Aquaculture Performance and Genetic Diversity of a New [(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀] Variety of the Oyster “South China No. 1” in Beibu Gulf, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Study Area
2.2. Growth Experiment
2.3. Environmental Parameters of Seawater and Phytoplankton Data
2.4. The Genetic Diversity of 7 Cultured Populations
2.5. DNA Isolation and PCR Extension
2.6. Statistical Analysis
3. Result
3.1. Effect of Stocking Density and Site on the Growth of “South China No. 1”
3.2. Effect of Stocking Density on the Growth of Oyster “South China No. 1” and C. hongkongensis Conducted for 360 Days
3.3. Seawater Quality and Plankton at Three Sites
3.4. The Genetic Diversity of Seven Cultured Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loaiza, I.; Wong, C.; Thiyagarajan, V. Comparative analysis of nutritional quality of edible oysters cultivated in Hong Kong. J. Food Compos. Anal. 2023, 118, 105159. [Google Scholar] [CrossRef]
- Tan, K.; Zheng, H. Endogenous lc-pufa biosynthesis capability in commercially important mollusks. Crit. Rev. Food Sci. Nutr. 2022, 62, 2836–2844. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Fishery Bureau, Ministry of Agriculture. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Peng, D.M.; Zhang, S.C.; Zhang, H.Z.; Pang, D.Z.; Yang, Q.; Jiang, R.H.; Lin, Y.T.; Mu, Y.T.; Zhu, Y.G. The oyster fishery in China: Trend, concerns and solutions. Mar. Policy 2021, 129, 104524. [Google Scholar] [CrossRef]
- Ji, Y.; Yan, G.W.; Wang, G.X.; Liu, J.W.; Tang, Z.X.; Yan, Y.J.; Qiu, J.B.; Zhang, L.; Pan, W.Y.; Fu, Y.L.; et al. Prevalence and distribution of domoic acid and cyclic imines in bivalve mollusks from beibu gulf, China. J. Hazard. Mater. 2022, 423, 127078. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Zhou, J. Historical occurrence of algal blooms in the northern Beibu gulf of China and implications for future trends. Front. Microbiol. 2019, 10, 451. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, X.M.; Zhang, G.F.; Zhang, F.S. Classification of jinjiang oysters Crassostrea rivularis (gould, 1861) from China, based on morphology and phylogenetic analysis. Aquaculture 2004, 242, 137–155. [Google Scholar] [CrossRef]
- Yu, Z.N.; Zhang, Y.H.; Zhang, Y.; Wang, Z.P.; Xiao, S.; Li, J.; Xiang, Z.M.; Ma, H.T. New aquaculture oyster “South China no. 1”. China Fish. 2017, 2, 86–89. [Google Scholar]
- Zhao, N.Q.; Shu, X.; Liu, X.; Pan, Y.; Zhang, Y.H.; Yu, Z.N. Effect of salinity on early development and growth oyster “South China No. 1”. Period. Ocean. Univ. China 2020, 50, 53–64. [Google Scholar]
- De Oliveira, R.C.; Da Silva, F.C.; Araujo de Miranda Gomes, C.H.; Langdon, C.; Takano, P.; Gray, M.W.; de Melo, C.M.R. Effect of larval density on growth and survival of the pacific oyster Crassostrea gigas in a recirculation aquaculture system. Aquaculture 2021, 540, 736667. [Google Scholar]
- Tan, K.; Deng, L.H.; Zheng, H.P. Effects of stocking density on the aquaculture performance of diploid and triploid, Pacific oyster Crassostrea gigas and Portuguese oyster C. angulata in warm water aquaculture. Aquac. Res. 2021, 52, 6268–6279. [Google Scholar] [CrossRef]
- Treviño, L.; Vélez-Falcones, J.; Lodeiros, C. Effects of stocking density in the grow-out culture of winged pearl oyster Pteria sterna (gould, 1851). Aquac. Res. 2019, 50, 964–967. [Google Scholar] [CrossRef]
- Zorita, I.; Juez, A.; Solaun, O.; Muxika, I.; Rodríguez, J.G. Stocking density effect on the growth and mortality of juvenile European flat oyster (Ostrea edulis linnaeus, 1758). Aquac. Fish Fish. 2021, 1, 60–65. [Google Scholar] [CrossRef]
- Tan, K.; Zhai, Y.T.; Zhang, H.K.; Zeng, Z.N.; Ning, Y.; Zheng, H.P. Effects of culture conditions (stocking density, water depth and aquaculture gear) on the aquaculture performance of a new Crassostrea angulata variety “golden oyster#1”. Aquaculture 2023, 564, 739054. [Google Scholar]
- Wassnig, M.; Southgate, P.C. The effects of stocking density and ration on survival and growth of winged pearl oyster (Pteria penguin) larvae fed commercially available micro-algae concentrates. Aquac. Rep. 2016, 4, 17–21. [Google Scholar] [CrossRef]
- Liu, H.X.; Ye, T.; Soon, T.K.; Zhang, H.K.; Cheng, D.W.; Li, S.K.; Ma, H.Y.; Zheng, H.P. Effects of stocking density on the growth performance, bacterial load and antioxidant response systems of noble scallop Chlamys nobilis. Fish Shellfish. Immunol. 2019, 92, 40–44. [Google Scholar] [CrossRef]
- Rusydi, I.; Dewiyanti, I.; Maisuri, M.; Putra, D.F.; Octavina, C.; Nurfadillah, N.; Wulandari, W. Growth of oyster (Crassostrea sp.) With different stocking density in Alue Naga waters, Banda Aceh Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 674, 12082. [Google Scholar] [CrossRef]
- Ma, H.; Yu, D.; Li, J.; Qin, Y.; Zhang, Y.; Yu, Z. Construction of first genetic linkage map based on microsatellite markers and characterization of di- and tri-nucleotide microsatellite markers for Crassostrea hongkongesis. Aquaculture 2022, 556, 738272. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Xu, C.X.; Yu, H.; Kong, L.F. Genetic diversity and effective population size in successive mass selected generations of black shell strain pacific oyster (Crassostrea gigas) based on microsatellites and mtDNA data. Aquaculture 2019, 500, 338–346. [Google Scholar] [CrossRef]
- Ma, H.; Yu, D.; Qin, Y.; Li, J.; Zhang, Y.; Yu, Z. Growth-related phenotypic and genetic diversity analysis of successive mass selected generations of kumamoto oyster (Crassostrea sikamea). Aquac. Rep. 2023, 30, 101621. [Google Scholar] [CrossRef]
- Proestou, D.A.; Vinyard, B.T.; Corbett, R.J.; Piesz, J.; Allen, S.K.; Small, J.M.; Li, C.; Liu, M.; DeBrosse, G.; Guo, X.; et al. Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern us estuaries. Aquaculture 2016, 464, 17–27. [Google Scholar] [CrossRef]
- De Oliveira Cardoso, J.L.; Lavander, H.D.; Neto, S.R.D.S.; de Souza, A.B.; Silva, L.O.B.D.; Gálvez, A.O. Crescimento da ostra crassostrea rhizophorae cultivada em diferentes densidades de estocagem no litoral norte de pernambuco. Pesqui. Agropecu. Pernambucana 2012, 17, 10–14. [Google Scholar]
- De Oliveira, I.B.; Lavander, H.D.; Lima, P.; Oliveira, C.Y.B.; De Dantas, D.M.; Olivera Gálvez, A. Effect of stocking density on the growth and survival of anomalocardia brasiliana (gmelin, 1791) (bivalvia: Veneridae) post-larvae. Ciênc. Rural 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Muthukumaravel, K.; Pradhoshini, K.P.; Vasanthi, N.; Raja, T.; Jaleel, M.A.; Arunachalam, K.D.; Musthafa, M.S.; Ayyamperumal, R.; Karuppannan, S.; Rajagopal, R.; et al. Assessment of seasonal variation in distribution and abundance of plankton and ichthyofaunal diversity in relation to environmental indices of karankadu mangrove, south east coast of india. Mar. Pollut. Bull. 2021, 173, 113142. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, W.G.; Song, X.M.; Lin, Q.H.; Gui, J.F.; Mei, J. Characterization and development of est-ssr markers derived from transcriptome of yellow catfish. Molecules 2014, 19, 16402–16415. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Ma, H.T.; Yu, Z.N. Development of 20 novel microsatellite markers in the Hong Kong oyster, Crassostrea hongkongensis. Conserv. Genet. Resour. 2011, 3, 413–415. [Google Scholar] [CrossRef]
- Ma, H.; Li, L.; Xiao, S.; Zhang, Y.; Yu, Z. Microsatellite-based study of population genetics of Crassostrea hongkongensis in southern China. Aquac. Rep. 2021, 19, 100591. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Y.; Mo, R.; Zhang, Y.; Li, J.; Zhou, Y.; Ma, H.; Xiao, S.; Yu, Z. Influence of ploidy and environment on grow-out traits of diploid and triploid Hong Kong oysters Crassostrea hongkongensis in southern China. Aquaculture 2019, 507, 108–118. [Google Scholar] [CrossRef]
- Peng, C.; Wang, K.; Wang, W.; Kuang, F.; Gao, Y.; Jiang, R.; Sun, X.; Dong, X.; Chen, B.; Lin, H. Phytoplankton community structure and environmental factors during the outbreak of crown-of-thorns starfish in xisha islands, south China sea. Environ. Res. 2023, 235, 116568. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.W.; Gao, X.L.; Hong, J.W.; Luo, X.; Wu, Y.S.; You, W.W.; Ke, C.H. Growing abalone on a novel offshore platform: An on-site test of the effects of stocking density and diet. Aquaculture 2022, 549, 737769. [Google Scholar] [CrossRef]
- Ding, G.H.; Lin, Z.H.; Fan, X.L.; Ji, X. The combined effects of food supply and larval density on survival, growth and metamorphosis of Chinese tiger frog (Hoplobatrachus rugulosa) tadpoles. Aquaculture 2015, 435, 398–402. [Google Scholar] [CrossRef]
- Xia, B.; Ren, Y.C.; Wang, J.Y.; Sun, Y.Z.; Zhang, Z.D. Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 2017, 466, 26–32. [Google Scholar] [CrossRef]
- Neto, A.C.; de Alvarenga, É.R.; Toral, F.L.B.; Leite, N.R.; Da Costa, F.F.B.; Goulart, L.Q.; Correa, R.D.S.; Da Silva, M.A.; Dos Santos, B.D.; Fernandes, A.F.A.; et al. Impact of selection for growth and stocking density on Nile tilapia production in the biofloc system. Aquaculture 2023, 577, 739908. [Google Scholar] [CrossRef]
- Yuan, H.; Xie, M.H.; Hu, N.J.; Zheng, Y.D.; Hou, C.H.; Tan, B.P.; Shi, L.L.; Zhang, S. Growth, immunity and transcriptome response to different stocking densities in Litopenaeus vannamei. Fish Shellfish. Immunol. 2023, 139, 108924. [Google Scholar] [CrossRef]
- DiMaggio, M.A.; Ohs, C.L.; Broach, J.S.; Sink, T.D. Effects of stocking density on growth, survival, and stress physiology of pigfish. N. Am. J. Aquac. 2014, 76, 201–210. [Google Scholar] [CrossRef]
- Gao, X.L.; Zhang, M.; Li, X.; Fucu, W.; Song, C.B.; Liu, Y. Effects of stocking density on survival, growth, and food intake of Haliotis discus hannai Ino in recirculating aquaculture systems. Aquaculture 2018, 482, 221–230. [Google Scholar]
- Yang, Y.; Wang, T.; Chen, J.; Wu, X.; Wu, L.; Zhang, W.; Luo, J.; Xia, J.; Meng, Z.; Liu, X. First construction of interspecific backcross grouper and genome-wide identification of their genetic variants associated with early growth. Aquaculture 2021, 545, 737221. [Google Scholar] [CrossRef]
- Jia, R.; Liu, B.L.; Feng, W.R.; Han, C.; Huang, B.; Lei, J.L. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish Shellfish. Immunol. 2016, 55, 131–139. [Google Scholar] [CrossRef]
- Xiao, Q.; Gan, Y.; Yu, F.; Boamah, G.A.; Shen, Y.; Wang, Y.; Huang, Z.; You, W.; Luo, X.; Ke, C. Study of hybrid and backcross abalone populations uncovers trait separation and their thermal resistance capacity. Aquac. Res. 2022, 53, 2619–2628. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, J.; Xiao, S.; Xiang, Z.; Wang, Z.; Yan, X.; Yu, Z. Artificial interspecific backcrosses between the hybrid of female Crassostrea hongkongensis × male C. gigas and the two parental species. Aquaculture 2016, 450, 95–101. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, C.; Liu, J.; Chen, J.; Zou, S. Transcriptome analysis provides new insights into the growth superiority of a novel backcross variety, Megalobrama amblycephala ♀ × (M. amblycephala ♀ × Culter alburnus ♂) ♂. Aquaculture 2019, 512, 734317. [Google Scholar] [CrossRef]
- Lai, X.; Xiao, Q.; Ji, H.; Huang, Z.; Huang, H.; You, W.; Luo, X.; Ke, C. Comparative analysis of the growth and biochemical composition of backcrosses and their parents in abalone. Aquaculture 2023, 570, 739445. [Google Scholar] [CrossRef]
- Shi, G.; Qin, Y.; Wan, W.; Li, S.; Liao, Q.; Ma, H.; Li, J.; Li, Y.; Zhou, Y.; Zhang, Y.; et al. Studies of interspecific backcross between hybrids of (Crassostrea angulata ♀ × C. gigas ♂) and their two parental species. Aquaculture 2023, 564, 739043. [Google Scholar] [CrossRef]
- Lago, A.D.A.; Rezende, T.T.; Dias, M.A.D.; Freitas, R.T.F.D.; Hilsdorf, A.W.S. The development of genetically improved red tilapia lines through the backcross breeding of two Oreochromis niloticus strains. Aquaculture 2017, 472, 17–22. [Google Scholar] [CrossRef]
- Pourmozaffar, S.; Tamadoni Jahromi, S.; Rameshi, H.; Sadeghi, A.; Bagheri, T.; Behzadi, S.; Gozari, M.; Zahedi, M.R.; Abrari Lazarjani, S. The role of salinity in physiological responses of bivalves. Rev. Aquac. 2020, 12, 1548–1566. [Google Scholar] [CrossRef]
- Metian, M.; Pouil, S.; Dupuy, C.; Teyssié, J.; Warnau, M.; Bustamante, P. Influence of food (ciliate and phytoplankton) on the trophic transfer of inorganic and methyl-mercury in the pacific cupped oyster Crassostrea gigas. Environ. Pollut. 2020, 257, 113503. [Google Scholar] [CrossRef]
- She, Z.; Peng, Y.; Jia, Z.; Kang, Z.; Yu, D. Molecular mechanisms affecting the difference in salinity adaptability between juvenile and adult Hong Kong oysters. Aquac. Rep. 2022, 24, 101171. [Google Scholar] [CrossRef]
- Peng, M.X.; Liu, X.J.; Niu, D.H.; Ye, B.; Lan, T.Y.; Dong, Z.G.; Li, J. Survival, growth and physiology of marine bivalve (Sinonovacula constricta) in long-term low-salt culture. Sci. Rep. 2019, 9, 2819. [Google Scholar]
- Christophersen, G.; Strand, Ø. Effect of reduced salinity on the great scallop (Pecten maximus) spat at two rearing temperatures. Aquaculture 2003, 215, 79–92. [Google Scholar] [CrossRef]
- Liu, C.S.; Zhou, J.C.; Yang, Y.M.; Yang, Y.; Wang, A.M.; Gu, Z.F. Effects of salinity on growth performance, physiological response, and body biochemical composition of juvenile ivory shell (Babylonia areolata). Aquaculture 2023, 566, 739193. [Google Scholar] [CrossRef]
- Qin, Z.; Yang, M.Y.; Zhang, J.E.; Deng, Z.X. Effects of salinity on survival, growth and reproduction of the invasive aquatic snail Pomacea canaliculata (Gastropoda: Ampullariidae). Hydrobiologia 2020, 847, 3103–3114. [Google Scholar] [CrossRef]
- Connan, S.; Stengel, D.B. Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth and copper accumulation. Aquat. Toxicol. 2011, 104, 94–107. [Google Scholar] [CrossRef]
- Gatenby, C.M.; Orcutt, D.M.; Kreeger, D.A.; Parker, B.C.; Jones, V.A.; Neves, R.J. Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol. 2003, 15, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, J.; Gao, Y.; Liu, Y.; Zhou, C.; Meng, X.; Li, X.; Li, M.; Wang, Y.; Dai, D.; et al. Patterns of phytoplankton community structure and diversity in aquaculture ponds, henan, China. Aquaculture 2021, 544, 737078. [Google Scholar] [CrossRef]
- Kong, N.; Liu, Z.; Yu, Z.; Fu, Q.; Li, H.; Zhang, Y.; Fang, X.; Zhang, F.; Liu, C.; Wang, L.; et al. Dynamics of phytoplankton community in scallop farming waters of the bohai sea and north yellow sea in China. BMC Ecol. Evol. 2022, 22, 48. [Google Scholar] [CrossRef]
- Ding, C.; Sun, J.; Narale, D.; Liu, H. Phytoplankton community in the western south China sea in winter and summer. Water 2021, 13, 1209. [Google Scholar] [CrossRef]
- Pan, H.; Xu, M.; Lan, C.; Ma, J.; Li, J.; Lu, J.; Lai, J. Determination of phytoplankton community structure and biomass with HPLC-chemtax and microscopic methods during winter and summer in the Qinzhou bay of the Beibu gulf. Front. Mar. Sci. 2023, 10, 1–15. [Google Scholar] [CrossRef]
- Brito, A.C.; Moita, T.; Gameiro, C.; Silva, T.; Anselmo, T.; Brotas, V. Changes in the phytoplankton composition in a temperate estuarine system (1960 to 2010). Estuaries Coasts 2015, 38, 1678–1691. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Yu, R.H. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 2006, 259, 95–102. [Google Scholar] [CrossRef]
- Lallias, D.; Boudry, P.; Gue, S.L.; King, J.W.; Beaumont, A.R. Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. Conserv. Genet. 2010, 11, 1899–1910. [Google Scholar] [CrossRef]
- Frost, L.A.; Evans, B.S.; Jerry, D.R. Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 2006, 261, 1056–1064. [Google Scholar] [CrossRef]
- Lind, C.E.; Evans, B.S.; Knauer, J.; Taylor, J.J.U.; Jerry, D.R. Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 2009, 286, 12–19. [Google Scholar] [CrossRef]
- In, V.; O’Connor, W.; Dove, M.; Knibb, W. Can genetic diversity be maintained across multiple mass selection lines of Sydney rock oyster, Saccostrea glomerata despite loss within each? Aquaculture 2016, 454, 210–216. [Google Scholar] [CrossRef]
- Reece, K.S.; Ribeiiro, W.L.; Gaffney, P.M.; Carnegie, R.B.; SK Allen, J. Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-mendelian segregation ratios. J. Hered. 2004, 95, 346–352. [Google Scholar] [CrossRef]
Locus | Annealing Temperature | Size | Repeat Motif Sequence | Primer Sequence (5′–3′) |
---|---|---|---|---|
Ch311 | 60 | 208–282 | (GT)n(GTGC)n | F: GGACGAAATGGAAAGTGTA R: CGCGTTTGCCAATAACCT |
Ch319 | 60 | 408–456 | (CA)n | F: GTCGCACAATGAGTAAAGCA R: AAGAGGGTGGGTGGAGTA |
Ch423 | 60 | 222–374 | (GGT)n (GAT)n | F: ACCGTCGTTGTCGTCTCA R: CGTCCTCAGGTCACTTTC |
Ch417 | 60 | 132–168 | (GAT)n | F: GTGAGTGCGGTGGTTTCT R: CTACCTTCTGTGCTGGATGA |
Ch405 | 60 | 252–279 | (GAT)n | F: AGAGGTCGTGTTAGAGATGG R: AAGATGATACTGCTATGGAAG |
Ch697 | 60 | 168 | (TGT)n(TTG)n | F: CTGTTGAGCCAGTTCCATGA R: GGACAATACGGTCAGCAACA |
Ch307 | 50 | 244–298 | (CA)n | F: AACCCATCCGCAAACAAT R: ATCCAACTGAACACCACCAT |
Ch317 | 50 | 201–261 | (CA)n | F: CATTGCCGCACCCATTTA R: TTCCGGTCTATCTTCTGA |
Ch411 | 60 | 208–244 | (GAT)n | F: CCGCCAGTGTCATCCTCA R: CCAGCAGGGCTTTAGACG |
Ch414 | 60 | 236–273 | (GAT)n | F: CAATGATGTAGAGGTCGT R: GATGATACTGCTATGGAAGA |
Shell Height (mm) | Shell Width (mm) | Total Weight (g) | SR (%) | DHG (mm/d) | DMG (g/d) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Means | p-Value | Means | p-Value | Means | p-Value | Means | p-Value | Means | p-Value | Means | p-Value | |||
Time | Treatments | |||||||||||||
March 2018 (60th day) | site | Beihai | 71.71 A | 0.029 | 24.65 A | 0.003 | 50.84 A | 0.004 | 92.46 B | 0.007 | 0.13 A | 0.042 | 0.13 A | 0.010 |
Qinzhou | 71.11 A | 24.49 A | 52.19 A | 97.88 A | 0.12 AB | 0.15 A | ||||||||
Fangchenggang | 69.66 B | 23.39 B | 48.13 B | 97.70 A | 0.10 B | 0.08 B | ||||||||
stocking density | 20 | 72.07 A | 0.035 | 25.32 A | <0.001 | 51.71 A | 0.002 | 95.00 | 0.622 | 0.14 A | 0.034 | 0.14 A | 0.020 | |
30 | 70.35 B | 23.47 B | 51.25 A | 95.92 | 0.11 B | 0.14 A | ||||||||
40 | 70.05 B | 23.74 B | 48.20 B | 97.11 | 0.10 B | 0.08 B | ||||||||
site × stocking density | 0.658 | 0.004 | 0.296 | 0.564 | 0.692 | 0.367 | ||||||||
May 2018 (120th day) | site | Beihai | 74.73 A | <0.001 | 26.05 A | <0.001 | 64.58 A | 0.024 | 99.02 A | 0.008 | 0.05 | 0.493 | 0.23 | 0.302 |
Qinzhou | 73.55 A | 26.79 A | 62.91 AB | 95.38 B | 0.04 | 0.18 | ||||||||
Fangchenggang | 71.39 B | 24.59 B | 60.55 B | 98.99 A | 0.03 | 0.21 | ||||||||
stocking density | 20 | 75.86 A | <0.001 | 26.60 A | <0.001 | 69.22 A | <0.001 | 98.33 A | 0.003 | 0.06 | 0.087 | 0.29 A | <0.001 | |
30 | 72.03 B | 25.07 B | 60.97 B | 97.39 B | 0.03 | 0.16 B | ||||||||
40 | 71.78 B | 25.76 B | 57.86 C | 97.67 B | 0.03 | 0.16 B | ||||||||
site × stocking density | 0.281 | 0.061 | 0.210 | 0.117 | 0.432 | 0.588 | ||||||||
July 2018 (180th day) | site | Beihai | 74.95 A | <0.001 | 27.32 B | 0.016 | 72.47 A | 0.002 | 99.40 | 0.070 | 0.01 | 0.267 | 0.13 A | 0.037 |
Qinzhou | 74.24 B | 27.03 B | 66.42 B | 98.30 | 0.01 | 0.07 B | ||||||||
Fangchenggang | 74.85 A | 28.07 A | 69.13 AB | 99.07 | 0.04 | 0.15 A | ||||||||
stocking density | 20 | 77.03 A | 0.001 | 27.95 | 0.148 | 74.47 A | <0.001 | 99.17 | 0.904 | 0.02 | 0.054 | 0.10 | 0.575 | |
30 | 72.55 B | 27.19 | 67.77 B | 98.70 | 0.01 | 0.12 | ||||||||
40 | 74.45 B | 27.27 | 65.79 B | 98.90 | 0.04 | 0.14 | ||||||||
site × stocking density | 0.562 | 0.941 | 0.693 | 0.372 | 0.632 | 0.272 | ||||||||
September 2018 (240th day) | site | Beihai | 75.25 B | <0.001 | 27.36 B | 0.031 | 73.02 C | <0.001 | 95.66 | 0.181 | 0.01 | 0.065 | 0.01 B | <0.001 |
Qinzhou | 74.40 B | 28.38 A | 79.64 B | 95.42 | 0.003 | 0.22 A | ||||||||
Fangchenggang | 77.72 A | 28.21 A | 89.41 A | 94.54 | 0.04 | 0.28 A | ||||||||
stocking density | 20 | 77.92 A | <0.001 | 28.71 A | <0.001 | 90.10 A | <0.001 | 98.33 A | 0.001 | 0.01 | 0.202 | 0.23 A | 0.010 | |
30 | 74.67 B | 28.09 A | 76.70 B | 93.51 B | 0.04 | 0.14 B | ||||||||
40 | 74.79 B | 27.15 B | 75.27 B | 93.78 B | 0.01 | 0.14 B | ||||||||
site × stocking density | 0.384 | 0.836 | 0.597 | 0.708 | 0.161 | 0.667 | ||||||||
November 2018 (300th day) | site | Beihai | 78.30 B | <0.001 | 28.52 B | <0.001 | 81.88 B | <0.001 | 95.84 | 0.609 | 0.05 | 0.279 | 0.15 | 0.091 |
Qinzhou | 78.79 B | 28.75 B | 94.28 A | 97.18 | 0.07 | 0.23 | ||||||||
Fangchenggang | 82.27 A | 30.88 A | 98.41 A | 95.76 | 0.08 | 0.17 | ||||||||
stocking density | 20 | 82.94 A | <0.001 | 30.94 A | <0.001 | 100.84 A | <0.001 | 96.67 | 0.550 | 0.08 | 0.060 | 0.19 | 0.233 | |
30 | 78.99 B | 28.37 B | 90.26 B | 96.67 | 0.07 | 0.21 | ||||||||
40 | 77.42 C | 29.38 B | 83.49 C | 95.44 | 0.04 | 0.15 | ||||||||
site × stocking density | 0.256 | 0.001 | 0.114 | 0.914 | 0.309 | 0.946 |
Treatments | Items | |||
---|---|---|---|---|
Shell Height (mm) | Shell Length (mm) | Shell Width (mm) | Total Weight (g) | |
Control group/20 | 88.06 ± 9.48 b | 66.29 ± 7.91 b | 30.39 ± 4.41 ab | 111.21 ± 27.86 a |
Control group/30 | 83.27 ± 9.92 c | 63.75 ± 8.14 cd | 27.93 ± 3.93 d | 96.68 ± 22.18 bc |
Control group/40 | 83.67 ± 9.02 c | 61.95 ± 7.75 de | 28.77 ± 5.01 cd | 87.51 ± 20.49 d |
“South China No.1”/20 | 96.15 ± 10.9 a | 68.65 ± 8.45 a | 31.59 ± 4.40 a | 117.50 ± 25.42 a |
“South China No.1”/30 | 90.49 ± 11.29 b | 65.71 ± 7.85 bc | 29.94 ± 4.92 bc | 100.50 ± 24.11 b |
“South China No.1”/40 | 84.61 ± 9.20 c | 61.13 ± 8.00 e | 28.78 ± 4.77 cd | 89.88 ± 21.83 cd |
One-way ANOVA (by SPSS) | ||||
ANOVA (P) | <0.001 | <0.001 | <0.001 | <0.001 |
Linear trend (P) | 0.056 | 0.063 | 0.850 | 0.002 |
Quadratic trend (P) | 0.002 | 0.058 | 0.435 | 0.492 |
Two-way ANOVA (by SPSS) | ||||
Means of stocking density | ||||
20 | 92.10 A | 67.47 A | 30.99 A | 114.36 A |
30 | 86.88 B | 64.73 B | 28.94 B | 98.59 B |
40 | 84.14 C | 61.54 C | 28.77 C | 88.71 C |
Means of breed | ||||
Control group | 85.00 Y | 63.99 | 29.03 Y | 98.81 Y |
“South China No.1” | 90.42 X | 65.17 | 30.10 X | 102.63 X |
p-value | ||||
Stocking density | <0.001 | <0.001 | <0.001 | <0.001 |
Breed | <0.001 | 0.098 | 0.006 | 0.046 |
Stocking density × breed | 0.006 | 0.145 | 0.174 | 0.306 |
Treatments | Items | |||
---|---|---|---|---|
Shell Height (mm) | Shell Length (mm) | Shell Width (mm) | Total Weight (g) | |
Control group/20 | 85.37 ± 9.72 bc | 68.68 ± 9.00 b | 30.87 ± 7.00 b | 117.05 ± 30.39 a |
Control group/30 | 82.54 ± 9.65 c | 63.83 ± 8.19 c | 28.95 ± 4.91 c | 103.35 ± 30.74 bc |
Control group/40 | 82.40 ± 8.22 c | 62.77 ± 7.83 c | 30.43 ± 6.41 bc | 99.35 ± 23.28 c |
“South China No.1”/20 | 91.04 ± 10.71 a | 71.31 ± 8.11 a | 33.97 ± 4.64 a | 123.33 ± 26.03 a |
“South China No.1”/30 | 87.46 ± 10.73 b | 67.80 ± 7.38 b | 33.18 ± 5.52 a | 108.92 ± 28.54 b |
“South China No.1”/40 | 83.76 ± 10.03 c | 63.56 ± 8.78 c | 30.57 ± 4.27 bc | 96.01 ± 24.58 c |
One-way ANOVA (by SPSS) | ||||
ANOVA (P) | <0.001 | <0.001 | <0.001 | <0.001 |
Linear trend (P) | 0.078 | 0.479 | 0.003 | 0.008 |
Quadratic trend (P) | 0.058 | 0.398 | 0.020 | 0.155 |
Two-way ANOVA (by SPSS) | ||||
Means of stocking density | ||||
20 | 88.20 A | 70.00 A | 32.42 A | 120.19 A |
30 | 85.00 B | 65.82 B | 31.07 B | 106.14 B |
40 | 83.08 B | 63.17 C | 30.50 B | 97.68 C |
Means of breed | ||||
Control group | 83.43 Y | 65.09 Y | 30.08 Y | 106.58 |
“South China No.1” | 87.42 X | 67.56 X | 32.58 X | 109.42 |
p-value | ||||
Stocking density | <0.001 | <0.001 | 0.002 | <0.001 |
Breed | <0.001 | 0.001 | <0.001 | 0.205 |
Stocking density × breed | 0.088 | 0.222 | 0.001 | 0.097 |
Treatments | Items | |||
---|---|---|---|---|
Shell Height (mm) | Shell Length (mm) | Shell Width (mm) | Total Weight (g) | |
Control group/20 | 80.11 ± 15.66 b | 53.88 ± 10.50 c | 30.00 ± 9.46 b | 94.49 ± 39.96 b |
Control group/30 | 82.13 ± 11.08 b | 55.35 ± 9.31 bc | 31.81 ± 8.04 bc | 99.53 ± 32.23 b |
Control group/40 | 80.51 ± 11.85 b | 54.09 ± 9.59 c | 31.19 ± 10.55 b | 94.74 ± 31.43 b |
“South China No.1”/20 | 86.91 ± 13.77 a | 59.97 ± 8.64 a | 34.09 ± 58.87 a | 113.15 ± 36.60 a |
“South China No.1”/30 | 81.61 ± 9.76 b | 58.08 ± 10.00 ab | 34.09 ± 6.27 a | 97.25 ± 24.21 b |
“South China No.1”/40 | 84.09 ± 12.71 ab | 57.72 ± 10.54 ab | 33.64 ± 5.94 a | 101.15 ± 27.75 b |
One-way ANOVA (by SPSS) | ||||
ANOVA (P) | 0.003 | <0.001 | 0.001 | 0.001 |
Linear trend (P) | 0.026 | <0.001 | <0.001 | 0.118 |
Quadratic trend (P) | 0.306 | 0.218 | 0.248 | 0.111 |
Two-way ANOVA (by SPSS) | ||||
Means of stocking density | ||||
20 | 83.30 | 56.83 | 31.98 | 103.31 |
30 | 81.94 | 56.67 | 32.91 | 98.66 |
40 | 82.52 | 55. 95 | 32.47 | 97.90 |
Means of breed | ||||
Control group | 80.92 Y | 54.44 Y | 31.00 Y | 96.25 Y |
“South China No.1” | 84.13 X | 58.53 X | 33.90 X | 103.67 X |
p-value | ||||
Stocking density | 0.586 | 0.653 | 0.253 | 0.725 |
Breed | 0.009 | <0.001 | <0.001 | 0.001 |
Stocking density × breed | 0.149 | 0.200 | 0.259 | 0.012 |
Site | Species | Average Dominance | Average Frequency of Occurrence | Phytoplankton Species Abundance (Cells·L−1) | Sum of Phytoplankton Species Abundance (Cells·L−1) |
---|---|---|---|---|---|
Beihai | Skeletonema | 0.70 | 100 | 4193 | 5928 |
Pleurosigma | 0.03 | 100 | 159 | ||
Eucampia | 0.03 | 71.43 | 197 | ||
Navicula | 0.03 | 100 | 152 | ||
Ditylum | 0.00 | 28.57 | 28 | ||
Chaetoceros | 0.04 | 57.14 | 337 | ||
Rhizosolenia | 0.02 | 85.71 | 166 | ||
Thalassionema | 0.02 | 71.43 | 174 | ||
Coscinodiscus | 0.02 | 85.71 | 136 | ||
Synedra | 0.00 | 14.29 | 23 | ||
Nitzschia | 0.00 | 28.57 | 16 | ||
Triceratium | 0.00 | 14.29 | 1 | ||
Bacillaria | 0.01 | 71.43 | 61 | ||
Licmophora | 0.00 | 57.14 | 47 | ||
Cerataulina | 0.00 | 14.29 | 19 | ||
Thalassiosira | 0.00 | 28.57 | 60 | ||
Lauderia | 0.00 | 14.29 | 35 | ||
Meuniera | 0.01 | 57.14 | 124 | ||
Qinzhou | Skeletonema | 0.68 | 100 | 4589 | 6466 |
Rhizosolenia | 0.01 | 42.86 | 84 | ||
Ditylum | 0.03 | 57.14 | 212 | ||
Eucampia | 0.01 | 28.57 | 203 | ||
Chaetoceros | 0.00 | 28.57 | 65 | ||
Thalassionema | 0.02 | 71.43 | 229 | ||
Navicula | 0.02 | 100 | 152 | ||
Nitzschia | 0.00 | 57.14 | 15 | ||
Pleurosigma | 0.02 | 100.00 | 158 | ||
Coscinodiscus | 0.05 | 85.71 | 290 | ||
Synedra | 0.00 | 14.29 | 4 | ||
Cerataulina | 0.00 | 14.29 | 7 | ||
Bacillaria | 0.01 | 71.43 | 81 | ||
Thalassiosira | 0.01 | 57.14 | 91 | ||
Hemiaulus | 0.00 | 28.57 | 34 | ||
Biddulphia | 0.00 | 28.57 | 52 | ||
Lauderia | 0.00 | 14.29 | 26 | ||
Licmophora | 0.00 | 28.57 | 16 | ||
Schroderella | 0.00 | 14.29 | 121 | ||
Odontella | 0.00 | 14.29 | 15 | ||
Detonula | 0.00 | 14.29 | 22 | ||
Fangchenggang | Skeletonema | 0.68 | 100 | 6343 | 9118 |
Thalassionema | 0.03 | 85.71 | 255 | ||
Pleurosigma | 0.02 | 100 | 147 | ||
Navicula | 0.02 | 100 | 170 | ||
Ditylum | 0.00 | 57.14 | 30 | ||
Coscinodiscus | 0.02 | 85.71 | 176 | ||
Chaetoceros | 0.06 | 71.43 | 667 | ||
Rhizosolenia | 0.01 | 57.14 | 90 | ||
Nitzschia | 0.00 | 42.86 | 13 | ||
Bacillaria | 0.00 | 28.57 | 26 | ||
Triceratium | 0.00 | 14.29 | 3 | ||
Thalassiosira | 0.02 | 71.43 | 374 | ||
Synedra | 0.00 | 14.29 | 11 | ||
Lauderia | 0.01 | 57.14 | 196 | ||
Eucampia | 0.01 | 28.57 | 312 | ||
Licmophora | 0.00 | 42.86 | 26 | ||
Biddulphia | 0.00 | 14.29 | 7 | ||
Meuniera | 0.00 | 28.57 | 99 | ||
Guinardia | 0.00 | 28.57 | 150 | ||
Odontella | 0.00 | 28.57 | 23 |
Loci | Parameter | Population | ||||||
---|---|---|---|---|---|---|---|---|
BHC | BHN | QZC | QZN | FCC | FCN | QDT | ||
Ch311 | NA | 5.00 | 5.00 | 4.00 | 4.00 | 5.00 | 5.00 | 5.00 |
NE | 1.52 | 1.89 | 1.78 | 2.56 | 2.04 | 1.89 | 2.68 | |
HO | 0.28 | 0.36 | 0.64 | 0.89 | 0.42 | 0.56 | 0.89 | |
HE | 0.35 | 0.63 | 0.49 | 0.62 | 0.52 | 0.52 | 0.64 | |
P | 0.00 * | 0.00 * | 1.00 | 1.00 | 0.00 * | 0.33 | 1.00 | |
Ch319 | NA | 4.00 | 5.00 | 3.00 | 4.00 | 4.00 | 5.00 | 3.00 |
NE | 2.70 | 2.03 | 2.06 | 2.31 | 2.88 | 2.37 | 2.05 | |
HO | 0.92 | 0.42 | 1.00 | 0.53 | 1.00 | 1.00 | 0.94 | |
HE | 0.64 | 0.51 | 0.52 | 0.58 | 0.66 | 0.59 | 0.52 | |
P | 1.00 | 0.00 * | 1.00 | 0.06 | 1.00 | 1.00 | 1.00 | |
Ch423 | NA | 8.00 | 5.00 | 8.00 | 4.00 | 8.00 | 4.00 | 5.00 |
NE | 2.94 | 2.24 | 3.68 | 2.12 | 3.52 | 2.01 | 2.88 | |
HO | 0.72 | 0.72 | 0.58 | 0.69 | 0.81 | 0.78 | 0.69 | |
HE | 0.69 | 0.56 | 0.74 | 0.54 | 0.75 | 0.51 | 0.66 | |
P | 0.67 | 0.72 | 0.02 | 0.10 | 0.19 | 1.00 | 0.03 | |
Ch417 | NA | 4.00 | 6.00 | 7.00 | 6.00 | 4.00 | 6.00 | 6.00 |
NE | 1.96 | 2.08 | 3.84 | 1.94 | 2.23 | 3.09 | 3.30 | |
HO | 0.58 | 0.67 | 0.58 | 0.61 | 0.75 | 0.78 | 0.78 | |
HE | 0.50 | 0.53 | 0.75 | 0.49 | 0.56 | 0.69 | 0.71 | |
P | 0.86 | 1.00 | 0.03 | 1.00 | 0.99 | 0.90 | 0.01 * | |
Ch405 | NA | 5.00 | 4.00 | 5.00 | 8.00 | 6.00 | 9.00 | 6.00 |
NE | 3.61 | 2.10 | 2.89 | 4.29 | 3.47 | 7.12 | 2.20 | |
HO | 0.75 | 0.72 | 0.50 | 0.67 | 0.92 | 0.61 | 0.67 | |
HE | 0.73 | 0.53 | 0.66 | 0.80 | 0.72 | 0.87 | 0.55 | |
P | 0.58 | 1.00 | 0.05 | 0.00 * | 0.53 | 0.00 * | 1.00 | |
Ch697 | NA | 5.00 | 8.00 | 6.00 | 6.00 | 6.00 | 8.00 | 9.00 |
NE | 1.87 | 4.82 | 2.51 | 2.60 | 2.86 | 3.72 | 4.73 | |
HO | 0.58 | 0.83 | 0.39 | 0.64 | 0.83 | 0.81 | 0.75 | |
HE | 0.47 | 0.80 | 0.61 | 0.62 | 0.66 | 0.74 | 0.80 | |
P | 1.00 | 0.25 | 0.02 | 0.11 | 1.00 | 0.78 | 0.08 | |
Ch307 | NA | 4.00 | 4.00 | 3.00 | 5.00 | 5.00 | 5.00 | 4.00 |
NE | 2.91 | 2.07 | 1.18 | 2.36 | 2.94 | 2.57 | 1.87 | |
HO | 0.75 | 0.64 | 1.00 | 0.92 | 0.89 | 0.94 | 0.64 | |
HE | 0.67 | 0.57 | 0.58 | 0.60 | 0.68 | 0.62 | 0.47 | |
P | 0.74 | 0.04 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | |
Ch317 | NA | 3.00 | 4.00 | 4.00 | 5.00 | 5.00 | 2.00 | 4.00 |
NE | 1.18 | 1.41 | 1.3 | 1.60 | 2.63 | 1.15 | 1.33 | |
HO | 0.17 | 0.39 | 0.19 | 0.50 | 0.86 | 0.14 | 0.28 | |
HE | 0.16 | 0.40 | 0.28 | 0.48 | 0.67 | 0.13 | 0.25 | |
P | 1.00 | 0.01 * | 0.00 * | 0.02 | 0.15 | 1.00 | 1.00 | |
Ch411 | NA | 6.00 | 5.00 | 9.00 | 5.00 | 7.00 | 5.00 | 4.00 |
NE | 2.24 | 3.96 | 4.60 | 1.73 | 3.10 | 1.81 | 2.49 | |
HO | 0.67 | 1.00 | 0.67 | 0.36 | 0.92 | 0.53 | 0.83 | |
HE | 0.56 | 0.76 | 0.79 | 0.43 | 0.69 | 0.46 | 0.61 | |
P | 0.10 | 1.00 | 0.02 | 0.03 | 1.00 | 0.97 | 1.00 | |
Ch414 | NA | 6.00 | 5.00 | 7.00 | 2.00 | 7.00 | 8.00 | 6.00 |
NE | 3.78 | 1.66 | 2.78 | 1.39 | 4.69 | 3.02 | 2.92 | |
HO | 0.92 | 0.47 | 0.81 | 0.33 | 0.86 | 0.64 | 0.47 | |
HE | 0.76 | 0.40 | 0.65 | 0.28 | 0.82 | 0.68 | 0.67 | |
P | 0.10 | 1.00 | 1.00 | 1.00 | 0.43 | 0.62 | 0.00 * | |
Mean | NA | 5.00 | 5.10 | 5.60 | 4.90 | 5.70 | 5.70 | 5.20 |
NE | 2.47 | 2.43 | 2.67 | 2.29 | 3.03 | 2.87 | 2.65 | |
HO | 0.63 | 0.62 | 0.64 | 0.61 | 0.83 | 0.68 | 0.69 | |
HE | 0.55 | 0.57 | 0.61 | 0.54 | 0.67 | 0.58 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Qin, Y.; Liu, H.; Xing, Q.; Yu, Z.; Zhang, Y.; Pan, Y. Aquaculture Performance and Genetic Diversity of a New [(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀] Variety of the Oyster “South China No. 1” in Beibu Gulf, China. Biology 2024, 13, 297. https://doi.org/10.3390/biology13050297
Wei Z, Qin Y, Liu H, Xing Q, Yu Z, Zhang Y, Pan Y. Aquaculture Performance and Genetic Diversity of a New [(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀] Variety of the Oyster “South China No. 1” in Beibu Gulf, China. Biology. 2024; 13(5):297. https://doi.org/10.3390/biology13050297
Chicago/Turabian StyleWei, Zonglu, Yanping Qin, Haoxiang Liu, Qinggan Xing, Ziniu Yu, Yuehuan Zhang, and Ying Pan. 2024. "Aquaculture Performance and Genetic Diversity of a New [(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀] Variety of the Oyster “South China No. 1” in Beibu Gulf, China" Biology 13, no. 5: 297. https://doi.org/10.3390/biology13050297
APA StyleWei, Z., Qin, Y., Liu, H., Xing, Q., Yu, Z., Zhang, Y., & Pan, Y. (2024). Aquaculture Performance and Genetic Diversity of a New [(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀] Variety of the Oyster “South China No. 1” in Beibu Gulf, China. Biology, 13(5), 297. https://doi.org/10.3390/biology13050297