Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA-Seq
2.2. Overall Survival
2.3. Basic Normalization Methods
2.4. Extended Normalization Methods
2.5. Differential Expression Method
2.6. Up-Regulated Genes
2.7. Shannon Entropy
2.8. Statistics
3. Results
3.1. Step 1: Assessment of Normalization on a Gene-by-Gene or Population-Wide Basis
3.2. Step 2: Comparison of Normalization Methods and Differential Expression Determination Processes
3.3. Step 3: Generalization of the Degree-Entropy vs. 5-Year OS Relationship
4. Discussion
4.1. Biological Significance of Degree-Entropy
4.2. Comparison of Gene-by-Gene and Population-Wide Approaches
4.3. Comparison of Normalization Methods and Differential Expression Determination Processes
4.4. The Relationship of Degree-Entropy and 5-Year OS
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA sequencing: New technologies and applications in cancer research. J. Hematol. Oncol. 2020, 13, 166. [Google Scholar] [CrossRef]
- Kasi, P.M.; Smirnova, S.; Nikulin, V.; Brown, J.H.; Almog, N.; Ogloblina, A.; Yam, C.; Peguero, J.A.; Pandya, D.M.; Kerr, D.; et al. RNA sequencing as a confirmatory assay and its impact on patient care in multiple cancer types. J. Clin. Oncol. 2023, 41, e15058. [Google Scholar] [CrossRef]
- Nagalakshmi, U.; Wang, Z.; Waern, K.; Shou, C.; Raha, D.; Gerstein, M.; Snyder, M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320, 1344–1349. [Google Scholar] [CrossRef]
- Holt, R.A.; Jones, S.J. The new paradigm of flow cell sequencing. Genome Res. 2008, 18, 839–846. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral. Sci. 2021, 13, 36. [Google Scholar] [CrossRef]
- Everaert, C.; Luypaert, M.; Maag, J.L.V.; Cheng, Q.X.; Dinger, M.E.; Hellemans, J.; Mestdagh, P. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci. Rep. 2017, 7, 1559. [Google Scholar] [CrossRef]
- Koch, C.M.; Chiu, S.F.; Akbarpour, M.; Bharat, A.; Ridge, K.M.; Bartom, E.T.; Winter, D.R. A Beginner’s guide to analysis of RNA sequencing data. Am. J. Respir. Cell Mol. Biol. 2018, 59, 145–157. [Google Scholar] [CrossRef]
- Evans, C.; Hardin, J.; Stoebel, D.M. Selecting between-sample RNA-seq normalization methods from the perspective of their assumptions. Brief. Bioinform. 2018, 19, 776–792. [Google Scholar] [CrossRef]
- Gerard, D. Data-based RNA-seq simulations by binomial thinning. BMC Bioinform. 2020, 21, 206. [Google Scholar] [CrossRef]
- Conforte, A.J.; Tuszynski, J.A.; da Silva, F.A.B.; Carels, N. Signaling complexity measured by Shannon entropy and its application in personalized medicine. Front. Genet. 2019, 10, 930. [Google Scholar] [CrossRef]
- Pires, J.G.; da Silva, G.F.; Weyssow, T.; Conforte, A.J.; Pagnoncelli, D.; da Silva, F.A.B.; Carels, N. Galaxy and MEAN Stack to create a user-friendly workflow for the rational optimization of cancer chemotherapy. Front. Genet. 2021, 12, 624259. [Google Scholar] [CrossRef]
- Abrams, Z.B.; Johnson, T.S.; Huang, K.; Payne, P.R.O.; Coombes, K. A protocol to evaluate RNA sequencing normalization methods. BMC Bioinform. 2019, 20 (Suppl. S24), 679. [Google Scholar] [CrossRef]
- Roberts, A.; Trapnell, C.; Donaghey, J.; Rinn, J.L.; Pachter, L. Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 2011, 12, R22. [Google Scholar] [CrossRef]
- Dillies, M.A.; Rau, A.; Aubert, J.; Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime, C.; Marot, G.; Castel, D.; Estelle, J.; et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 2013, 14, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Everett, L.J.; Mav, D.; Phadke, D.P.; Balik-Meisner, M.R.; Shah, R.R. Impact of aligner, normalization method, and sequencing depth on TempO-seq accuracy. Bioinform. Biol. Insights 2022, 16, 11779322221095216. [Google Scholar] [CrossRef]
- Goll, J.B.; Bosinger, S.E.; Jensen, T.L.; Walum, H.; Grimes, T.; Tharp, G.K.; Natrajan, M.S.; Blazevic, A.; Head, R.D.; Gelber, C.E.; et al. The Vacc-SeqQC project: Benchmarking RNA-seq for clinical vaccine studies. Front. Immunol. 2023, 13, 1093242. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018, 19, 534. [Google Scholar] [CrossRef] [PubMed]
- Le, G.B.H.H.; Steenwyk, J.L.; Manske, N.; Smolin, M.; Abdulali, A.; Kamat, A.; Kanchana, R.; Giffin, K.; Andere, A.; Workman, K. Latch Verified Bulk-RNA Seq toolkit: A cloud-based suite of workflows for bulk RNA-seq quality control, analysis, and functional enrichment. bioRxiv 2022. [Google Scholar] [CrossRef]
- Etoh, K.; Nakao, M. A web-based integrative transcriptome analysis, RNAseqChef, uncovers the cell/tissue type-dependent action of sulforaphane. J. Biol. Chem. 2023, 299, 104810. [Google Scholar] [CrossRef]
- Scheepbouwer, C.; Hackenberg, M.; van Eijndhoven, M.A.J.; Gerber, A.; Pegtel, M.; Gómez-Martín, C. NORMSEQ: A tool for evaluation, selection and visualization of RNA-Seq normalization methods. Nucleic Acids Res. 2023, 51, W372–W378. [Google Scholar] [CrossRef] [PubMed]
- Costa-Silva, J.; Domingues, D.; Lopes, F.M. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE 2017, 12, e0190152. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wong, L.; Goh, W.W.B. How to do quantile normalization correctly for gene expression data analyses. Sci. Rep. 2020, 10, 15534. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cheng, L.; Wang, M.; Wu, R.; Li, P.; Li, B.; Zhang, Y.; Gu, Y.; Zhao, W.; Wang, C.; et al. Extensive increase of microarray signals in cancers calls for novel normalization assumptions. Comput. Biol. Chem. 2011, 35, 126–130. [Google Scholar] [CrossRef]
- Corchete, L.A.; Rojas, E.A.; Alonso-López, D.; De Las Rivas, J.; Gutiérrez, N.C.; Burguillo, F.J. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 2020, 10, 19737. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Love, M.I.; Davis, C.A.; Djebali, S.; Dobin, A.; Graveley, B.R.; Li, S.; Mason, C.E.; Olson, S.; Pervouchine, D.; et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 2016, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, N.K.; Sundaram, V.K.; Danthi, P.S.; Barakat, R.; Solomon, S.; Mondal, M.; Carre, I.; El Jalkh, T.; Padilla-Ferrer, A.; Grenier, J.; et al. RNA-seq is not required to determine stable reference genes for qPCR normalization. PLoS Comput. Biol. 2022, 18, e1009868. [Google Scholar] [CrossRef] [PubMed]
- Baik, B.; Yoon, S.; Nam, D. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. PLoS ONE 2020, 15, e0232271. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Ngai, J.; Speed, T.P.; Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 2014, 32, 896–902. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, Z.; Stanton, R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 2020, 26, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Carels, N.; Tilli, T.; Tuszynski, J.A. A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS ONE 2015, 10, e0115054. [Google Scholar] [CrossRef] [PubMed]
- Tilli, T.M.; Castro, C.S.; Tuszynski, J.A.; Carels, N. A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases. BMC Genom. 2016, 17, 639. [Google Scholar] [CrossRef]
- Barbosa-Silva, A.; Magalhães, M.; da Silva, G.F.; da Silva, F.A.B.; Carneiro, F.R.G.; Carels, N. A data science approach for the identification of molecular signatures of aggressive cancers. Cancers 2022, 14, 2325. [Google Scholar] [CrossRef] [PubMed]
- Breitkreutz, D.; Hlatky, L.; Rietman, E.; Tuszynski, J.A. Molecular signaling network complexity is correlated with cancer patient survivability. Proc. Natl. Acad. Sci. USA 2012, 109, 9209–9212. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Bullard, J.H.; Purdom, E.; Hansen, K.D.; Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinf. 2010, 11, 94. [Google Scholar] [CrossRef]
- Bolstad, B.M.; Irizarry, R.A.; Åstrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lichtenberg, T.; Hoadley, K.; Poisson, L.; Lazar, A.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018, 173, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Zenil, H.; Kiani, N.A.; Tegnér, J. A review of graph and network complexity from an algorithmic information perspective. Entropy 2018, 20, 551. [Google Scholar] [CrossRef] [PubMed]
- Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; del-Toro, N.; et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014, 42, D358–D363. [Google Scholar] [CrossRef]
- Jolicoeur, P. Bivariate allometry: Interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship. J. Theor. Biol. 1990, 144, 275–285. [Google Scholar] [CrossRef]
- Gandolfo, L.C.; Speed, T.P. RLE plots: Visualizing unwanted variation in high dimensional data. PLoS ONE 2018, 13, e0191629. [Google Scholar] [CrossRef]
- Yewdall, N.A.; Mason, A.F.; van Hest, J.C.M. The hallmarks of living systems: Towards creating artificial cells. Interface Focus 2018, 8, 20180023. [Google Scholar] [CrossRef]
- Chen, B.-S.; Li, C.-W. On the interplay between entropy and robustness of gene regulatory networks. Entropy 2010, 12, 1071–1101. [Google Scholar] [CrossRef]
- Zitnik, M.; Sosič, R.; Feldman, M.W.; Leskovec, J. Evolution of resilience in protein interactomes across the tree of life. Proc. Natl. Acad. Sci. USA 2019, 116, 4426–4433. [Google Scholar] [CrossRef]
- Crespi, E.; Burnap, R.; Chen, J.; Das, M.; Gassman, N.; Rosa, E.; Simmons, R.; Wada, H.; Wang, Z.Q.; Xiao, J.; et al. Resolving the rules of robustness and resilience in biology across scales. Integr. Comp. Biol. 2022, 61, 2163–2179. [Google Scholar] [CrossRef]
- Kharrazi, A.; Yu, Y.; Jacob, A.; Vora, N.; Fath, B.D. Redundancy, diversity, and modularity in network resilience: Applications for international trade and implications for public policy. Curr. Res. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef] [PubMed]
- Manke, T.; Demetrius, L.; Vingron, M. An entropic characterization of protein interaction networks and cellular robustness. J. R. Soc. Interface 2006, 3, 843–850. [Google Scholar] [CrossRef]
- Biggs, C.R.; Yeager, L.A.; Bolser, D.G.; Bonsell, C.; Dichiera, A.M.; Hou, Z.; Keyser, S.R.; Khursigara, A.J.; Lu, K.; Muth, A.F.; et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 2020, 11, e03184. [Google Scholar] [CrossRef]
- Yu, H.; Kim, P.M.; Sprecher, E.; Trifonov, V.; Gerstein, M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 2007, 3, e59. [Google Scholar] [CrossRef]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Mason, S.P.; Barabási, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001, 411, 41–42. [Google Scholar] [CrossRef]
- Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef]
- O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006, 66, 1500–1508. [Google Scholar] [CrossRef]
- Kennedy, S.A.; Jarboui, M.A.; Srihari, S.; Raso, C.; Bryan, K.; Dernayka, L.; Charitou, T.; Bernal-Llinares, M.; Herrera-Montavez, C.; Krstic, A.; et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat. Commun. 2020, 11, 499. [Google Scholar] [CrossRef]
- Bergholz, J.S.; Zhao, J.J. How compensatory mechanisms and adaptive rewiring have shaped our understanding of therapeutic resistance in cancer. Cancer Res. 2021, 81, 6074–6077. [Google Scholar] [CrossRef]
- Burkhardt, D.B.; San Juan, B.P.; Lock, J.G.; Krishnaswamy, S.; Chaffer, C.L. Mapping phenotypic plasticity upon the cancer cell state landscape using manifold learning. Cancer Discov. 2022, 12, 1847–1859. [Google Scholar] [CrossRef]
- Kar, G.; Gursoy, A.; Keskin, O. Human cancer protein-protein interaction network: A structural perspective. PLoS Comput. Biol. 2009, 5, e1000601. [Google Scholar] [CrossRef]
- Gurova, K. Can aggressive cancers be identified by the “aggressiveness” of their chromatin? Bioessays 2022, 44, e2100212. [Google Scholar] [CrossRef]
- McLennan, D.A. The concept of co-option: Why evolution often looks miraculous. Evol. Educ. Outreach 2008, 1, 247–258. [Google Scholar] [CrossRef]
- Cremers, C.G.; Nguyen, L.K. Network rewiring, adaptive resistance and combating strategies in breast cancer. Cancer Drug. Resist. 2019, 19, 1106–1126. [Google Scholar] [CrossRef] [PubMed]
- Teschendorff, A.E.; Banerji, C.R.; Severini, S.; Kuehn, R.; Sollich, P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 2015, 5, 9646. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Taylor, B.; Neal, J.W. Tumor evolution, heterogeneity, and therapy for our patients with advanced cancer: How far have we come? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, e8–e15. [Google Scholar] [CrossRef]
- La Rosa, S.; Rubbia-Brandt, L.; Scoazec, J.-Y.; Weber, A. Editorial: Tumor Heterogeneity. Front. Med. 2019, 6, 156. [Google Scholar] [CrossRef]
- Janiszewska, M. The microcosmos of intratumor heterogeneity: The space-time of cancer evolution. Oncogene 2020, 39, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gregorio, H.; Rojas-Jiménez, E.; Mejía-Gómez, J.C.; Díaz-Velásquez, C.; Quezada-Urban, R.; Vallejo-Lecuona, F.; de la Cruz-Montoya, A.; Porras-Reyes, F.I.; Pérez-Sánchez, V.M.; Maldonado-Martínez, H.A.; et al. The evolution of clinically aggressive triple-negative breast cancer shows a large mutational diversity and early metastasis to lymph nodes. Cancers 2021, 13, 5091. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, B.S.; Jang, J.Y.; Lee, Y.S.; Kim, H.J.; Roh, J.; Shin, Y.S.; Woo, H.G.; Kim, C.H. Single-cell transcriptome profiling of the stepwise progression of head and neck cancer. Nat. Commun. 2023, 14, 1055. [Google Scholar] [CrossRef] [PubMed]
- García-Montaño, L.A.; Licón-Muñoz, Y.; Martinez, F.J.; Keddari, Y.R.; Ziemke, M.K.; Chohan, M.O.; Piccirillo, S.G.M. Dissecting intra-tumor heterogeneity in the glioblastoma microenvironment using fluorescence-guided multiple sampling. Mol. Cancer Res. 2023, 21, 755–767. [Google Scholar] [CrossRef]
- Brady, N.J.; Bagadion, A.M.; Singh, R.; Conteduca, V.; Van Emmenis, L.; Arceci, E.; Pakula, H.; Carelli, R.; Khani, F.; Bakht, M.; et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat. Commun. 2021, 12, 3372. [Google Scholar] [CrossRef]
- Mullins, J.K.; Kaouk, J.H.; Bhayani, S.; Rogers, C.G.; Stifelman, M.D.; Pierorazio, P.M.; Tanagho, Y.S.; Hillyer, S.P.; Kaczmarek, B.F.; Chiu, Y.; et al. Tumor complexity predicts malignant disease for small renal masses. J. Urol. 2012, 188, 2072–2076. [Google Scholar] [CrossRef]
- Ciriello, G.; Miller, M.L.; Aksoy, B.A.; Senbabaoglu, Y.; Schultz, N.; Sander, C. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013, 45, 1127–1133. [Google Scholar] [CrossRef]
- Kwon, S.M.; Budhu, A.; Woo, H.G.; Chaisaingmongkol, J.; Dang, H.; Forgues, M.; Harris, C.C.; Zhang, G.; Auslander, N.; Ruppin, E.; et al. Functional genomic complexity defines intratumor heterogeneity and tumor aggressiveness in liver cancer. Sci. Rep. 2019, 9, 16930. [Google Scholar] [CrossRef] [PubMed]
- Kalasekar, S.M.; VanSant-Webb, C.H.; Evason, K.J. Intratumor heterogeneity in hepatocellular carcinoma: Challenges and opportunities. Cancers 2021, 13, 5524. [Google Scholar] [CrossRef]
- Wang, X.; Park, J.; Susztak, K.; Zhang, N.R.; Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 2019, 10, 380. [Google Scholar] [CrossRef]
- Yoder, O.C. Toxins in pathogenesis. Annu. Rev. Phythopathol. 1980, 18, 103–129. [Google Scholar] [CrossRef]
- Baltazar, C.A.; Guinle, M.I.B.; Caron, C.J.; Amaro, E., Jr.; Machado, B.S. Connective core structures in cognitive networks: The role of hubs. Entropy 2019, 21, 961. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Z.; Uversky, V.N.; Kurgan, L. Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int. J. Mol. Sci. 2017, 18, 2761. [Google Scholar] [CrossRef] [PubMed]
- van Wieringen, W.N.; van der Vaart, A.W. Statistical analysis of the cancer cell’s molecular entropy using high-throughput data. Bioinformatics 2011, 27, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Winterbach, W.; Mieghem, P.; Reinders, M.; Wang, H.; de Ridder, D. Topology of molecular interaction networks. BMC Syst. Biol. 2013, 7, 90. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Severini, S.; Caldas, C.; Teschendorff, A.E. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS Comput. Biol. 2015, 11, e1004115. [Google Scholar] [CrossRef]
Cancer Type | Abbreviation | OS 1 | GDC, n 2 |
---|---|---|---|
Bladder carcinoma 3 | BLCA | 20 | 17 |
Stomach adenocarcinoma | STAD | 38 | 27 |
Lung adenocarcinoma | LUAD | 40 | 57 |
Lung squamous cell carcinoma | LUSC | 47 | 48 |
Liver hepatocellular carcinoma | LIHC | 49 | 50 |
Kidney renal clear cell carcinoma | KIRC | 63 | 71 |
Colon adenocarcinoma 3 | COAD | 68 | 40 |
Kidney renal papillary cell carcinoma | KIRP | 75 | 31 |
Breast cancer | BRCA | 82 | 46 |
Uterine carcinoma 3 | UCS | 89 | 22 |
Thyroid cancer | THCA | 93 | 56 |
Prostate cancer | PRAD | 98 | 50 |
Normalization Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DEG Method | NN 1 | RPKM | TPM | UQ | |||||||
Cancer | 5-y. OS | DESeq2 | edgeR | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. |
STAD | 37.67 | 2.277 | 1.452 | 3.217 | 0.751 | 3.114 | 0.432 | 3.222 | 0.468 | 3.065 | 0.733 |
LUSC | 47.25 | 3.028 | 1.399 | 3.158 | 0.451 | 3.168 | 0.405 | 3.221 | 0.420 | 2.472 | 0.619 |
LIHC | 48.63 | 2.470 | 1.370 | 3.452 | 0.719 | 3.460 | 0.551 | 3.351 | 0.551 | 3.178 | 0.862 |
KIRC | 63.24 | 2.482 | 1.224 | 2.666 | 0.545 | 2.671 | 0.293 | 2.659 | 0.318 | 2.083 | 0.624 |
KIRP | 75.28 | 2.406 | 1.449 | 2.654 | 0.612 | 2.594 | 0.408 | 2.613 | 0.452 | 2.083 | 0.611 |
BRCA | 81.90 | 2.362 | 1.374 | 2.812 | 0.600 | 2.720 | 0.468 | 2.731 | 0.493 | 2.377 | 0.655 |
THCA | 93.02 | 1.905 | 1.084 | 2.354 | 0.577 | 2.166 | 0.340 | 2.133 | 0.360 | 2.002 | 0.711 |
PRAD | 97.83 | 1.445 | 0.738 | 2.172 | 0.764 | 2.097 | 0.526 | 2.073 | 0.534 | 1.945 | 0.720 |
Correl. | −0.722 | −0.720 | −0.910 | −0.914 | −0.942 | −0.814 | |||||
Av. | 0.627 | 0.428 | 0.449 | 0.692 | |||||||
St. Dev. | 0.109 | 0.087 | 0.081 | 0.084 | |||||||
Normalization methods | |||||||||||
Med | CPM | RLE | QN | TMM | |||||||
Cancer | 5-y. OS | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. |
STAD | 37.67 | 3.100 | 0.764 | 3.105 | 0.433 | 3.110 | 0.307 | 3.217 | 0.257 | 3.108 | 0.319 |
LUSC | 47.25 | 3.181 | 0.449 | 2.487 | 0.398 | 3.161 | 0.354 | 3.100 | 0.351 | 3.162 | 0.361 |
LIHC | 48.63 | 3.399 | 0.733 | 3.439 | 0.558 | 3.495 | 0.175 | 3.560 | 0.208 | 3.497 | 0.202 |
KIRC | 63.24 | 2.690 | 0.547 | 2.663 | 0.291 | 2.652 | 0.255 | 2.641 | 0.203 | 2.654 | 0.244 |
KIRP | 75.28 | 2.654 | 0.612 | 2.588 | 0.408 | 2.587 | 0.270 | 2.633 | 0.259 | 2.588 | 0.408 |
BRCA | 81.90 | 2.682 | 0.599 | 2.693 | 0.472 | 2.690 | 0.307 | 2.757 | 0.307 | 2.686 | 0.309 |
THCA | 93.02 | 2.214 | 0.561 | 2.152 | 0.338 | 2.154 | 0.311 | 2.285 | 0.259 | 2.157 | 0.325 |
PRAD | 97.83 | 2.046 | 0.770 | 2.070 | 0.528 | 2.095 | 0.380 | 2.150 | 0.406 | 2.098 | 0.379 |
Correl. | −0.926 | −0.777 | −0.911 | −0.898 | −0.911 | ||||||
Av. | 0.629 | 0.428 | 0.295 | 0.281 | 0.318 | ||||||
St. Dev. | 0.116 | 0.090 | 0.063 | 0.070 | 0.068 |
Normalization Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RPKM | TPM | Med | RLE | TMM | |||||||
Cancer | 5-y. OS | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. | Av. | St. Dev. |
BLCA | 20.00 | 3.103 | 0.368 | 3.146 | 0.398 | 2.847 | 0.641 | 3.023 | 0.288 | 3.018 | 0.286 |
STAD | 37.67 | 3.114 | 0.432 | 3.222 | 0.468 | 3.100 | 0.764 | 3.110 | 0.307 | 3.108 | 0.319 |
LUAD | 40.00 | 2.500 | 0.452 | 2.499 | 0.479 | 2.297 | 0.785 | 2.355 | 0.427 | 2.355 | 0.429 |
LUSC | 47.25 | 3.168 | 0.405 | 3.221 | 0.420 | 3.181 | 0.449 | 3.161 | 0.354 | 3.162 | 0.361 |
LIHC | 48.63 | 3.460 | 0.551 | 3.351 | 0.551 | 3.399 | 0.733 | 3.495 | 0.175 | 3.497 | 0.202 |
KIRC | 63.24 | 2.671 | 0.293 | 2.659 | 0.318 | 2.690 | 0.547 | 2.652 | 0.255 | 2.654 | 0.244 |
COAD | 68.45 | 2.943 | 0.360 | 2.943 | 0.390 | 2.650 | 1.191 | 2.878 | 0.329 | 2.887 | 0.308 |
KIRP | 75.28 | 2.594 | 0.408 | 2.613 | 0.452 | 2.654 | 0.612 | 2.587 | 0.270 | 2.588 | 0.408 |
BRCA | 81.90 | 2.720 | 0.468 | 2.731 | 0.493 | 2.682 | 0.599 | 2.690 | 0.307 | 2.686 | 0.309 |
UCS | 89.27 | 2.948 | 0.285 | 2.946 | 0.332 | 3.323 | 0.471 | 2.866 | 0.197 | 2.868 | 0.192 |
THCA | 93.02 | 2.166 | 0.340 | 2.133 | 0.360 | 2.214 | 0.561 | 2.154 | 0.311 | 2.157 | 0.325 |
PRAD | 97.83 | 2.097 | 0.526 | 2.073 | 0.534 | 2.046 | 0.770 | 2.095 | 0.380 | 2.098 | 0.379 |
Correl. | −0.643 | −0.674 | −0.397 | −0.602 | −0.598 | ||||||
Av. | 0.407 | 0.433 | 0.677 | 0.300 | 0.313 | ||||||
St. Dev. | 0.084 | 0.076 | 0.198 | 0.071 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carels, N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. Biology 2024, 13, 482. https://doi.org/10.3390/biology13070482
Carels N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. Biology. 2024; 13(7):482. https://doi.org/10.3390/biology13070482
Chicago/Turabian StyleCarels, Nicolas. 2024. "Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy" Biology 13, no. 7: 482. https://doi.org/10.3390/biology13070482
APA StyleCarels, N. (2024). Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. Biology, 13(7), 482. https://doi.org/10.3390/biology13070482