Determination of Atmospheric Pollen Grains by Volumetric Method in Sarıkamış District (Kars-Türkiye)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ünal, M. Bitki Angiosperm Embriyolojisi, 6th ed.; Nobel: Ankara, Türkiye, 2013. [Google Scholar]
- Isaac, S. To what extent do airborne fungal spores contribute to respiratory disease and allergic reactions in humans? Mycologist 1996, 10, 31–32. [Google Scholar] [CrossRef]
- D’amato, G.; Liccardi, G. Pollen-related allergy in the European Mediterranean area. Clin. Exp. Allergy. 1994, 24, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Bicakci, A.; Tosunoglu, A.; Altunoglu, M.K.; Saatcioglu, G.; Keser, A.M.; Ozgokce, F. An Aeropalynological survey in the city of Van, a high altitudinal region, East Anatolia-Turkey. Aerobiologia 2017, 33, 93–108. [Google Scholar] [CrossRef]
- Romano, B. Pollen monitoring in Perugia and information about aerobiological data. Aerobiologia 1988, 4, 20–26. [Google Scholar] [CrossRef]
- Latorre, F.; Bianchi, M.M. Relación entre aeropolen y vegetation arbórea en Mar del Plata (Argentina). Polen 1997, 8, 43–59. [Google Scholar]
- Benninghoff, W.S. Aerobiology and its significance to biogeography and ecology. Grana 1991, 30, 364–372. [Google Scholar] [CrossRef]
- Chanda, S. Presidential address: Aerobiology Science in progress. Grana 1991, 30, 5–8. [Google Scholar] [CrossRef]
- Schulz, H.; Brand, P.; Heyder, J. Particle deposition in the respiratory tract. Lung Biol. Health Dis. 2000, 143, 229–277. [Google Scholar]
- Lacey, J.; Dutkiewicz, J. Bioaerosols and occupational lung disease. J. Aerosol Sci. 1994, 25, 1371–1404. [Google Scholar] [CrossRef]
- Sicherer, S.H. Epidemiology of food allergy. J. Allergy Clin. Immunol. 2011, 127, 594–602. [Google Scholar] [CrossRef]
- Yılmaz, M.N. Flora of Kafkas University. Master’s Thesis, Kafkas University, Kars, Turkey, 2012. [Google Scholar]
- Özer, S.; Yılmaz, H.; Kaya, Y. Determination of the diversity of grassy and woody plant species in Sarıkamış/Turkey district and evaluation of their usability in planning and design attempts. Biol. Divers. Conserv. 2009, 2, 75–81. [Google Scholar]
- Bilgili, A. Determination of Vegetation and Forage Quality in Forest Gap Rangelands of Sarıkamış. Master’s Thesis, Atatürk University, Erzurum, Turkey, 2007. [Google Scholar]
- Available online: https://www.google.com.tr/maps/@40.5096087,38.3824065,6.31z/data=!5m1!1e4?hl=en&entry=ttu (accessed on 14 June 2024).
- Galán, C.; Cariñanos, P.; Alcázar, P.; Dominguez-Vilches, E. Spanish aerobiology network (REA) management andquality manual. Serv. Publicaciones Univ. Córdoba 2007, 184, 18–27. [Google Scholar]
- Andersen, T.B. A model to predict the beginning of the pollen season. Grana 1991, 30, 269–275. [Google Scholar] [CrossRef]
- Spieksma, F.T.M. Regional European pollen calendars. In Allergenic Pollen and Pollinosis in Europe; D’Amato, G., Spieksma, F.T.M., Bonini, S., Eds.; Blackwell Scientific Publications: Oxford, UK, 1991; pp. 49–65. [Google Scholar]
- Celenk, S.; Bicakci, A. Aerobiological investigation in Bitlis, Turkey. AAEM 2005, 12, 87–93. [Google Scholar] [PubMed]
- Akdogan, G.E. Determination of Atmospheric Pollen Grains in Kars Province by Volumetric Method. Ph.D. Thesis, Kafkas University, Kars, Turkey, 2017. [Google Scholar]
- Singh, N.; Singh, U.; Singh, D.; Daya, M.; Singh, V. Correlation of pollen counts and number of hospital visits of asthmatic and allergic rhinitis patients. Lung India 2017, 34, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Spieksma, F.T.M. Airborne pollen concentrations in Leiden, The Netherlands, 1977–1981: III. Herbs and weeds flowering in the summer. Grana 1986, 25, 47–54. [Google Scholar] [CrossRef]
- Cristofori, A.; Cristofolini, F.; Gottardini, E. Twenty years of aerobiological monitoring in Trentino (Italy): Assessment and evaluation of airborne pollen variability. Aerobiologia 2010, 26, 253–261. [Google Scholar] [CrossRef]
- Ribeiro, H.; Abreu, I. A 10-year survey of allergenic airborne pollen in the city of Porto (Portugal). Aerobiologia 2014, 30, 333–344. [Google Scholar] [CrossRef]
- Potoğlu-Erkara, İ.; Osoydan, K.; Karataş, M. Relationship between meteorological factors and airborne pollen grains of Kızıltepe (Mardin), Turkey. JABS 2016, 10, 33–40. [Google Scholar]
- İnce, A.; Kart, L.; Demir, R.; Özyurt, M.S. Allergenic pollen in the atmosphere of Kayseri, Turkey. Asian Pac. J. Allergy Immunol 2004, 22, 123–132. [Google Scholar]
- Friedman, J.; Barrett, S.C.H. A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int. J. Plant Sci. 2008, 169, 49–58. [Google Scholar] [CrossRef]
- Tosunoglu, A.; Saatcioglu, G.; Bekil, S.; Malyer, H.; Bicakci, A. Atmospheric pollen spectrum in Stone City, Mardin; the northern border of Mesopotamia/SE-Turkey. Environ. Monit. Assess. 2018, 190, 635. [Google Scholar] [CrossRef]
- Murray, M.G.; Scoffield, R.L.; Galán, C.; Villamil, C.B. Airborne pollen sampling in a wildlife reserve in the south of Buenos Aires province, Argentina. Aerobiologia 2007, 23, 107–117. [Google Scholar] [CrossRef]
- Adeniyi, T.A.; Adeonipekun, P.A.; Olowokudejo, J.D.; Akande, I.S. Airborne pollen records of Shomolu local government area in Lagos State. Not. Sci. Biol. 2014, 6, 428–432. [Google Scholar] [CrossRef]
- Rodriguez-Rajo, F.J.; Jato, V.; Aira, M.J. Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia 2003, 19, 213–225. [Google Scholar] [CrossRef]
- Çetin, E.; Altunoğlu, M.K.; Akdoğan, G.E.; Akpınar, S. Ardahan ili atmosferik polenlerinin belirlenmesi. KAUFBED 2015, 8, 80–94. [Google Scholar]
- Bıçakçı, A.; Akkaya, A.; Malyer, H.; Ünlü, M.; Sapan, N. Pollen calendar of Isparta, Turkey. Isr. J. Plant Sci. 2000, 48, 67–70. [Google Scholar] [CrossRef]
- Altunoğlu, M.K.; Şahin, Ü.; Karataş, M.; Yılmaz, S.; Akpınar, S.; Akdoğan, G.E.; Bıçakçı, A. Determination of allergenic pollens in the atmosphere of Trabzon province by volumetric method. JIST 2022, 12, 1364–1374. [Google Scholar]
- Kadocsa, E.; Juhász, M. Study of airborne pollen composition and allergen spectrum of hay fever patients in South Hungary (1990–1999). Aerobiologia 2002, 18, 203–209. [Google Scholar] [CrossRef]
- Singh, A.B.; Pandit, T.; Dahiya, P. Changes in airborne pollen concentrations in Delhi, India. Grana 2003, 42, 168–177. [Google Scholar] [CrossRef]
- Şafak, F. Investigation of Pollens and Spores in Aksaray Provincial Central Atmosphere by Volumetric Methods. Ph.D. Thesis, Ankara University, Ankara, Turkey, 2022. [Google Scholar]
- Bıcakcı, A.; Ergun, S.; Tatlidil, S.; Malyer, H.; Özyurt, S.; Akkaya, A.; Sapan, N. Airborne pollen grains of Afyon, Turkey. Acta Bot. Sin. 2002, 44, 1371–1375. [Google Scholar]
- Erkan, P.; Biçakçi, A.; Aybeke, M. Analysis of airborne pollen fall in Tekirdag, Turkey. Asthma Allergy Immunol. 2010, 8, 46–54. [Google Scholar]
- Temizer, İ.K.; Doğan, C.; Artac, H.; Reisli, I.; Pekcan, S. Pollen grains in the atmosphere of Konya (Turkey) and their relationship with meteorological factors, in 2008. Turk. J. Bot. 2012, 36, 344–357. [Google Scholar] [CrossRef]
- Subiza, J.; Jerezb, M.; Jiméneza, J.A.; Narganes, M.J.; Cabrera, M.; Varela, S.; Subiza, E. Allergenic pollen and pollinosis in Madrid. AAAAI 1995, 96, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, J.; Roure, J.M.; March, X. Aerobiology of Vigo, North-Western Spain: Atmospheric pollen spectrum and annual dynamics of the most important taxa, and their clinical importance for allergy. Aerobiologia 1998, 14, 155–163. [Google Scholar] [CrossRef]
- Kilic, M.; Altunoğlu, M.K.; Akpınar, S.; Akdoğan, G.E.; Taskın, E. Relationship between airborne pollen and skin prick test results in Elazığ, Turkey. Aerobiologia 2019, 35, 593–604. [Google Scholar] [CrossRef]
- Necib, A.; Boughediri, L. Airborne pollen in the El-Hadjar town (Algeria NE). Aerobiologia 2016, 32, 277–288. [Google Scholar] [CrossRef]
- Ščevková, J.; Dušička, J.; Mičieta, K. Aerobiological analysis of airborne pollen and fungal spore fall in Bratislava in 2015. Acta Bot. Univ. Comen. 2015, 50, 3–8. [Google Scholar]
- Alcázar, P.; Galán, C.; Cariñanos, P.; Domínguez-Vilches, E. A new adhesive for airborne pollen sampling in Spain. Aerobiologia 2003, 19, 57–61. [Google Scholar] [CrossRef]
- Camacho, I.C. Airborne pollen in Funchal City, (Madeira Island, Portugal)-First pollinic calendar and allergic risk assessment. AAEM 2015, 22, 608–613. [Google Scholar] [CrossRef]
- Mandal, J.; Chakraborty, P.; Roy, I.; Chatterjee, S.; Gupta-Bhattacharya, S. Prevalence of allergenic pollen grains in the aerosol of the city of Calcutta, India: A two year study. Aerobiologia 2008, 24, 151–164. [Google Scholar] [CrossRef]
- Potoglu-Erkara, I. Concentrations of airborne pollen grains in Sivrihisar (Eskisehir), Turkey. Environ. Mon. Assess. 2008, 138, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Bıçakcı, A.; Benlioğlu, O.N.; Erdoğan, D. Airborne pollen concentration in Kütahya. Turk. J. Bot. 1999, 23, 75–81. [Google Scholar]
- Erkara, I.P.; Pehlıvan, S.; Tokur, S. Concentrations of airborne pollen grains in Eskisehir City (Turkey). JABS 2007, 1, 33–42. [Google Scholar]
- Çeter, T.; Pinar, N.M.; Güney, K.; Yildiz, A.; Aşcı, B.; Smith, M. A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu, Turkey. Aerobiologia 2012, 28, 355–366. [Google Scholar] [CrossRef]
- Pinar, N.M.; Şakiyan, N.; İnceoğlu, Ö.; Kaplan, A. A one-year aeropalynological study at Ankara, Turkey. Aerobiologia 1999, 15, 307–310. [Google Scholar] [CrossRef]
- Fang, R.; Xie, S.; Wei, F. Pollen survey and clinical research in Yunnan, China. Aerobiologia 2001, 17, 165–169. [Google Scholar] [CrossRef]
- Docampo, S.; Recio, M.; Trigo, M.M.; Melgar, M.; Cabezudo, B. Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia 2007, 23, 189–199. [Google Scholar] [CrossRef]
- Altintaş, D.U.; Karakoç, G.B.; Yilmaz, M.; Pinar, M.; Kendirli, S.G.; Çakan, H. Relationship between pollen counts and weather variables in East-Mediterranean Coast of Turkey. J. Immunol. Res. 2004, 11, 87–96. [Google Scholar] [CrossRef]
- Tosunoglu, A.; Ilcim, A.; Malyer, H.; Bicakci, A. Aeropalynological spectrum of Hatay, Turkey, the eastern coast of the Mediterranean Sea. Aerobiologia 2018, 34, 557–572. [Google Scholar] [CrossRef]
- Tosunoglu, A.; Altunoglu, M.K.; Bicakci, A.; Kilic, O.; Gonca, T.; Yilmazer, I.; Saatcioglu, G.; Akkaya, A.; Celenk, S.; Canitez, Y.; et al. Atmospheric pollen concentrations in Antalya, South Turkey. Aerobiologia 2015, 31, 99–109. [Google Scholar] [CrossRef]
- Celenk, S.; Bicakci, A.; Tamay, Z.; Guler, N.; Altunoglu, M.K.; Canitez, Y.; Malyer, H.; Sapan, N. Airborne pollen in European and Asian parts of Istanbul. Environ. Monit. Assess. 2010, 164, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Tosunoğlu, A.; Yenigün, A.; Bicakci, A.; Eliacik, K. Airborne pollen content of Kuşadası. Turk. J. Bot. 2013, 37, 297–305. [Google Scholar] [CrossRef]
- Kobzar, V.N. Aeropalynological monitoring in Bishkek, Kyrgyzstan. Aerobiologia 1999, 15, 149–153. [Google Scholar] [CrossRef]
- Rogers, C.A. An aeropalynological study of metropolitan Toronto. Aerobiologia 1997, 13, 243–257. [Google Scholar] [CrossRef]
- Tsou, C.H.; Tseng, J.; Lin, R.F.; Hong, H.Y. Aeropalynological investigation in Taichung, Taiwan, 1993–1995. Bot. Bull. Acad. Sin. 1997, 38, 57–62. [Google Scholar]
- Ballero, M.; Maxia, A. Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia 2003, 19, 251–259. [Google Scholar] [CrossRef]
- Ribeiro, H.; Cunha, M.; Abreu, I. Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia 2003, 19, 21–27. [Google Scholar] [CrossRef]
- Gioulekas, D.; Balafoutis, C.; Damialis, A.; Papakosta, D.; Gioulekas, G.; Patakas, D. Fifteen-year records of airborne allergenic pollen and meteorological parame ters in Thessaloniki, Greece. Int. J. Biometeorol. 2004, 48, 128–136. [Google Scholar] [CrossRef]
- Türkmen, Y.; Ceter, T.; Pınar, N.M. Analysis of airborne pollen of Gümüşhane Province in northeastern Turkey and its relationship with meteorological parameters. Turk. J. Bot. 2018, 42, 687–700. [Google Scholar] [CrossRef]
- Çeter, T.; Özler, H.; Pınar, N.M. First Aeropalynological Survey on the Atmosphere of Sinop, Turkey. Kastamonu Univ. J. For. Fac. 2020, 20, 272–284. [Google Scholar] [CrossRef]
- Calderón-Ezquerro, M.C.; Guerrero-Guerra, C.; Martínez-López, B.; Fuentes-Rojas, F.; Téllez-Unzueta, F.; López-Espinoza, E.D.; Calderón-Segura, M.E.; Martínez-Arroyo, A.; Trigo-Pérez, M.M. First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia 2016, 32, 225–244. [Google Scholar] [CrossRef]
- Nikolaidis, C.; Katotomichelakis, M.; Nena, E.; Makris, M.; Tsakas, M.; Michopoulos, I.; Constantinidis, T.C.; Danielides, V. Seasonal variations of allergenic pollen in a Mediterranean region-Alexandroupolis, north-east Greece. Ann. Agric. Environ. Med. 2015, 22, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Badia, R.; Rapp, A.; Morales, C.; Sardinero, S.; Galán, C.; García-Mozo, H. Pollen spectrum and risk of pollen allergy in central Spain. Ann. Agric. Environ. Med. 2010, 17, 139–151. [Google Scholar] [PubMed]
2012 | 2013 | Mean | |||||
---|---|---|---|---|---|---|---|
Taxa | Total | % | Total | % | Total | % | |
Arboreal plants | Pinaceae | 4973 | 32.51 | 6319 | 27.95 | 5646 | 29.79 |
Cupressaceae/Taxaceae | 472 | 3.09 | 489 | 2.16 | 481 | 2.54 | |
Morus | 197 | 1.29 | 295 | 1.30 | 246 | 1.30 | |
Betula | 41 | 0.27 | 167 | 0.74 | 104 | 0.55 | |
Quercus | 71 | 0.46 | 72 | 0.32 | 72 | 0.38 | |
Salix | 80 | 0.52 | 54 | 0.24 | 67 | 0.35 | |
Fagus | 47 | 0.31 | 71 | 0.31 | 59 | 0.31 | |
Fraxinus | 42 | 0.27 | 39 | 0.17 | 41 | 0.21 | |
Carpinus | 2 | 0.01 | 63 | 0.28 | 33 | 0.17 | |
Acer | 49 | 0.32 | 0 | 0.00 | 25 | 0.13 | |
Populus | 42 | 0.27 | 4 | 0.02 | 23 | 0.12 | |
Rosaceae | 20 | 0.13 | 14 | 0.06 | 17 | 0.09 | |
Liqustrum | 17 | 0.11 | 23 | 0.10 | 20 | 0.11 | |
Juglans | 17 | 0.11 | 20 | 0.09 | 19 | 0.10 | |
Olea | 23 | 0.15 | 4 | 0.02 | 14 | 0.07 | |
Castanea | 16 | 0.10 | 1 | 0.00 | 9 | 0.04 | |
Alnus | 1 | 0.01 | 10 | 0.04 | 6 | 0.03 | |
Ericaceae | 5 | 0.03 | 5 | 0.02 | 5 | 0.03 | |
Corylus | 9 | 0.06 | 0 | 0.00 | 5 | 0.02 | |
Tilia | 2 | 0.01 | 0 | 0.00 | 1 | 0.01 | |
Ulmus | 2 | 0.01 | 0 | 0.00 | 1 | 0.01 | |
Arboreal plants | 6128 | 40.06 | 7650 | 33.83 | 6889 | 36.34 | |
Non-arboreal plants | Poaceae | 5482 | 35.83 | 11,426 | 50.53 | 8454 | 44.60 |
Artemisia | 492 | 3.22 | 638 | 2.82 | 565 | 2.98 | |
Amaranthaceae | 568 | 3.71 | 488 | 2.16 | 528 | 2.79 | |
Rumex | 452 | 2.95 | 460 | 2.03 | 456 | 2.41 | |
Urticaceae | 579 | 3.78 | 305 | 1.35 | 442 | 2.33 | |
Plantago | 284 | 1.86 | 548 | 2.42 | 416 | 2.19 | |
Boraginaceae | 216 | 1.41 | 315 | 1.39 | 266 | 1.40 | |
Fabaceae | 256 | 1.67 | 119 | 0.53 | 188 | 0.99 | |
Mercurialis | 217 | 1.42 | 129 | 0.57 | 173 | 0.91 | |
Caryophyllaceae | 117 | 0.76 | 110 | 0.49 | 114 | 0.60 | |
Apiaceae | 75 | 0.49 | 123 | 0.54 | 99 | 0.52 | |
Asteraceae | 97 | 0.63 | 80 | 0.35 | 89 | 0.47 | |
Lamiaceae | 51 | 0.33 | 98 | 0.43 | 75 | 0.39 | |
Ambrosia | 46 | 0.30 | 38 | 0.17 | 42 | 0.22 | |
Cyperaceae | 47 | 0.31 | 32 | 0.14 | 40 | 0.21 | |
Taraxacum | 34 | 0.22 | 34 | 0.15 | 34 | 0.18 | |
Humulus | 35 | 0.23 | 4 | 0.02 | 20 | 0.10 | |
Bellis | 32 | 0.21 | 0 | 0.00 | 16 | 0.08 | |
Brassicaceae | 27 | 0.18 | 0 | 0.00 | 14 | 0.07 | |
Xanthium | 18 | 0.12 | 6 | 0.03 | 12 | 0.06 | |
Carduus | 8 | 0.05 | 5 | 0.02 | 7 | 0.03 | |
Sanguisorba | 2 | 0.01 | 2 | 0.01 | 2 | 0.01 | |
Non-arboreal plants | 9135 | 59.71 | 14,960 | 66.16 | 12,048 | 63.56 | |
Unidentified | 35 | 0.23 | 1 | 0.00 | 18 | 0.09 | |
Total | 15,298 | 100.00 | 22,611 | 100.00 | 18,955 | 100.00 |
2012 | 2013 | ||
---|---|---|---|
Poaceae | Main pollen season | 1 June—31 August | 4 June—16 August |
Main pollen season length (days) | 91 | 73 | |
Maximum daily pollen/m3 | 12 July—358 | 1 July—719 | |
Number of days with risk | 26 | 36 | |
Pinaceae | Main pollen season | 30 May—12 July | 1 June—16 July |
Main pollen season length (days) | 43 | 45 | |
Maximum daily pollen/m3 | 17 June—812 | 27 June—687 | |
Number of days with risk | 16 | 27 | |
Artemisia | Main pollen season | 11 July—28 September | 10 July—23 September |
Main pollen season length (days) | 79 | 75 | |
Maximum daily pollen/m3 | 27 July—35 | 16 July—38 | |
Number of days with risk | 3 | 4 | |
Amaranthaceae | Main pollen season | 14 June—21 September | 9 June—11 September |
Main pollen season length (days) | 99 | 94 | |
Maximum daily pollen/m3 | 12 August—34 | 28 August—26 | |
Number of days with risk | 3 | 1 | |
Cupressaceae/Taxaceae | Main pollen season | 3 April—1 August | 24 April—11 September |
Main pollen season length (days) | 101 | 140 | |
Maximum daily pollen/m3 | 18 May—31 | 27 May—102 | |
Number of days with risk | - | 1 | |
Rumex | Main pollen season | 2 May—1 August | 30 May—25.07 |
Main pollen season length (days) | 91 | 56 | |
Maximum daily pollen/m3 | 17 June—33 | 1 July—87 | |
Number of days with risk | 1 | 2 | |
Urticaceae | Main pollen season | 23 May—27 August | 29 May—27 August |
Main pollen season length (days) | 96 | 90 | |
Maximum daily pollen/m3 | 22 July—26 | 18 July—18 | |
Number of days with risk | 8 | 1 | |
Plantago | Main pollen season | 8 June—12 September | 3 June—29 August |
Main pollen season length (days) | 96 | 87 | |
Maximum daily pollen/m3 | 11 July—10 | 1 July—34 | |
Number of days with risk | - | 1 | |
Boraginaceae | Main pollen season | 10 June—31 August | 9 June—23 August |
Main pollen season length (days) | 82 | 75 | |
Maximum daily pollen/m3 | 26 July—12 | 18 June—22 | |
Number of days with risk | 1 | 9 | |
Morus | Main pollen season | 9 August—22 August | 7 August—28 August |
Main pollen season length (days) | 13 | 21 | |
Maximum daily pollen/m3 | 9 August—39 | 11 August—42 | |
Number of days with risk | 3 | 4 |
Meteotological Data | Year | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Annual Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly Average Relative Humidity (%) | 2012 | 78.9 | 73.3 | 68.9 | 68.3 | 71.1 | 57.4 | 65.6 | 51.9 | 56.9 | 70.9 | 76.5 | 81.2 | 64.5 |
2013 | 75 | 79.2 | 70.1 | 65.7 | 65.8 | 64.2 | 65.6 | 61.8 | 55 | 60.6 | 77 | 71.1 | 67.6 | |
Monthly Average Wind Speed (m/sn) | 2012 | 1.4 | 1.3 | 1.9 | 1.6 | 1.2 | 2.5 | 3.7 | 1.6 | 1 | 0.9 | 1.1 | 1.2 | 1.6 |
2013 | 1.5 | 1.3 | 1.9 | 1.5 | 1.5 | 1.2 | 1.3 | 1.1 | 1.1 | 1.2 | 1.1 | 1.2 | 1.3 | |
Monthly Average Temperature (°C) | 2012 | −7.3 | −9.9 | −6.1 | 5.5 | 9.3 | 14.1 | 11.8 | 17.4 | 12.7 | 7.5 | 2.7 | −5.6 | 4.3 |
2013 | −7.3 | −5 | −1.2 | 5.1 | 9.3 | 12.6 | 15.7 | 15.3 | 11.8 | 4.4 | 1.6 | −9.7 | 4.4 | |
Monthly Total Precipitation (mm) | 2012 | 20.8 | 36.8 | 14 | 26.6 | 40 | 19 | 0.2 | 1.4 | 16.6 | 36.2 | 3.6 | 0 | 17.9 |
2013 | 0 | 0 | 0.4 | 74.6 | 36.8 | 50.6 | 4.8 | 3.8 | 19.8 | 23.4 | 1.4 | 3.2 | 18.2 |
Taxa | Daily Temperature | Daily Relative Humidity | Daily Wind Speed | Daily Precipitation |
---|---|---|---|---|
Daily Total Polen | 0.680 ** | −0.121 ** | 0.137 ** | −0.121 |
Poaceae | 0.580 ** | 0.015 | 0.182 ** | −0.170 |
Pinaceae | 0.154 ** | 0.013 | 0.039 | 0.094 |
Urticaceae | 0.404 ** | 0.088 | 0.247 ** | −0.019 |
Amaranthaceae | 0.311 ** | 0.025 | 0.071 | 0.130 |
Artemisia | 0.334 ** | −0.014 | 0.315 ** | −0.363 * |
Cupressaceae/Taxaceae | 0.121 | −0.202 ** | −0.093 | −0.081 |
Rumex | 0.212 ** | 0.089 | 0.081 | 0.157 |
Plantago | 0.150 * | 0.227 ** | 0.130 | −0.015 |
Boraginaceae | 0.096 | 0.205 ** | 0.088 | 0.189 |
Morus | 0.142 | −0.126 | −0.161 | −0.028 |
Area/Taxa | Poaceae | Pinaceae | Artemisia | Amaranthaceae | Cupressaceae/Taxaceae | Rumex | Urticaceae | Plantago | Boraginaceae | Morus |
---|---|---|---|---|---|---|---|---|---|---|
Sarıkamış | + | + | + | + | + | + | + | + | + | + |
Van, Türkiye | + | + | + | + | + | + | + | + | − | + |
Bitlis, Türkiye | + | + | − | + | + | + | + | + | − | + |
Kars, Türkiye | + | + | + | + | + | + | + | + | − | − |
Jaipur, India | + | − | − | + | − | − | - | − | − | − |
Leiden, Holland | − | − | + | + | − | + | + | + | − | − |
Trentino, Italy | + | + | + | + | + | − | + | − | − | − |
Mardin, Türkiye | + | + | + | + | + | − | + | + | − | + |
Konya, Türkiye | + | + | − | + | + | − | + | + | + | − |
Madrid, Spain | + | + | + | + | + | − | + | − | − | − |
Fucnhal City, Portugal | + | + | + | + | + | + | + | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpınar, S.; Altunoğlu, M.K. Determination of Atmospheric Pollen Grains by Volumetric Method in Sarıkamış District (Kars-Türkiye). Biology 2024, 13, 475. https://doi.org/10.3390/biology13070475
Akpınar S, Altunoğlu MK. Determination of Atmospheric Pollen Grains by Volumetric Method in Sarıkamış District (Kars-Türkiye). Biology. 2024; 13(7):475. https://doi.org/10.3390/biology13070475
Chicago/Turabian StyleAkpınar, Salih, and Mustafa Kemal Altunoğlu. 2024. "Determination of Atmospheric Pollen Grains by Volumetric Method in Sarıkamış District (Kars-Türkiye)" Biology 13, no. 7: 475. https://doi.org/10.3390/biology13070475
APA StyleAkpınar, S., & Altunoğlu, M. K. (2024). Determination of Atmospheric Pollen Grains by Volumetric Method in Sarıkamış District (Kars-Türkiye). Biology, 13(7), 475. https://doi.org/10.3390/biology13070475