Cardiac Arrhythmia Risk after Anti-Cancer Drug Exposure and Related Disease Molecular Imaging Outlook: A Systematic Review, Meta-Analysis, and Network Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Study Design
2.3. Search Strategy, Selection Criteria, and Data Extraction
2.4. Study Quality and Critical Appraisal
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Description of the Selected Studies
3.2. Bias Assessment
3.3. Meta-Analysis
3.3.1. Risk of Arrythmias
3.3.2. Risk of Supraventricular Arrhythmia
3.3.3. Risk of Arrythmia in Single-Arm Studies
3.4. Network Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Li, P.; Chen, Y.; Zheng, J.; Zhang, X.; Gao, H.F.; Zhang, L.; Wang, K. Pooled analysis of NeoCARH and NeoCART trials: Patient-reported outcomes in patients with early-stage breast cancer receiving platinum-based or anthracycline-based neoadjuvant chemotherapy. Support Care Cancer 2024, 32, 401. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Yeh, E.T. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol. 2014, 64, 938–945. [Google Scholar] [CrossRef]
- Singal, P.K.; Siveski-Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 1998, 339, 900–905. [Google Scholar] [CrossRef]
- Lotrionte, M.; Biondi-Zoccai, G.; Abbate, A.; Lanzetta, G.; D’Ascenzo, F.; Malavasi, V.; Peruzzi, M.; Frati, G.; Palazzoni, G. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am. J. Cardiol. 2013, 112, 1980–1984. [Google Scholar] [CrossRef]
- Martins-Teixeira, M.B.; Carvalho, I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020, 15, 933–948. [Google Scholar] [CrossRef]
- Horan, P.G.; McMullin, M.F.; McKeown, P.P. Anthracycline cardiotoxicity. Eur. Heart J. 2006, 27, 1137–1138. [Google Scholar] [CrossRef]
- Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef]
- Markman, T.M.; Nazarian, S. Arrhythmia and Electrophysiological Effects of Chemotherapy: A Review. Oncology 2016, 91, 61–68. [Google Scholar] [CrossRef]
- Grenier, M.; Lipshultz, S. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin. Oncol. 1998, 25, 72–85. [Google Scholar]
- Nabati, M.; Janbabai, G.; Esmailian, J.; Yazdani, J. Effect of Rosuvastatin in Preventing Chemotherapy-Induced Cardiotoxicity in Women With Breast Cancer: A Randomized, Single-Blind, Placebo-Controlled Trial. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 233–241. [Google Scholar] [CrossRef]
- Amioka, M.; Sairaku, A.; Ochi, T.; Okada, T.; Asaoku, H.; Kyo, T.; Kihara, Y. Prognostic Significance of New-Onset Atrial Fibrillation in Patients With Non-Hodgkin’s Lymphoma Treated With Anthracyclines. Am. J. Cardiol. 2016, 118, 1386–1389. [Google Scholar] [CrossRef]
- Kaukel, E.; Koschel, G.; Gatzemeyer, U.; Salewski, E. A phase II study of pirarubicin in malignant pleural mesothelioma. Cancer 1990, 66, 651–654. [Google Scholar] [CrossRef]
- Galetta, F.; Franzoni, F.; Cervetti, G.; Cecconi, N.; Carpi, A.; Petrini, M.; Santoro, G. Effect of epirubicin-based chemotherapy and dexrazoxane supplementation on QT dispersion in non-Hodgkin lymphoma patients. Biomed. Pharmacother. 2005, 59, 541–544. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, K.; Zhou, L.; Liu, D.; Li, X.; Han, X.; Tao, H.; Tse, G.; Zhang, H.; Liu, T. Electrocardiographic characteristics of diffuse large B-cell lymphoma patients treated with anthracycline-based chemotherapy. J. Electrocardiol. 2020, 60, 195–199. [Google Scholar] [CrossRef]
- Nakamae, H.; Tsumura, K.; Akahori, M.; Terada, Y.; Yamane, T.; Hayashi, T.; Saito, I.; Kaneko, M.; Okamoto, N.; Ichihara, Y.; et al. QT dispersion correlates with systolic rather than diastolic parameters in patients receiving anthracycline treatment. Intern. Med. 2004, 43, 379–387. [Google Scholar] [CrossRef]
- Shamai, S.; Rozenbaum, Z.; Merimsky, O.; Derakhshesh, M.; Moshkovits, Y.; Arnold, J.; Topilsky, Y.; Arbel, Y.; Laufer-Perl, M. Cardio-toxicity among patients with sarcoma: A cardio-oncology registry. BMC Cancer 2020, 20, 609. [Google Scholar] [CrossRef]
- Sulaiman, L.; Hesham, D.; Abdel Hamid, M.; Youssef, G. The combined role of NT-proBNP and LV-GLS in the detection of early subtle chemotherapy-induced cardiotoxicity in breast cancer female patients. Egypt. Heart J. 2021, 73, 20. [Google Scholar] [CrossRef]
- Kilickap, S.; Barista, I.; Akgul, E.; Aytemir, K.; Aksoy, S.; Tekuzman, G. Early and late arrhythmogenic effects of doxorubicin. South. Med. J. 2007, 100, 262–265. [Google Scholar] [CrossRef]
- Gupta, M.; Thaler, H.T.; Friedman, D.; Steinherz, L. Presence of prolonged dispersion of qt intervals in late survivors of childhood anthracycline therapy. Pediatr. Hematol. Oncol. 2002, 19, 533–542. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Rücker, G.; Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med. Res. Methodol. 2015, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey, S.G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Valagussa, P.; Zambetti, M.; Biasi, S.; Moliterni, A.; Zucali, R.; Bonadonna, G. Cardiac effects following adjuvant chemotherapy and breast irradiation in operable breast cancer. Ann. Oncol. 1994, 5, 209–216. [Google Scholar] [CrossRef]
- Martoni, A.; Guaraldi, M.; Piana, E.; Strocchi, E.; Petralia, A.; Busutti, L.; Preti, P.; Robustelli, G.; Raimondi, M.; Ferrara, G.; et al. Multicenter randomized clinical trial on high-dose epirubicin plus cis-platinum versus vinorelbine plus cis-platinum in advanced non small cell lung cancer. Lung Cancer 1998, 22, 31–38. [Google Scholar] [CrossRef]
- Fargeot, P.; Bonneterre, J.; Roché, H.; Lortholary, A.; Campone, M.; Van Praagh, I.; Monnier, A.; Namer, M.; Schraub, S.; Barats, J.C.; et al. Disease-free survival advantage of weekly epirubicin plus tamoxifen versus tamoxifen alone as adjuvant treatment of operable, node-positive, elderly breast cancer patients: 6-year follow-up results of the French adjuvant study group 08 trial. J. Clin. Oncol. 2004, 22, 4622–4630. [Google Scholar] [CrossRef]
- Owczuk, R.; Wujtewicz, M.A.; Sawicka, W.; Wujtewicz, M.; Swierblewski, M. Is prolongation of the QTc interval during isoflurane anaesthesia more prominent in women pretreated with anthracyclines for breast cancer? Br. J. Anaesth. 2004, 92, 658–661. [Google Scholar] [CrossRef]
- Fountzilas, G.; Kalofonos, H.P.; Dafni, U.; Papadimitriou, C.; Bafaloukos, D.; Papakostas, P.; Kalogera-Fountzila, A.; Gogas, H.; Aravantinos, G.; Moulopoulos, L.A.; et al. Paclitaxel and epirubicin versus paclitaxel and carboplatin as first-line chemotherapy in patients with advanced breast cancer: A phase III study conducted by the Hellenic Cooperative Oncology Group. Ann. Oncol. 2004, 15, 1517–1526. [Google Scholar] [CrossRef]
- Feher, O.; Vodvarka, P.; Jassem, J.; Morack, G.; Advani, S.H.; Khoo, K.S.; Doval, D.C.; Ermisch, S.; Roychowdhury, D.; Miller, M.A.; et al. First-line gemcitabine versus epirubicin in postmenopausal women aged 60 or older with metastatic breast cancer: A multicenter, randomized, phase III study. Ann. Oncol. 2005, 16, 899–908. [Google Scholar] [CrossRef]
- Hutchins, L.F.; Green, S.J.; Ravdin, P.M.; Lew, D.; Martino, S.; Abeloff, M.; Lyss, A.P.; Allred, C.; Rivkin, S.E.; Osborne, C.K. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: Treatment results of Intergroup Protocol INT-0102. J. Clin. Oncol. 2005, 23, 8313–8321. [Google Scholar] [CrossRef]
- Pignata, S.; Scambia, G.; Savarese, A.; Breda, E.; Scollo, P.; De Vivo, R.; Rossi, E.; Gebbia, V.; Natale, D.; Del Gaizo, F.; et al. Safety of a 3-weekly schedule of carboplatin plus pegylated liposomal doxorubicin as first line chemotherapy in patients with ovarian cancer: Preliminary results of the MITO-2 randomized trial. BMC Cancer 2006, 6, 202. [Google Scholar] [CrossRef]
- Nickel, A.C.; Patel, A.; Saba, N.F.; Leon, A.R.; El-Chami, M.F.; Merchant, F.M. Incidence of Cancer Treatment-Induced Arrhythmia Associated With Novel Targeted Chemotherapeutic Agents. J. Am. Heart Assoc. 2018, 7, e010101. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, A.; Sommer, F.; Ohlmann, C.H.; Schrader, A.J.; Olbert, P.; Goecke, J.; Engelmann, U.H. Prospective randomized Phase II trial of pegylated doxorubicin in the management of symptomatic hormone-refractory prostate carcinoma. Cancer 2004, 101, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Guo, C.; Cao, Y.; Xiao, J.; Fu, X.; Huang, J.; Huang, H.; Guan, Z.; Lin, T. Long-term results of pirarubicin versus doxorubicin in combination chemotherapy for aggressive non-Hodgkin’s lymphoma: Single center, 15-year experience. Int. J. Hematol. 2010, 91, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Vici, P.; Colucci, G.; Giotta, F.; Sergi, D.; Filippelli, G.; Perri, P.; Botti, C.; Vizza, E.; Carpino, A.; Pizzuti, L.; et al. A multicenter prospective phase II randomized trial of epirubicin/vinorelbine versus pegylated liposomal doxorubicin/vinorelbine as first-line treatment in advanced breast cancer. A GOIM study. J. Exp. Clin. Cancer Res. 2011, 30, 39. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.H.; Sutow, W.W.; Komp, D.M.; Starling, K.A.; Lyon, G.M., Jr.; George, S. Adriamycin in the treatment of childhood acute leukemia. A Southwest Oncology Group study. Cancer 1975, 36, 1223–1226. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Rozencweig, M.; Layard, M.; Slavik, M.; Muggia, F.M. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am. J. Med. 1977, 62, 200–208. [Google Scholar] [CrossRef]
- Bonfante, V.; Villani, F.; Bonadonna, G. Toxic and therapeutic activity of 4′-epi-doxorubicin. Tumori 1982, 68, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Antman, K.; Suit, H.; Amato, D.; Corson, J.; Wood, W.; Proppe, K.; Harmon, D.; Carey, R.; Greenberger, J.; Blum, R. Preliminary results of a randomized trial of adjuvant doxorubicin for sarcomas: Lack of apparent difference between treatment groups. J. Clin. Oncol. 1984, 2, 601–608. [Google Scholar] [CrossRef]
- Steinberg, J.S.; Cohen, A.J.; Wasserman, A.G.; Cohen, P.; Ross, A.M. Acute arrhythmogenicity of doxorubicin administration. Cancer 1987, 60, 1213–1218. [Google Scholar] [CrossRef]
- Umsawasdi, T.; Felder, T.B.; Jeffries, D.; Newman, R.A. Phase II study of 4-demethoxydaunorubicin in previously untreated extensive disease non-small cell lung cancer. Investig. New Drugs 1990, 8, S73–S78. [Google Scholar] [CrossRef]
- Fountzilas, G.; Skarlos, D.; Pavlidis, N.A.; Makrantonakis, P.; Tsavaris, N.; Kalogera-Fountzila, A.; Giannakakis, T.; Beer, M.; Kosmidis, P. High-dose epirubicin as a single agent in the treatment of patients with advanced breast cancer. A Hellenic Co-operative Oncology Group study. Tumori 1991, 77, 232–236. [Google Scholar] [CrossRef]
- Villani, F.; Galimberti, M.; Comazzi, R. Early cardiac toxicity of 4′-iodo-4′-deoxydoxorubicin. Eur. J. Cancer 1991, 27, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.L.; Jakacki, R.I.; Vetter, V.L.; Meadows, A.T.; Silber, J.H.; Barber, G. Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am. J. Cardiol. 1992, 70, 73–77. [Google Scholar] [CrossRef]
- Ando, M.; Yokozawa, T.; Sawada, J.; Takaue, Y.; Togitani, K.; Kawahigashi, N.; Narabayashi, M.; Takeyama, K.; Tanosaki, R.; Mineishi, S.; et al. Cardiac conduction abnormalities in patients with breast cancer undergoing high-dose chemotherapy and stem cell transplantation. Bone Marrow Transplant. 2000, 25, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Postma, A.; Elzenga, N.J.; Haaksma, J.; Schasfoort-Van Leeuwen, M.J.; Kamps, W.A.; Bink-Boelkens, M.T. Cardiac status in bone tumor survivors up to nearly 19 years after treatment with doxorubicin: A longitudinal study. Med. Pediatr. Oncol. 2002, 39, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.A.; Cooke, J.N. Cardiac effects of anthracycline treatment and their implications for aeromedical certification. Aviat. Space Environ. Med. 2003, 74, 1003–1008. [Google Scholar] [PubMed]
- Chen, C.; Heusch, A.; Donner, B.; Janssen, G.; Göbel, U.; Schmidt, K.G. Present risk of anthracycline or radiation-induced cardiac sequelae following therapy of malignancies in children and adolescents. Klin. Padiatr. 2009, 221, 162–166. [Google Scholar] [CrossRef]
- Ricevuto, E.; Cocciolone, V.; Mancini, M.; Cannita, K.; Romano, S.; Bruera, G.; Pelliccione, M.; Adinolfi, M.I.; Ciccozzi, A.; Bafile, A.; et al. Dose-dense nonpegylated liposomal Doxorubicin and docetaxel combination in breast cancer: Dose-finding study. Oncologist 2015, 20, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Markman, T.M.; Ruble, K.; Loeb, D.; Chen, A.; Zhang, Y.; Beasley, G.S.; Thompson, W.R.; Nazarian, S. Electrophysiological effects of anthracyclines in adult survivors of pediatric malignancy. Pediatr. Blood Cancer 2017, 64, e26556. [Google Scholar] [CrossRef]
- Geisberg, C.A.; Sawyer, D.B. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr. Hypertens. Rep. 2010, 12, 404–410. [Google Scholar] [CrossRef]
- Shankar, S.M.; Marina, N.; Hudson, M.M.; Hodgson, D.C.; Adams, M.J.; Landier, W.; Bhatia, S.; Meeske, K.; Chen, M.H.; Kinahan, K.E.; et al. Monitoring for cardiovascular disease in survivors of childhood cancer: Report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics 2008, 121, e387–e396. [Google Scholar] [CrossRef] [PubMed]
- Keller, G.A.; Ponte, M.L.; Di Girolamo, G. Other drugs acting on nervous system associated with QT-interval prolongation. Curr. Drug Saf. 2010, 5, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Oster, M.W.; Rakowski, T.J. Myocardial injury immediately following adriamycin administration. Med. Pediatr. Oncol. 1981, 9, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.S.; Shematek, J.P.; Leventhal, B.G.; Kan, J.S. QT interval prolongation associated with anthracycline cardiotoxicity. J. Pediatr. 1984, 105, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, R.J.; Hong, W.K. Epirubicin: A review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J. Clin. Oncol. 1986, 4, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Aljayeh, M.; Saiyad, S.; Ali, R.; Curtis, A.B. Introducing a new entity:chemotherapy-induced arrhythmia. Europace 2009, 11, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Misbah, R.; Donnellan, E.; Alkharabsheh, S.; Hou, Y.; Cheng, F.; Crookshanks, M.; Watson, C.J.; Toth, A.J.; Houghtaling, P.; et al. Impact of timing of atrial fibrillation, CHA2DS2-VASc score and cancer therapeutics on mortality in oncology patients. Open Heart 2020, 7, e001412. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Psaltis, P.J.; Mackenzie, L.; Kelly, D.J.; Carbone, A.; Worthington, M.; Nelson, A.J.; Zhang, Y.; Kuklik, P.; Wong, C.X.; et al. Atrial remodeling in an ovine model of anthracycline-induced nonischemic cardiomyopathy: Remodeling of the same sort. J. Cardiovasc. Electrophysiol. 2011, 22, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ramond, A.; Sartorius, E.; Mousseau, M.; Ribuot, C.; Joyeux-Faure, M. Erythropoietin pretreatment protects against acute chemotherapy toxicity in isolated rat hearts. Exp. Biol. Med. 2008, 233, 76–83. [Google Scholar] [CrossRef]
- Porta-Sánchez, A.; Gilbert, C.; Spears, D.; Amir, E.; Chan, J.; Nanthakumar, K.; Thavendiranathan, P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J. Am. Heart Assoc. 2017, 6, e007724. [Google Scholar] [CrossRef]
- Vloka, M.E.; Steinberg, J.S. QT dispersion: Current and future clinical role. J. Invasive Cardiol. 1996, 8, 363–369. [Google Scholar]
- Barr, C.S.; Naas, A.; Freeman, M.; Lang, C.C.; Struthers, A.D. QT dispersion and sudden expected death in chronic heart failure. Lancet 1994, 343, 327–329. [Google Scholar] [CrossRef]
- Arbel, Y.; Swartzon, M.; Justo, D. QT prolongation and Torsades de Pointes in patients previously treated with anthracyclines. Anticancer Drugs 2007, 18, 493–498. [Google Scholar] [CrossRef]
- Ohtani, K.; Fujino, T.; Ide, T.; Funakoshi, K.; Sakamoto, I.; Hiasa, K.I.; Higo, T.; Kamezaki, K.; Akashi, K.; Tsutsui, H. Recovery from left ventricular dysfunction was associated with the early introduction of heart failure medical treatment in cancer patients with anthracycline-induced cardiotoxicity. Clin. Res. Cardiol. 2019, 108, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Postma, A.; Bink-Boelkens, M.T.; Beaufort-Krol, G.C.; Kengen, R.A.; Elzenga, N.J.; Schasfoort-van Leeuwen, M.J.; Schraffordt koops, H.; Kamps, W.A. Late cardiotoxicity after treatment for a malignant bone tumor. Med. Pediatr. Oncol. 1996, 26, 230–237. [Google Scholar] [CrossRef]
Classification | Drugs |
---|---|
First-generation anthracycline drugs | Doxorubicin, epirubicin, idarubicin, pirarubicin, valrubicin, aclarubicin, aclacinomycin, daunorubicin, cerubidine, mithracin, plicamycin |
Second-generation anthracycline drugs | Anthracyclines, annamycin, sabarubicin, zorubicin |
Third-generation anthracycline drugs | Aldoxorubicin, GPX-150, SP1049C, DOXO-EMCH.A |
Unclassified anthracycline drugs | Valstar, zoptarelin doxorubicin, luteinizing hormone-releasing hormone, 5-imino-13-deoxydoxorubicin |
First Author and Year | Study Design | Geographical Location | Funding Sources | Duration of Allocation | Race | Cancer | Duration of Treatment | Duration of Follow-Up | Number (T/C) | Mean Age (Years) | Gender (Male/Female) | Anthracyclines | Treatment | Control | Quality Scores * | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | C | T | C | ||||||||||||||
Valagussa 1994 [23] | Cohort study | Italy | Not mentioned | Not mentioned | Not mentioned | Breast cancer | 21-day cycle, 4 cycles | 8 years | 501/324 | Not applicable | Not applicable | 0/501 | 0/324 | Doxorubicin | Doxorubicin + cyclophosphamide + fluorouracil + methotrexate | Cyclophosphamide + fluorouracil + methotrexate | 6 |
Martoni 1998 [24] | RCT | Italy | Not mentioned | August 1992 to February 1996 | Not mentioned | Advanced NSCLC | 21-day cycle, 12 cycles | Not mentioned | 102/110 | 62 | 61 | 86/16 | 93/17 | Epirubicin | Epirubicin | Vinorelbine | Some concerns |
Fargeot 2004 [25] | RCT | French | Pfizer, France | March 1991 to April 2001 | Not mentioned | Breast cancer | 3 years | 72 months | 174/164 | 69 | 69 | 0/174 | 0/164 | Epirubicin | Epirubicin + tamoxifen | Tamoxifen | Some concerns |
Owczuk 2004 [26] | Cohort study | Poland | Not mentioned | Not mentioned | Not mentioned | Breast cancer | 33.1 days | Not mentioned | 20/20 | 52.2 | 52.8 | 0/20 | 0/20 | Doxorubicin, epirubicin | Anthracyclines (doxorubicin, epirubicin) | Non-anthracycline antineoplastic drugs | 6 |
Fountzilas 2004 [27] | RCT | Greece | Hellenic Cooperative Oncology Group | January 1999 to April 2002 | Not mentioned | Breast cancer | 21-day cycle, 6 cycles | 23.5 months | 162/160 | 59 | 59 | 0/162 | 0/160 | Epirubicin | Epirubicin + paclitaxel | Paclitaxel + carboplatin | Low |
Feher 2005 [28] | RCT | Brazil, Czech Republic, Germany, Singapore, USA, Germany | Eli Lilly and Company | Not mentioned | Not mentioned | Breast cancer | 28-day cycle, 12 cycles | 19.1 months | 199/198 | 68 | 69 | 0/199 | 0/198 | Epirubicin | Epirubicin | Gemcitabine | Some concerns |
Hutchins 2005 [29] | RCT | USA | National Cancer Institute, Department of Health and Human Services | July 1989 to February 1993 | White, non-Hispanic; Black, non-Hispanic; Hispanic; others | Breast cancer | 28-day cycle, 6 cycles | 2.5 years | 669/676 | 48 | 48 | 0/669 | 0/676 | Doxorubicin | Doxorubicin + cyclophosphamide + fluorouracil | Methotrexate + cyclophosphamide + fluorouracil | Some concerns |
Pignata 2011 [30] | RCT | Italy | Associazione Italiana per la Ricerca sul Cancro | January 2003 to July 2004 | Not mentioned | Ovarian cancer | 21-day cycle, 6 cycles | Not mentioned | 403/408 | 57 | 57 | 0/403 | 0/408 | Pegylated liposomal doxorubicin | Pegylated liposomal doxorubicin 30 mg/m2 + carboplatin | Carboplatin + pegylated liposomal doxorubicin | Low |
Nickel 2018 [31] | Cohort study | USA | Not mentioned | January 2010 to December 2015 | Not mentioned | Not specified | Not mentioned | 6 months | 2075/2951 | 55.3 ± 13.99 | 59.1 ± 13.8 | 1099/976 | 1309/1642 | Doxorubicin, epirubicin, daunorubicin | Anthracyclines (doxorubicin, epirubicin, daunorubicin) | Non-anthracycline antineoplastic drugs (bevacizumab, nivolumab, pembrolizumab, ibrutinib, imatinib, ipilimumab, erlotinib, lapatinib, sorafenib, sunitinib, trastuzumab, vemurafenib) | 5 |
Heidenreich 2004 [32] | RCT | Germany | Not mentioned | Not mentioned | Not mentioned | Prostate carcinoma | 24 weeks | 6.5 months | 22/26 | 69.3 ± 11.5 | 67.5 ± 11.2 | 22/0 | 26/0 | Pegylated liposomal doxorubicin | Pegylated liposomal doxorubicin 25 mg/m2 | Pegylated liposomal doxorubicin 50 mg/m2 | Some concerns |
Zhai 2010 [33] | Cohort study | China | Guangdong National Science | 1987–2003 | Not mentioned | Non-Hodgkin’s lymphoma | Not mentioned | 5 years | 205/254 | Not applicable | Not applicable | 126/79 | 173/81 | Pirarubicin, doxorubicin | Pirarubicin, cyclophosphamide, vincristine, and prednisone | doxorubicin, cyclophosphamide, vincristine, and prednisone | 6 |
Vici 2011 [34] | RCT | Italy | Not mentioned | March 2003 to November 2005 | Not mentioned | Breast cancer | 21-day cycle, 8 cycles, 28-day cycle, 8 cycles | Not mentioned | 54/50 | 63 | 61 | 0/54 | 0/50 | Epirubicin, pegylated liposomal doxorubicin | Epirubicin, vinorelbine | Pegylated liposomal doxorubicin 40 mg/m2, vinorelbine | Low |
First Author and Year | Geographical Location | Funding Sources | Duration of Allocation | Cancer | Duration of Follow-Up | Number | Mean Age (Years) | Gender (Male/Female) | Carrier/Tested Subjects | Frequencies% | Type of Arrhythmia | Types of Anthracycline |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abdelsalam 1974 [35] | USA | The National Cancer Institute | Not mentioned | Acute leukemia | Not applicable | 61 | 6.6 | 43/23 | 16/61 | 26.23 | (1) (2) | Adriamycin |
Daniel 1977 [36] | USA | The Investigational Drug Branch and Cancer Therapy Evaluation Program, Division of Cancer Treatment | Not mentioned | Not applicable | 80 days | 5613 | Not applicable | Not mentioned | 45/5613 | 0.80 | (1) (2) (3) (4) (6) (7) | Daunomycin |
Bonfante 1982 [37] | Italy | Farmitalia Carlo Erba | Not applicable | Various types of advanced malignancy | Not applicable | 108 (100) | 50 | 61/47 | 24/100 | 24.00 | (1) (2) (7) | 4′-epi-doxorubicin |
Antman 1984 [38] | USA | Not mentioned | 1978–1982 | IIB -IVA sarcomas | 5 y ears | 20 | Not mentioned | Not mentioned | 1/20 | 5.00 | (2) | Doxorubicin |
Jonathan 1987 [39] | USA | Not mentioned | Not mentioned | Not applicable | 16 days | 29 | 57 ± 16 | 16/13 | 9/29 | 31.03 | (2) | Doxorubicin |
Kaukel 1990 [12] | USA | Not mentioned | Not mentioned | Malignant pleural mesothelioma | August 1985 to November 1986 | 35 | 68.5 | 29/6 | 4/35 | 11.43 | (6) (7) | Pirarubicin |
Umsawasdi 1990 [40] | USA | Adria Laboratories, Columbus, Ohio | Not mentioned | Various types of cancer | 73 weeks | 15 | 58 | 10/5 | 3/15 | 20.00 | (5) (6) | 4-demethoxydaunorubicin |
Fountzilas 1991 [41] | Greece | Not mentioned | February 1988 to December 1989 | Breast cancer | Not mentioned | 52 (16) | 52 | 0/52 | 2/16 | 12.50 | (7) | Epirubicin |
Villani 1991 [42] | Italy | Not mentioned | Not mentioned | Gastrointestinal carcinomas, kidney carcinomas, non-small-cell lung carcinomas, unknown primary carcinomas, hepatocellular carcinomas, breast cancer, melanomas, sarcomas, ovarian carcinoma, non-Hodgkin lymphoma | 21 days | 35 | 47 | 24/11 | 12/35 | 34.29 | (1) (6) (7) | 4’-iodo-4’-deoxydoxorubicin |
Larsen 1992 [43] | USA | National Institutes of Health Research Career Development | Not mentioned | Acute lymphoblastic leukemia, acute nonlymphocytic leukemia, Hodgkin’s disease, non-Hodgkin’s lymphoma, Wills tumor, neuroblastoma, rhabdomyosarcoma, osteosarcoma, Ewing sarcoma, other sarcomas, teratoma, central nervous system tumors | 3 months–21 years | 110 | 15 ± 4 | Not mentioned | 25/110 | 22.73 | (3) (6) (7) | Anthracyclines |
Ando 2000 [44] | Japan | The Ministry of Health and Welfare of Japan | March 1990 and August 1998 | Breast cancer | Not applicable | 39 | 46 | 0/39 | 11/39 | 28.21 | (1) | Doxorubicin |
Gupta 2002 [19] | USA | Not mentioned | Not mentioned | Non-Hodgkin lymphoma, Hodgkin lymphoma, rhabdomyosarcoma, osteogenic sarcoma, acute lymphocytic leukemia, Ewing sarcoma, Wilms tumor, hemangiopericytoma | Not mentioned | 64 | 11 ± 5 | 34/30 | 17/64 | 26.56 | (3) (7) | Anthracyclines |
Postma 2002 [45] | The Netherlands | Not mentioned | Not applicable | Bone tumor | 14.1 years | 39 | 32.5 | 25/14 | 12/29 | 41.38 | (1) (2) | Anthracyclines |
Sally 2003 [46] | UK | Not mentioned | Not mentioned | Not applicable | Not applicable | 14 | Not mentioned | 13/1 | 9/14 | 64.29 | (6) | Anthracyclines |
Pignata 2006 [30] | Italy | Associazione Italiana per la Ricerca sul Cancro | January 2003 to July 2004 | Ovarian cancer | 21-day cycle, 6 cycles | 50 | 60 | 0/50 | 2/50 | 4.00 | Not applicable | Pegylated liposomal doxorubicin |
Chen 2009 [47] | Germany | Not mentioned | 2000–2004 | Malignant tumor | 3.2–8 years | 168 | 8.1 ± 5.3 | 110/58 | 4/168 | 2.38 | (6) | Anthracyclines |
Ricevuto 2015 [48] | Italy | Not mentioned | Not mentioned | Breast cancer | Not mentioned | 24 | Not mentioned | 0/24 | 14/24 | 58.33 | (6) (7) | Nonpegylated liposomal doxorubicin |
Markman 2017 [49] | USA | Not mentioned | 1984–2015 | Various types of cancer | 14 ± 7 y | 134 | 30.4 ± 5.6 | 70/64 | 17/134 | 12.69 | (3) (7) | Anthracyclines |
Medication | Rank Probabilities a | ||||||
---|---|---|---|---|---|---|---|
Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | |
Anthracyclines | 0.071 | 0.370 | 0.274 | 0.186 | 0.081 | 0.013 | 0.005 |
Doxorubicin | 0.006 | 0.019 | 0.015 | 0.022 | 0.032 | 0.304 | 0.601 |
Epirubicin | 0.008 | 0.066 | 0.202 | 0.412 | 0.241 | 0.045 | 0.026 |
Non-anthracycline antineoplastic drugs | 0.692 | 0.226 | 0.070 | 0.011 | 0.001 | 0.000 | 0.000 |
Pirarubicin | 0.030 | 0.017 | 0.019 | 0.022 | 0.040 | 0.593 | 0.280 |
Pegylated liposomal doxorubicin ≤40 mg/m2 | 0.171 | 0.267 | 0.346 | 0.172 | 0.031 | 0.011 | 0.001 |
Pegylated liposomal doxorubicin ˃40 mg/m2 | 0.021 | 0.035 | 0.074 | 0.175 | 0.573 | 0.034 | 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, W.; Peng, Y.; Huang, M.; Liao, F.; Lu, A.; Yu, Z.; Zhao, X. Cardiac Arrhythmia Risk after Anti-Cancer Drug Exposure and Related Disease Molecular Imaging Outlook: A Systematic Review, Meta-Analysis, and Network Meta-Analysis. Biology 2024, 13, 465. https://doi.org/10.3390/biology13070465
Li H, Yang W, Peng Y, Huang M, Liao F, Lu A, Yu Z, Zhao X. Cardiac Arrhythmia Risk after Anti-Cancer Drug Exposure and Related Disease Molecular Imaging Outlook: A Systematic Review, Meta-Analysis, and Network Meta-Analysis. Biology. 2024; 13(7):465. https://doi.org/10.3390/biology13070465
Chicago/Turabian StyleLi, Hongzheng, Wenwen Yang, Yuxuan Peng, Mingyan Huang, Feifei Liao, Aimei Lu, Zikai Yu, and Xin Zhao. 2024. "Cardiac Arrhythmia Risk after Anti-Cancer Drug Exposure and Related Disease Molecular Imaging Outlook: A Systematic Review, Meta-Analysis, and Network Meta-Analysis" Biology 13, no. 7: 465. https://doi.org/10.3390/biology13070465
APA StyleLi, H., Yang, W., Peng, Y., Huang, M., Liao, F., Lu, A., Yu, Z., & Zhao, X. (2024). Cardiac Arrhythmia Risk after Anti-Cancer Drug Exposure and Related Disease Molecular Imaging Outlook: A Systematic Review, Meta-Analysis, and Network Meta-Analysis. Biology, 13(7), 465. https://doi.org/10.3390/biology13070465