Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Fish
2.2. Management Methods
2.3. RNA Extraction, Library Construction, and Sequencing
2.4. Bioinformatics Analysis
2.5. Differentially Expressed Genes (DEGs)
2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
2.7. Real-Time PCR Validation Analysis for Differentially Expressed Genes
3. Results
3.1. Sequence Comparison Reference Statistics
3.2. Sample Relationship Analysis
3.3. Differentially Expressed Genes (DEGs)
3.4. GO and KEGG Pathway Enrichment Analysis
3.5. Validation of RNA-Seq Results with qRT-RCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierri, B.D.; Silva, A.D.; Cadorin, D.I.; Ferreira, T.H.; Mourino, J.L.P.; Filer, K.; Pettigrew, J.E.; Fracalossi, D.M. Different levels of organic trace minerals in diets for Nile tilapia juveniles alter gut characteristics and body composition, but not growth. Aquacult. Nutr. 2021, 27, 176–186. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, Y.P.; Jing, J.J.; Jiang, Q.; Xu, T.; Tu, Z.Y.; Li, W.M. Effect of copper exposure on metabolism behavior of juvenile grass carp (Ctenopharyngodon idella). J. Agro-Environ. Sci. 2016, 35, 261–265. [Google Scholar]
- Luo, J.; Zhu, T.; Wang, X.; Cheng, X.; Yuan, Y.; Jin, M.; Zhou, Q. Toxicological mechanism of excessive copper supplementation: Effects on coloration, copper bioaccumulation and oxidation resistance in mud crab Scylla paramamosain. J. Hazard. Mater. 2020, 395, 122600. [Google Scholar] [CrossRef] [PubMed]
- Zebral, Y.D.; Anni, I.S.A.; Afonso, S.B.; Abril, S.I.M.; Klein, R.D.; Bianchini, A. Effects of life-time exposure to waterborne copper on the somatotropic axis of the viviparous fish Poecilia vivipara. Chemosphere 2018, 203, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Dornelles Zebral, Y.; Roza, M.; da Silva Fonseca, J.; Gomes Costa, P.; Stürmer de Oliveira, C.; Gubert Zocke, T.; Bianchini, A. Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: Linking oxidative stress in the liver with reduced organismal thermal performance. Aquat. Toxicol. 2019, 209, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef] [PubMed]
- Mallatt, J. Fish gill structural changes induced by toxicants and other irritants: A statistical review. Can. J. Fish. Aquat. Sci. 1985, 42, 630–648. [Google Scholar] [CrossRef]
- Arellano, J.M.; Storch, V.; Sarasquete, C. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensi. Ecotoxicol. Environ. Saf. 1999, 44, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.B.; González De Canales, M.L.; Sarasquete, C. Quantification and histopathological alterations produced by sublethal concentrations of copper in Fundulus heteroclitus. Cienc. Mar. 1999, 25, 119–143. [Google Scholar] [CrossRef]
- Nunes, B.; Antunes, S.C.; Gomes, R.; Campos, J.; Braga, M.R.; Ramos, A.S.; Correia, A.T. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: Antioxidant effects, neurotoxicity and histological alterations. Arch. Environ. Contam. Toxicol. 2015, 68, 371–381. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tse, W.K.F.; Sun, J.; Zhang, H.M.; Lai, K.P.; Gu, J.; Qiu, J.W.; Kong, C.; Wong, C. iTRAQ-base quantitative proteomic analysis reveals acute hypoosmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica). J. Proteom. 2014, 105, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.J.; Chen, J.; Huang, Z.A.; Shi, Y.H.; Wang, F. Proteomic analysis on the alteration of protein expression in gills of ayu (Plecoglossus altivelis) associated with salinity change. Comp. Biochem. Physiol.—Part D Genom. Proteom. 2010, 5, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Shi, X.L.; Guo, H.Y.; Bai, Y.Z.; Shen, C.C.; Zhang, Y.P.; Wang, Z.F. Comparative transcriptome analysis of the gills of Procambarus clarkii provides novel insights into the immune-related mechanism of copper stress tolerance. Fish Shellfish. Immunol. 2020, 96, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.C.; Tang, X.; Zhang, C.X.; Gu, R.B.; Zheng, J.L.; Xu, P.; Le, G.W. First studies of embryonic and larval development of Coilia nasus (Engraulidae) under controlled conditions. Aquac. Res. 2011, 42, 593–601. [Google Scholar] [CrossRef]
- Xu, G.C.; Xu, P.; Gu, R.B.; Zhang, C.X.; Zheng, J.L. Feeding habits and growth characteristics of pond-cultured Coilia nasus fingerlings. Chin. J. Ecol. 2011, 30, 2014–2018. [Google Scholar] [CrossRef]
- Shan, L.L.; Yuan, X.Y.; Mao, C.P.; Ji, J.F. Characteristics of heavy metals in sediments from different sources and their ecological risks in the lower reaches of the Yangtze River. Environ. Sci. 2008, 29, 2399–2404. [Google Scholar]
- Herkovits, J.; Alejandra Helguero, L. Copper toxicity and copper-zinc interactions in amphibian embryos. Sci. Total Environ. 1998, 221, 1–10. [Google Scholar] [CrossRef]
- Nie, Z.J.; Xu, G.C.; Zhang, S.L.; Xu, P.; Gu, R.B. Acute effects of copper on survival of fingerlings, antioxidant enzyme activities in liver and structure of gill and liver of Coilia nasus. J. Fish. Sci. China 2014, 21, 161–168. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Ben Langmead, C.A.; Steven, L.S. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq read. Nat. Biotechnol. 2015, 33, 290. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Du, F.K.; Xu, G.C.; Gao, J.W.; Nie, Z.J.; Xu, P.; Gu, R.B. Transport-induced changes in hypothalamic–pituitary–interrenal axis gene expression and oxidative stress responses in Coilia nasus. Aquac. Res. 2016, 47, 3599–3607. [Google Scholar] [CrossRef]
- Pfafff, M.W. A new mathematical model for relative quantification in real-time RTPCR. Nucleic. Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
- Matsuo, A.Y.O.; Playle, R.C.; Val, A.L.; Wood, C.M. Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: Sodium uptake kinetics and unidirectional flux rates in hard and soft water. Aquat. Toxicol. 2004, 70, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Luo, Z.; Liu, X.; Song, Y.F.; Zhao, Y.H. Effects of Waterborne Chronic Copper Exposure on Hepatic Lipid Metabolism and Metal-Element Composition in Synechogobius hasta. Arch. Environ. Contam. Toxicol. 2012, 64, 301–315. [Google Scholar] [CrossRef]
- Ma, S.S.; Liu, Y.X.; Zhao, C.; Chu, P.; Yin, S.W.; Wang, T. Copper induced intestinal inflammation response through oxidative stress induced endoplasmic reticulum stress in Takifugu fasciatus. Aquat. Toxicol. 2023, 261, 106634. [Google Scholar] [CrossRef]
- Bu, X.Y.; Song, Y.; Pan, J.Y.; Wang, X.D.; Qin, C.J.; Jia, Y.Y.; Du, Z.Y.; Qin, J.G.; Chen, L.Q. Toxicity of chronic copper exposure on Chinese mitten crab (Eriocheir sinensis) and mitigation of its adverse impact by myo-inositol. Aquaculture 2022, 547, 737511. [Google Scholar] [CrossRef]
- Dubey, P.K.; Goyal, S.; Mishra, S.K.; Arora, R.; Mukesh, M.; Niranjan, S.K.; Kathiravan, P.; Kataria, R.S. Identification of polymorphism in fatty acid binding protein 3 (fabp3) gene and its association with milk fat traits in riverine buffalo (bubalus bubalis). Trop. Anim. Health Prod. 2016, 48, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, P.P.; Zhang, D.W.; Zheng, X.L.; Cayabyab, F.S.; Yin, W.D.; Tang, C.K. Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis 2014, 237, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Gimenez, L.; Becerril, S.; Moncada, R.; Valenti, V.; Ramirez, B.; Lancha, A.; Gurbindo, J.; Balaguer, I.; Cienfuegos, J.A.; Catalan, V.; et al. Sleeve gastrectomy reduces hepatic steatosis by improving the coordinated regulation of aquaglyceroporins in adipose tissue and liver in obese rats. Obes. Surg. 2015, 25, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zheng, H.O.; Liu, X.; Chi, S.Y.; Xu, Z.; Wang, Q.C. Nutrient sensing signaling functions as the sensor and regulator of immunometabolic changes in grass carp during Flavobacterium columnare infection. Fish Shellfish. Immunol. 2019, 93, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Sjoholm, K.; Palming, J.; Olofsson, L.E.; Gummesson, A.; Svensson, P.A.; Lystig, T.C.; Jennische, E.; Brandberg, J.; Torgerson, J.S.; Carlsson, B.; et al. A microarray search for genes predominantly expressed in human omental adipocytes: Adipose tissue as a major production site of serum amyloid A. J. Clin. Endocrinol. Metab. 2005, 90, 2233–2239. [Google Scholar] [CrossRef]
- Mammana, S.; Bramanti, P.; Mazzon, E.; Cavalli, E.; Basile, M.S.; Fagone, P.; Petralia, M.C.; Mccubrey, J.A.; Nicoletti, F.; Mangano, K. Preclinical evaluation of the pi3k/akt/mtor pathway in animal models of multiple sclerosis. Impact J. 2015, 9, 8263. [Google Scholar] [CrossRef] [PubMed]
- Miron, M.; Lasko, P.; Sonenberg, N. Signaling from akt to frap/tor targets both 4e-bp and s6k in drosophila melanogaster. Mol. Cell. Biol. 2003, 23, 9117. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.C.; Zhou, Q.C.; Zhang, X.S.; Zhu, T.T.; Guo, C.; Yang, Z.; Luo, J.X.; Yuan, Y.; Hu, X.Y.; Jiao, L.F.; et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus). Aquaculture 2022, 549, 737820. [Google Scholar] [CrossRef]
- He, Y.F.; Chi, S.Y.; Tan, B.P.; Dong, X.H.; Yang, Q.H.; Liu, H.Y.; Zhang, S.; Han, F.L.; Liu, D. dl-Methionine supplementation in a low-fishmeal diet affects the TOR/S6K pathway by stimulating ASCT2 amino acid transporter and insulin-like growth factor I in the dorsal muscle of juvenile cobia (Rachycentron canadum). Br. J. Nutr. 2019, 122, 734–744. [Google Scholar] [CrossRef]
- Lochhead, P.A.; Coghlan, M.; Rice, S.Q.; Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 2001, 50, 937–946. [Google Scholar] [CrossRef]
- Patel, S.; Doble, B.W.; Macaulay, K.; Sinclair, E.M.; Drucker, D.J.; Woodgett, J.R. Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol. Cell. Biol. 2008, 28, 6314–6328. [Google Scholar] [CrossRef]
- Fathy, S.A.; Mohamed, M.R.; Ali, M.A.M.; El-Helaly, A.E.; Alattar, A.T. Influence of il-6, il-10, ifn-γ and tnf-α genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers 2019, 24, 43–55. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.Y.; Lu, X.Y.; Xiao, J.; Feng, P.H.; Feng, H. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. Fish Shellfish. Immunol. 2019, 87, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Lv, M.; Qiu, X.; Wang, X.; Zhou, H. Ifn-γ manipulates nod1-mediated interaction of autophagy and Edwardsiella piscicida to augment intracellular clearance in fish. J. Immunol. 2021, 207, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, S.N.; Laghari, Z.A.; Huo, H.J.; Hou, J.; Huang, L.; Li, N.; Nie, P. Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi. Dev. Comp. Immunol. 2020, 105, 103604. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Huang, C.H.; Kato-Maeda, M.; Hopewell, P.C.; Daley, C.L.; Krensky, A.M.; Clayberger, C. Messenger RNA expression of IL-8, FOXP3, and IL-12β differentiates latent tuberculosis infection from disease. J. Immunol. 2007, 178, 3688–3694. [Google Scholar] [CrossRef]
- Caminero, A.; Comabella, M.; Montalban, X. Tumor necrosis factor alpha (tnf-α), anti-tnf-α and demyelination revisited: An ongoing story. J. Neuroimmunol. 2011, 234, 1–6. [Google Scholar] [CrossRef]
- Faliex, E.; Dasilva, C.; Simon, G.; Sasal, P. Dynamic expression of immune response genes in the sea bass, Dicentrarchus labrax, experimentally infected with the monogenean Diplectanum aequans. Fish Shellfish. Immunol. 2008, 24, 759–767. [Google Scholar] [CrossRef]
- Gasper, N.A.; Petty, C.C.; Schrum, L.W. Bacterium-induced CXCL10 secretion by osteoblasts can be mediated in part through toll-like receptor 4. Infect. Immun. 2002, 70, 4075–4082. [Google Scholar] [CrossRef]
DEGs | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Product Length |
---|---|---|---|
tgf-β | CTGGAGTCCCAGCACAAGAG | AAGTCGATGTAGAGCGAGCG | 107 |
tnf-α | GCTCTTCTGGCCATTGGACT | CTTCAGCCCTCCACCGAAAT | 243 |
pi3k | GGCACGACCCACAGAATGTA | GCGAGCAGAGTTATGCAACG | 209 |
tor | ACACACTAAGGGTGCTGACG | ATAGATCAAGGCCTGGGGGT | 218 |
il-1β | TGAGCCTGAGAGTGCAACTG | AAGTAGCCCTCGAACTTGGC | 262 |
stat1 | CACACACTGTGAGTTTGCCG | CCGGTAGTGAGGAGGGGTTA | 98 |
cxcl10 | TCCCACACCATAAAGTGCCC | TGGGCTCCAAGCTAACAGTG | 110 |
ifn-γ | GAACCGCTTGGTCATCTGGA | CCGACTCCTGTGCATCTGTT | 203 |
fabp3 | GGTTGGTGCAGAAACAGCAG | TACAAACGTTCTCACCGCCT | 119 |
gsk-3β | ACAACTGGTTTTCGGGGTGT | TCGACCTGACATGCTCCAAC | 148 |
lpl | GACTGCGCTTTATGAGCGTG | CCTCCAGCCAGTTGACGAAT | 143 |
aqp7 | AAGACCCACAGTGGCAGATG | GTAAATAGCAGCACGCAGCC | 251 |
Sample | Total | Unmapped (%) | Unique Mapped (%) | Multiple Mapped (%) | Total Mapped (%) |
---|---|---|---|---|---|
Control-1 | 45,755,186 | 7,188,744 (15.71%) | 36,865,026 (80.57%) | 1,701,416 (3.72%) | 38,566,442 (84.29%) |
Control-2 | 40,201,886 | 5,650,917 (14.06%) | 33,262,081 (82.74%) | 1,288,888 (3.21%) | 34,550,969 (85.94%) |
Control-3 | 45,713,032 | 5,819,616 (12.73%) | 38,160,705 (83.48%) | 1,732,711 (3.79%) | 39,893,416 (87.27%) |
Cu-1 | 46,098,414 | 5,732,074 (12.43%) | 39,153,301 (84.93%) | 1,213,039 (2.63%) | 40,366,340 (87.57%) |
Cu-2 | 44,001,906 | 7,079,494 (16.09%) | 35,726,863 (81.19%) | 1,195,549 (2.72%) | 36,922,412 (83.91%) |
Cu-3 | 42,779,158 | 5,988,628 (14.00%) | 35,566,904 (83.14%) | 1,223,626 (2.86%) | 36,790,530 (86.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Zhang, L.; Mi, H.; Teng, T.; Liang, H.; Ren, M. Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus. Biology 2024, 13, 476. https://doi.org/10.3390/biology13070476
Huang D, Zhang L, Mi H, Teng T, Liang H, Ren M. Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus. Biology. 2024; 13(7):476. https://doi.org/10.3390/biology13070476
Chicago/Turabian StyleHuang, Dongyu, Lu Zhang, Haifeng Mi, Tao Teng, Hualiang Liang, and Mingchun Ren. 2024. "Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus" Biology 13, no. 7: 476. https://doi.org/10.3390/biology13070476
APA StyleHuang, D., Zhang, L., Mi, H., Teng, T., Liang, H., & Ren, M. (2024). Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus. Biology, 13(7), 476. https://doi.org/10.3390/biology13070476