Nitzschia Cf. Arenysensis in the Adriatic Sea: Ecological and Morphological Characterisation. Mediterr. Mar. Sci. 2020, 21, 759. [Google Scholar] [CrossRef]
- Hernández Fariñas, T.; Bacher, C.; Soudant, D.; Belin, C.; Barillé, L. Assessing Phytoplankton Realized Niches Using a French National Phytoplankton Monitoring Network. Estuar. Coast. Shelf Sci. 2015, 159, 15–27. [Google Scholar] [CrossRef]
- Husson, B.; Hernández-Fariñas, T.; Le Gendre, R.; Schapira, M.; Chapelle, A. Two Decades of Pseudo-nitzschia spp. Blooms and King Scallop (Pecten maximus) Contamination by Domoic Acid along the French Atlantic and English Channel Coasts: Seasonal Dynamics, Spatial Heterogeneity and Interannual Variability. Harmful Algae 2016, 51, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Mengelt, C.; Prézelin, B.B. UVA Enhancement of Carbon Fixation and Resilience to UV Inhibition in the Genus Pseudo-nitzschia May Provide a Competitive Advantage in High UV Surface Waters. Mar. Ecol. Prog. Ser. 2005, 301, 81–93. [Google Scholar] [CrossRef]
- Kooistra, W.H.C.F.; Sarno, D.; Balzano, S.; Gu, H.; Andersen, R.A.; Zingone, A. Global Diversity and Biogeography of Skeletonema Species (Bacillariophyta). Protist 2008, 159, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Bernardi Aubry, F.; Acri, F.; Bastianini, M.; Bianchi, F.; Cassin, D.; Pugnetti, A.; Socal, G. Seasonal and Interannual Variations of Phytoplankton in the Gulf of Venice (NAS). Chem. Ecol. 2006, 22, 71–91. [Google Scholar] [CrossRef]
- Marasović, I. Encystment and Excystment of Gonyaulax polyedra during a Red Tide.Pdf. Estuar. Coast. Shelf Sci. 1989, 28, 35–41. [Google Scholar] [CrossRef]
- Ajani, P.A.; Davies, C.H.; Eriksen, R.S.; Richardson, A.J. Global Warming Impacts Micro-Phytoplankton at a Long-Term Pacific Ocean Coastal Station. Front. Mar. Sci. 2020, 7, 576011. [Google Scholar] [CrossRef]
- Sarker, S.; Lemke, P.; Wiltshire, K.H. Does Ecosystem Variability Explain Phytoplankton Diversity? Solving an Ecological Puzzle with Long-Term Data Sets. J. Sea Res. 2018, 135, 11–17. [Google Scholar] [CrossRef]
- Polovina, J.J.; Howell, E.A.; Abecassis, M. Ocean’s Least Productive Waters Are Expanding. Geophys. Res. Lett. 2008, 35, 2–6. [Google Scholar] [CrossRef]
- Steinacher, M.; Joos, F.; Frölicher, T.L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S.C.; Gehlen, M.; Lindsay, K.; Moore, J.K.; et al. Projected 21st Century Decrease in Marine Productivity: A Multi-Model Analysis. Biogeosciences 2010, 7, 979–1005. [Google Scholar] [CrossRef]
- Di Cavalho, J.A.; Rönn, L.; Prins, T.C.; Hillebrand, H. Temporal Change in Phytoplankton Diversity and Functional Group Composition. Mar. Biodivers. 2023, 53, 1–11. [Google Scholar] [CrossRef]
- Hillebrand, H.; Acevedo-Trejos, E.; Moorthi, S.D.; Ryabov, A.; Striebel, M.; Thomas, P.K.; Schneider, M.-L.L. Cell Size as Driver and Sentinel of Phytoplankton Community Structure and Functioning. Funct. Ecol. 2022, 36, 276–293. [Google Scholar] [CrossRef]
- Fu, X.; Qin, J.; Ding, C.; Wei, Y.; Sun, J. Effect of Increased pCO2 and Temperature on the Phytoplankton Community in the Coastal of Yellow Sea. Sci. Total Environ. 2024, 918, 170520. [Google Scholar] [CrossRef] [PubMed]
- Arapov, J.; Bužančić, M.; Skejić, S.; Mandič, J.; Bakrač, A.; Straka, M.; Gladan, Ž.N. Phytoplankton Dynamics in the Middle Adriatic Estuary, with a Focus on the Potentially Toxic Genus Pseudo-nitzschia. J. Mar. Sci. Eng. 2020, 8, 608. [Google Scholar] [CrossRef]
- Álvarez, E.; Losa, S.N.; Bracher, A.; Thoms, S.; Völker, C. Phytoplankton Light Absorption Impacted by Photoprotective Carotenoids in a Global Ocean Spectrally-Resolved Biogeochemistry Model. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003126. [Google Scholar] [CrossRef]
- van Leeuwe, M.; Sikkelerus, B.; Gieskes, W.W.C.; Stefels, J. Taxon-Specific Differences in Photoacclimation to Fluctuating Irradiance in an Antarctic Diatom and a Green Flagellate. Mar. Ecol. Prog. Ser. 2005, 288, 9–19. [Google Scholar] [CrossRef]
- Beg Paklar, G.; Vilibić, I.; Grbec, B.; Matić, F.; Mihanović, H.; Džoić, T.; Šantić, D.; Šestanović, S.; Šolić, M.; Ivatek-Šahdan, S.; et al. Record-Breaking Salinities in the Middle Adriatic during Summer 2017 and Concurrent Changes in the Microbial Food Web. Prog. Oceanogr. 2020, 185, 102345. [Google Scholar] [CrossRef]
- Solic, M.; Šantić, D.; Sestanovic, S.; Bojanić, N.; Grbec, B.; Jozić, S.; Vrdoljak Tomaš, A.; Ordulj, M.; Matić, F.; Kušpilić, G.; et al. Impact of Water Column Stability Dynamics on the Succession of Plankton Food Web Types in the Offshore Area of the Adriatic Sea. J. Sea Res. 2020, 158, 101860. [Google Scholar] [CrossRef]
- Francis, A.P.; Currie, D.J. A Globally Consistent Richness-Climate Relationship for Angiosperms. Am. Nat. 2003, 161, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.A.; Field, R.; Cornell, H.V.; Currie, D.J.; Guégan, J.-F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; O’Brien, E.M.; et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 2003, 84, 3105–3117. [Google Scholar] [CrossRef]
- Field, C.; Schmidt, G.; Koch, D. Solar and Climatic Effects on 10Be. Mem. Della Soc. Astron. Ital. 2005, 76, 805–809. [Google Scholar]
- Burgmer, T.; Hillebrand, H. Temperature Mean and Variance Alter Phytoplankton Biomass and Biodiversity in a Long-Term Microcosm Experiment. Oikos 2011, 120, 922–933. [Google Scholar] [CrossRef]
Station | Sampling Depth (m) | Parameter | |
---|---|---|---|
Coastal | ST103 | 0, 5, 10, 20 0, 5, 10, 20 | Community composition Total chl a |
ST101 | 0, 5, 10, 20, 30 0, 5, 10, 20, 30 0, 10, 30 | Community composition Total chl a Size fractionated chl a | |
Offshore | CJ008 | 0, 10, 30, 50, 75 0, 10, 30, 50, 75 | Community composition Total chl a |
CJ009 | 0, 10, 30, 50, 75, 100 0, 10, 30, 50, 75, 100 0, 10, 30, 50 | Community composition Total chl a Size fractionated chl a |
CLUSTER | DIAT | COCCO | DINO | PHYTO | FREQ (%) |
---|---|---|---|---|---|
BMU1 | 15.25 | 29.60 | 15.06 | 40.09 | 7 |
BMU2 | 29.37 | 4.22 | 4.09 | 62.32 | 22.7 |
BMU3 | 81.87 | 2.92 | 3.02 | 12.19 | 18.9 |
BMU4 | 54.84 | 4.41 | 3.16 | 37.60 | 22.6 |
BMU5 | 8.69 | 2.88 | 3.63 | 84.80 | 29.4 |
Phytoplankton Taxa | Group | Coastal | Offshore | ||||
---|---|---|---|---|---|---|---|
Season | IndVal | Significance | Season | IndVal | Significance | ||
Chaetoceros spp. | DIAT | spring | 0.583 | * | spring | 0.601 | ** |
Calyptrosphaera oblonga | COCCO | spring | 0.478 | ** | spring | 0.554 | ** |
Gonyaulax polygramma | DINO | spring | 0.421 | ** | spring | 0.290 | * |
Gymnodinium simplex | DINO | spring | 0.348 | ** | spring | 0.295 | * |
Amphidinium spp. | DINO | spring | 0.329 | ** | spring | 0.460 | ** |
Gymnodinium spp. | DINO | spring | 0.581 | ** | spring | 0.596 | ** |
Dinophysis sacculus | DINO | spring | 0.377 | ** | |||
Coccolithophyceae | COCCO | spring | 0.474 | * | |||
Cyclotella spp. | DIAT | spring | 0.450 | * | spring | 0.426 | ** |
Tripos furca | DINO | spring | 0.343 | * | spring | 0.441 | ** |
Protoperidinium tuba | DINO | spring | 0.312 | * | |||
Dinophyceae | DINO | spring | 0.472 | * | spring | 0.540 | * |
Gyrodinium fusiforme | DINO | spring | 0.432 | * | summer | 0.437 | * |
Scrippsiella trochoidea | DINO | summer | 0.375 | ** | |||
Proboscia alata | DIAT | summer | 0.639 | ** | spring | 0.488 | * |
Prorocentrum triestinum | DINO | summer | 0.510 | ** | |||
Phytoflagellates | summer | 0.648 | ** | ||||
Leptocylindrus danicus | DIAT | summer | 0.663 | ** | |||
Guinardia striata | DIAT | summer | 0.514 | ** | |||
Rhabdosphaera clavigera | COCCO | summer | 0.397 | * | summer | 0.478 | ** |
Dactyliosolen fragilissimus | DIAT | summer | 0.420 | * | |||
Oxytoxum laticeps | DINO | summer | 0.236 | * | spring | 0.308 | * |
Protoperidinium steinii | DINO | summer | 0.298 | * | spring | 0.281 | ** |
Karenia sp. | DINO | spring | 0.384 | ** | |||
Thalassionema nitzschioides | DIAT | autumn | 0.604 | ** | autumn | 0.392 | * |
Chaetoceros peruvianus | DIAT | autumn | 0.410 | ** | autumn | 0.245 | * |
Chaetoceros diversus | DIAT | autumn | 0.340 | * | |||
Dictyocha fibula | SILIC | autumn | 0.434 | ** | winter | 0.569 | ** |
Leptocylindrus mediterraneus | DIAT | autumn | 0.327 | ** | |||
Diploneis spp. | DIAT | autumn | 0.337 | ** | winter | 0.349 | ** |
Calciosolenia murrayi | COCCO | autumn | 0.323 | * | |||
Chaetoceros decipiens | DIAT | autumn | 0.368 | * | winter | 0.369 | * |
Thalassiosira spp. | DIAT | autumn | 0.284 | * | |||
Thalassionema frauenfeldii | DIAT | autumn | 0.365 | * | |||
Navicula spp. | DIAT | autumn | 0.434 | * | winter | 0.527 | ** |
Cylindrotheca closterium | DIAT | winter | 0.495 | ** | |||
Pleurosigma spp. | DIAT | winter | 0.503 | ** | |||
Calciosolenia brasiliensis | COCCO | winter | 0.501 | ** | |||
Dactyliosolen phuketensis | DIAT | winter | 0.408 | ** | winter | 0.243 | * |
Bacteriastrum spp. | DIAT | winter | 0.477 | ** | |||
Asterionellopsis glacialis | DIAT | winter | 0.523 | ** | winter | 0.478 | ** |
Chaetoceros curvisetus | DIAT | winter | 0.576 | ** | winter | 0.535 | ** |
Syracosphaera pulchra | COCCO | winter | 0.513 | ** | |||
Guinardia flaccida | DIAT | winter | 0.420 | * | |||
Rhizosolenia imbricata | DIAT | winter | 0.410 | * | spring | 0.423 | ** |
Chaetoceros affinis | DIAT | winter | 0.501 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skejić, S.; Milić Roje, B.; Matić, F.; Arapov, J.; Francé, J.; Bužančić, M.; Bakrač, A.; Straka, M.; Ninčević Gladan, Ž. Phytoplankton Assemblage over a 14-Year Period in the Adriatic Sea: Patterns and Trends. Biology 2024, 13, 493. https://doi.org/10.3390/biology13070493
Skejić S, Milić Roje B, Matić F, Arapov J, Francé J, Bužančić M, Bakrač A, Straka M, Ninčević Gladan Ž. Phytoplankton Assemblage over a 14-Year Period in the Adriatic Sea: Patterns and Trends. Biology. 2024; 13(7):493. https://doi.org/10.3390/biology13070493
Chicago/Turabian StyleSkejić, Sanda, Blanka Milić Roje, Frano Matić, Jasna Arapov, Janja Francé, Mia Bužančić, Ana Bakrač, Maja Straka, and Živana Ninčević Gladan. 2024. "Phytoplankton Assemblage over a 14-Year Period in the Adriatic Sea: Patterns and Trends" Biology 13, no. 7: 493. https://doi.org/10.3390/biology13070493
APA StyleSkejić, S., Milić Roje, B., Matić, F., Arapov, J., Francé, J., Bužančić, M., Bakrač, A., Straka, M., & Ninčević Gladan, Ž. (2024). Phytoplankton Assemblage over a 14-Year Period in the Adriatic Sea: Patterns and Trends. Biology, 13(7), 493. https://doi.org/10.3390/biology13070493