Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Type A HE in Rats
2.3. Azoxymethane (AZO) Model of Type A HE
2.4. Type C HE in Rats
2.5. Brain Edema Measurement
2.6. Behavioral Analysis
- (a)
- Rota-rod test
- (b)
- Morris water maze
2.7. Thioacetamide Sulfoxide (TASO) Quantification
2.8. Blood Ammonia Estimation
2.9. Liver Function Test and Histopathology
2.10. Statistical Analysis
3. Results
3.1. The Effect of TAA on the Development of Brain Edema
3.2. Effect of EtOH on Brain Edema
3.2.1. Effect of TAA +/− EtOH on Liver in Male
3.2.2. Effect of TAA +/− EtOH on Liver in Female
3.3. Effect of Azoxymethane (AZO) on the Development of Brain Edema
3.4. Effect of TAA on the Motor and Cognitive Functions
3.5. Effect of EtOH on Behavioral and Cognitive Deficits
3.6. TAA Metabolism (Thioacetamide Sulfoxide, TASO Level)
3.7. Acute Blood Ammonia Level and Liver Function Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Patel, D.; McPhail, M.J.; Cobbold, J.F.; Taylor-Robinson, S.D. Hepatic encephalopathy. Br. J. Hosp. Med. 2012, 73, 79–85. [Google Scholar] [CrossRef]
- Rose, C.F.; Amodio, P.; Bajaj, J.S.; Dhiman, R.K.; Montagnese, S.; Taylor-Robinson, S.D.; Vilstrup, H.; Jalan, R. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J. Hepatol. 2020, 73, 1526–1547. [Google Scholar] [CrossRef]
- Eroglu, Y.; Byrne, W.J. Hepatic encephalopathy. Emerg. Med. Clin. N. Am. 2009, 27, 401–414. [Google Scholar] [CrossRef]
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef]
- El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 142, 1264–1273.e1. [Google Scholar] [CrossRef]
- Saransaari, P.; Oja, S.S.; Borkowska, H.D.; Koistinaho, J.; Hilgier, W.; Albrecht, J. Effects of thioacetamide-induced hepatic failure on the N-methyl-D-aspartate receptor complex in the rat cerebral cortex, striatum, and hippocampus. Binding of different ligands and expression of receptor subunit mRNAs. Mol. Chem. Neuropathol. 1997, 32, 179–193. [Google Scholar] [CrossRef]
- Clark, L.L.; Taubman, S.B. Acetaminophen overdoses, active component, U.S. Armed Forces, 2006–2015. MSMR 2016, 23, 16–19. [Google Scholar]
- Butterworth, R.F. Hepatic encephalopathy. Alcohol. Res. Health 2003, 27, 240–246. [Google Scholar]
- Baraldi, M.; Pinelli, G.; Ricci, P.; Zeneroli, M.L. Toxins in hepatic encephalopathy: The role of the synergistic effect of ammonia, mercaptans and short chain fatty acids. Arch. Toxicol. Suppl. 1984, 7, 103–105. [Google Scholar]
- Yeh, K.T.; Yu, T.C.; Lee, R.P.; Wang, J.H.; Liu, K.L.; Peng, C.H.; Chen, H.W.; Chen, I.H.; Hsu, C.Y.; Wu, W.T. Hepatic encephalopathy increases the risk of hip fracture: A nationwide cohort study. BMC Musculoskelet. Disord. 2020, 21, 779. [Google Scholar] [CrossRef]
- Badal, B.D.; Bajaj, J.S. Hepatic Encephalopathy in Acute-on-Chronic Liver Failure. Clin. Liver Dis. 2023, 3, 691–702. [Google Scholar] [CrossRef]
- Shah, N.J.; Mousa, O.Y.; Syed, K.; John, S. Acute on Chronic Liver Failure. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Blei, A.T.; Córdoba, J. Practice Parameters Committee of the American College of Gastroenterology. Hepatic Encephalopathy. Am. J. Gastroenterol. 2001, 96, 1968–1976. [Google Scholar] [CrossRef]
- Ridola, L.; Cardinale, V.; Riggio, O. The burden of minimal hepatic encephalopathy: From diagnosis to therapeutic strategies. Ann. Gastroenterol. 2018, 31, 151–164. [Google Scholar] [CrossRef]
- Hirode, G.; Vittinghoff, E.; Wong, R.J. Increasing Burden of Hepatic Encephalopathy among Hospitalized Adults: An Analysis of the 2010–2014 National Inpatient Sample. Dig. Dis. Sci. 2019, 64, 1448–1457. [Google Scholar] [CrossRef]
- Shaw, J.; Beyers, L.; Bajaj, J.S. Inadequate practices for hepatic encephalopathy management in the inpatient setting. J. Hosp. Med. 2022, 17, S8–S16. [Google Scholar] [CrossRef]
- Nardone, R.; Taylor, A.C.; Höller, Y.; Brigo, F.; Lochner, P.; Trinka, E. Minimal hepatic encephalopathy: A review. Neurosci. Res. 2016, 111, 1–12. [Google Scholar] [CrossRef]
- Volk, M.L. Burden of Cirrhosis on Patients and Caregivers. Hepatol. Commun. 2020, 4, 1107–1111. [Google Scholar] [CrossRef]
- Rama Rao, K.V.; Reddy, P.V.; Tong, X.; Norenberg, M.D. Brain edema in acute liver failure: Inhibition by L-histidine. Am. J. Pathol. 2010, 176, 1400–1408. [Google Scholar] [CrossRef]
- Norenberg, M.D.; Itzhak, Y.; Bender, A.S.; Baker, L.; Aguila-Mansilla, H.N.; Zhou, B.G.; Isaacks, R. Ammonia and Astrocyte Function. Liver and Nervous System; Haussinger, D., Jungermann, K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland, 1998; Volume 7, pp. 276–293. [Google Scholar]
- Luo, M.; Xin, R.J.; Hu, F.R.; Yao, L.; Hu, S.J.; Bai, F.H. Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J. Gastroenterol. 2023, 29, 144–156. [Google Scholar] [CrossRef]
- Rai, R.; Saraswat, V.A.; Dhiman, R.K. Gut microbiota: Its role in hepatic encephalopathy. J. Clin. Exp. Hepatol. 2015, 5, S29–S36. [Google Scholar] [CrossRef]
- Maeso-Díaz, R.; Gracia-Sancho, J. Aging and Chronic Liver Disease. Semin. Liver Dis. 2020, 40, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.R.; Tong, X.Y.; Curtis, K.M.; Ruiz-Cordero, R.; Shamaladevi, N.; Abuzamel, M.; Johnstone, J.; Gaidosh, G.; Rama Rao, K.V.; Norenberg, M.D. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: In vitro and in vivo studies. J. Neurochem. 2014, 131, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Girard, G.; Giguère, J.F. Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J. Neurochem. 1988, 51, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Dejong, C.H.; Deutz, N.E.; Soeters, P.B. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: Influence of pair-feeding. J. Neurochem. 1993, 60, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.R.; Sujatha, R.; Paul, V. Effect of ammonia on motor function in adult rats. Brain Res. Bull. 1997, 43, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, M.A.; Rahimi, R.S. Hepatic Encephalopathy: Current and Emerging Treatment Modalities. Clin. Gastroenterol. Hepatol. 2022, 20, S9–S19. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, D.R.; Tranah, E.J.; Shawcross, D.L. Pathogenesis of hepatic encephalopathy: Role of ammonia and systemic inflammation. J. Clin. Exp. Hepatol. 2015, 5, S7–S20. [Google Scholar] [CrossRef] [PubMed]
- Haj, M.; Rockey, D.C. Ammonia levels do not guide clinical management of patients with hepatic encephalopathy caused by cirrhosis. Am. J. Gastroenterol. 2020, 5, 115–723. [Google Scholar] [CrossRef] [PubMed]
- Fiati Kenston, S.S.; Song, X.; Li, Z.; Zhao, J. Mechanistic insight, diagnosis, and treatment of ammonia-induced hepatic encephalopathy. J. Gastroenterol. Hepatol. 2019, 34, 31–39. [Google Scholar] [CrossRef]
- Won, S.M.; Oh, K.K.; Gupta, H.; Ganesan, R.; Sharma, S.P.; Jeong, J.J.; Yoon, S.J.; Jeong, M.K.; Min, B.H.; Hyun, J.Y.; et al. The Link between Gut Microbiota and Hepatic Encephalopathy. Int. J. Mol. Sci. 2022, 23, 8999. [Google Scholar] [CrossRef]
- Fontana, R.J. Acute liver failure including acetaminophen overdose. Med. Clin. N. Am. 2008, 92, 761–794. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, V.; Shneider, B.L.; Dhawan, A.; Ng, V.L.; Im, K.; Belle, S.; Squires, R.H. King’s College Hospital Criteria for non-acetaminophen induced acute liver failure in an international cohort of children. J. Pediatr. 2013, 162, 319–323.e1. [Google Scholar] [CrossRef] [PubMed]
- Leonis, M.A.; Alonso, E.M.; Im, K.; Belle, S.H.; Squires, R.H. Pediatric Acute Liver Failure Study Group. Chronic acetaminophen exposure in pediatric acute liver failure. Pediatrics 2013, 131, e740–e746. [Google Scholar] [CrossRef]
- Schmandra, T.C.; Bauer, H.; Petrowsky, H.; Herrmann, G.; Encke, A.; Hanisch, E. Effects of fibrin glue occlusion of the hepatobiliary tract on thioacetamide-induced liver failure. Am. J. Surg. 2001, 182, 58–63. [Google Scholar] [CrossRef]
- Chilakapati, J.; Shankar, K.; Korrapati, M.C.; Hill, R.A.; Mehendale, H.M. Saturation toxicokinetics of thioacetamide: Role in initiation of liver injury. Drug Metab. Dispos. 2005, 33, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, C.; Ferenci, P.; Pifl, C.; Yurdaydin, C.; Ebner, J.; Lassmann, H.; Roth, E.; Hörtnagl, H. Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: Characterization of an improved model and study of amino acid-ergic neurotransmission. Hepatology 1989, 9, 594–601. [Google Scholar] [CrossRef]
- Wallace, M.C.; Hamesch, K.; Lunova, M.; Kim, Y.; Weiskirchen, R.; Strnad, P.; Friedman, S.L. Standard operating procedures in experimental liver research: Thioacetamide model in mice and rats. Lab. Anim. 2015, 49, 21–29. [Google Scholar] [CrossRef]
- Noda, S.; Masumi, S.; Moriyama, M.; Kannan, Y.; Ohta, M.; Sugano, T.; Yamate, J. Population of hepatic macrophages and response of perfused liver to platelet-activating factor during production of thioacetamide-induced cirrhosis in rats. Hepatology 1996, 24, 412–418. [Google Scholar] [CrossRef]
- Masumi, S.; Moriyama, M.; Kannan, Y.; Ohta, M.; Koshitani, O.; Sawamoto, O.; Toyoshima, S.; Ishikawa, K.; Miyoshi, M.; Sugano, T. Characteristics of nitrogen metabolism in rats with thioacetamide-induced liver cirrhosis. Toxicology 1999, 132, 155–166. [Google Scholar] [CrossRef]
- Li, X.; Benjamin, I.S.; Alexander, B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J. Hepatol. 2002, 36, 488–493. [Google Scholar] [CrossRef]
- Low, T.Y.; Leow, C.K.; Salto-Tellez, M.; Chung, M.C. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics 2004, 4, 3960–3974. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Wanibuchi, H.; Morimura, K.; Puatanachokchai, R.; Salim, E.I.; Hagihara, A.; Seki, S.; Fukushima, S. Enhancement by estradiol 3-benzoate in thioacetamide-induced liver cirrhosis of rats. Toxicol. Sci. 2005, 85, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Gammal, S.H.; Basile, A.S.; Geller, D.; Skolnick, P.; Jones, E.A. Reversal of the behavioral and electrophysiological abnormalities of an animal model of hepatic encephalopathy by benzodiazepine receptor ligands. Hepatology 1990, 11, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Matkowskyj, K.A.; Marrero, J.A.; Carroll, R.E.; Danilkovich, A.V.; Green, R.M.; Benya, R.V. Azoxymethane- induced fulminant hepatic failure in C57BL/6J mice: Characterization of a new animal model. Am. J. Physiol. 1999, 277, G455–G462. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; He, L.; Lee, S.Y.; Chang, H.; Zhang, Y.; Threadgill, D.W.; Yuan, Y.; Zhou, F.; Celniker, S.E.; Xia, Y.; et al. Host genetics and gut microbiota cooperatively contribute to azoxymethane-induced acute toxicity in Collaborative Cross mice. Arch. Toxicol. 2021, 95, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.; Côté, J.; Butterworth, R.F. Neurobiological characterization of an azoxymethane mouse model of acute liver failure. Neurochem. Int. 2006, 48, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Rama Rao, K.V.; Verkman, A.S.; Curtis, K.M.; Norenberg, M.D. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol. Dis. 2014, 63, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.R.; Bethea, J.R.; Tong, X.Y.; Gomez, J.; Norenberg, M.D. NF-κB in the mechanism of brain edema in acute liver failure: Studies in transgenic mice. Neurobiol. Dis. 2011, 41, 498–507. [Google Scholar] [CrossRef]
- Jayakumar, A.R.; Tong, X.Y.; Curtis, K.M.; Ruiz-Cordero, R.; Abreu, M.T.; Norenberg, M.D. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy. J. Neurochem. 2014, 128, 890–903. [Google Scholar] [CrossRef]
- Rama Rao, K.V.; Jayakumar, A.R.; Tong, X.; Curtis, K.M.; Norenberg, M.D. Brain aquaporin-4 in experimental acute liver failure. J. Neuropathol. Exp. Neurol. 2010, 69, 869–879. [Google Scholar] [CrossRef]
- Shapira, Y.; Lam, A.M.; Paez, A.; Artru, A.A.; Laohaprasit, V.; Donato, T. The influence of acute and chronic alcohol treatment on brain edema, cerebral infarct volume and neurological outcome following experimental head trauma in rats. J. Neurosurg. Anesthesiol. 1997, 9, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Janis, L.S.; Hoane, M.R.; Conde, D.; Fulop, Z.; Stein, D.G. Acute ethanol administration reduces the cognitive deficits associated with traumatic brain injury in rats. J. Neurotrauma 1998, 15, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, W.; Yan, G.; Liu, B.; Kong, L.; Ding, Y.; Shen, Z.; Tan, H.; Zhang, G. Acute ethanol-induced changes in edema and metabolite concentrations in rat brain. BioMed Res. Int. 2014, 2014, 351903. [Google Scholar] [CrossRef] [PubMed]
- Marmarou, A.; Poll, W.; Shulman, K.; Bhagavan, H. A simple gravimetric technique for measurement of cerebral edema. J. Neurosurg. 1978, 49, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Chilakapati, J.; Korrapati, M.C.; Hill, R.A.; Warbritton, A.; Latendresse, J.R.; Mehendale, H.M. Toxicokinetics and toxicity of thioacetamide sulfoxide: A metabolite of thioacetamide. Toxicology 2007, 230, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.; McMillin, M.; Frampton, G.; Petrescu, A.D.; Williams, E.; Jaeger, V.; Kain, J.; DeMorrow, S. Direct Comparison of the Thioacetamide and Azoxymethane Models of Type A Hepatic Encephalopathy in Mice. Gene Expr. 2018, 18, 171–185. [Google Scholar] [CrossRef]
- Masse, J.; Billings, B.; Dhillon, H.S.; Mace, D.; Hicks, R.; Barron, S.; Kraemer, P.J.; Dendle, P.; Prasad, R.M. Three months of chronic ethanol administration and the behavioral outcome of rats after lateral fluid percussion brain injury. J. Neurotrauma 2000, 5, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Norenberg, M.D.; Felipo, V.; Ferenci, P.; Albrecht, J.; Blei, A.T. Members of the ISHEN Commission on Experimental Models of HE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int. 2009, 29, 783–788. [Google Scholar] [CrossRef]
- Norenberg, M.D. Distribution of glutamine synthetase in the rat central nervous system. J. Histochem. Cytochem. 1979, 27, 756–762. [Google Scholar] [CrossRef]
- Norenberg, M.D. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 1987, 6, 13–33. [Google Scholar] [CrossRef]
- Hajovsky, H.; Hu, G.; Koen, Y.; Sarma, D.; Cui, W.; Moore, D.S.; Staudinger, J.L.; Hanzlik, R.P. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol. 2012, 25, 1955–1963. [Google Scholar] [CrossRef]
- Sepehrinezhad, A.; Shahbazi, A.; Sahab Negah, S.; Joghataei, M.T.; Larsen, F.S. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol. Rep. 2021, 8, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Viinamäki, J.; Ojanperä, I. Photodiode array to charged aerosol detector response ratio enables comprehensive quantitative monitoring of basic drugs in blood by ultra-high performance liquid chromatography. Anal. Chim. Acta 2015, 865, 1–7. [Google Scholar] [CrossRef]
- Guan, X.; Rubin, E.; Anni, H. An optimized method for the measurement of acetaldehyde by high- performance liquid chromatography. Alcohol. Clin. Exp. Res. 2012, 36, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Dukić, M.; Radonjić, T.; Jovanović, I.; Zdravković, M.; Todorović, Z.; Kraišnik, N.; Aranđelović, B.; Mandić, O.; Popadić, V.; Nikolić, N.; et al. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. Int. J. Mol. Sci. 2023, 24, 3735. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.G.; Everett, B.G.; Onge, J.M.; Krueger, P.M. Social, behavioral, and biological factors, and sex differences in mortality. Demography 2010, 47, 555–578. [Google Scholar] [CrossRef]
- Tian, H.; Ni, Z.; Lam, S.M.; Jiang, W.; Li, F.; Du, J.; Wang, Y.; Shui, G. Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features. Small Methods 2022, 6, e2200130. [Google Scholar] [CrossRef]
- Shimizu, T.; Tokushige, K.; Yamaguchi, N.; Ishikawa, K.; Hasegawa, K.; Yamauchi, K.; Hayashi, N. Discrimination of two different clinical entities, acute-type and subacute-type, human fulminant hepatitis by peripheral blood lymphocyte subsets. J. Gastroenterol. Hepatol. 1999, 14, 274–280. [Google Scholar] [CrossRef]
- Guy, J.; Peters, M.G. Liver disease in women: The influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol. Hepatol. 2013, 9, 633–639. [Google Scholar]
- Bajaj, J.S.; Moreau, R.; Kamath, P.S.; Vargas, H.E.; Arroyo, V.; Reddy, K.R.; Szabo, G.; Tandon, P.; Olson, J.; Karvellas, C.; et al. Acute-on-Chronic Liver Failure: Getting ready for prime time? Hepatology 2018, 68, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chou, D.Y.; Ding, J.Y.; Fredrickson, V.; Peng, C.; Schafer, S.; Guthikonda, M.; Kreipke, C.; Rafols, J.A.; Ding, Y. Reduction of brain edema and expression of aquaporins with acute ethanol treatment after traumatic brain injury. J. Neurosurg. 2013, 118, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.E.; Dalhoff, K. Concomitant overdosing of other drugs in patients with paracetamol poisoning. Br. J. Clin. Pharmacol. 2002, 53, 535–541. [Google Scholar] [CrossRef]
- Amacher, D.E. Female gender as a susceptibility factor for drug-induced liver injury. Hum. Exp. Toxicol. 2014, 33, 928–939. [Google Scholar] [CrossRef]
- Sauerberg, M.; Klüsener, S.; Mühlichen, M.; Grigoriev, P. Sex differences in cause-specific mortality: Regional trends in seven European countries, 1996–2019. Eur. J. Public Health 2023, 33, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Penaloza, C.G.; Estevez, B.; Han, D.M.; Norouzi, M.; Lockshin, R.A.; Zakeri, Z. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA. FASEB J. 2014, 28, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.G. Pharmacokinetic interactions between alcohol and other drugs. Clin. Pharmacokinet. 1997, 33, 79–90. [Google Scholar] [CrossRef]
- Norton, N.S.; McConnell, J.R.; Rodriguez-Sierra, J.F. Behavioral and physiological sex differences observed in an animal model of fulminant hepatic encephalopathy in the rat. Physiol. Behav. 1997, 62, 1113–1124. [Google Scholar] [CrossRef]
- Tarazona, S.; Bernabeu, E.; Carmona, H.; Gómez-Giménez, B.; García-Planells, J.; Leonards, P.E.G.; Jung, S.; Conesa, A.; Felipo, V.; Llansola, M. A Multiomics Study to Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem. Neurosci. 2019, 10, 4264–4279. [Google Scholar] [CrossRef]
- Boix, J.; Cauli, O.; Felipo, V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mechanisms involved. Neuroscience 2010, 167, 994–1003. [Google Scholar] [CrossRef]
- Cauli, O.; Piedrafita, B.; Llansola, M.; Felipo, V. Gender differential effects of developmental exposure to methyl-mercury, polychlorinated biphenyls 126 or 153, or its combinations on motor activity and coordination. Toxicology 2013, 311, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Boix, J.; Cauli, O.; Leslie, H.; Felipo, V. Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved. Neurochem. Int. 2011, 58, 69–77. [Google Scholar] [CrossRef] [PubMed]
Acute HE (Blood Ammonia in Males) | 6 Weeks Aged Rats | 5 Months Aged Rats | 12 Months Aged Rats | 24 Months Aged Rats |
---|---|---|---|---|
Control | 57.8 ± 14.9 | 61.8 ± 12.8 | 69.4 ± 18.4 | 89.2 ± 19.4 |
TAA alone | 402.9 ± 28.6 * | 476.9 ± 31.8 * | 462.7 ± 28.6 * | 502.7 ± 41.7 * |
EtOH | 59.2 ± 12.9 | 69.8 ± 11.9 | 72.8 ± 18.6 | 71.7 ± 21.6 |
TAA + EtOH | 718.3 ± 101.8 † | 616.7 ± 89.6 † | 754 ± 121.7 † | 818.4 ± 141.9 † |
Acute HE (Blood Ammonia in Females) | 6 Weeks Aged Rats | 5 Months Aged Rats | 12 Months Aged Rats | 24 Months Aged Rats |
---|---|---|---|---|
Control | 44.6 ± 17.2 | 58.4 ± 11.9 | 64.8 ± 18.2 | 76.9 ± 14.9 |
TAA alone | 364.6 ± 29.1 * | 392.5 ± 31.8 * | 418.1 ± 31.0 * | 456.6 ± 28.6 * |
EtOH | 52.8 ± 15.7 | 61.7 ± 18.2 | 69.8 ± 21.6 | 70.6 ± 16.1 |
TAA + EtOH | 802.4 ± 108.6 † | 719.6 ± 126.2 † | 724.2 ± 100.4 † | 781.9 ± 92.8 † |
Acute HE (Liver Function Test, Male) | 6 Weeks Aged Rats | 5 Months Aged Rats | 12 Months Aged Rats | 24 Months Aged Rats |
---|---|---|---|---|
Control | ALT—49.2 ± 11.4 AST—97.9 ± 14.6 | ALT—56.84 ± 9.68 AST—126.9 ± 18.6 | ALT—62.4 ± 10.9 AST—131.7 ± 21.6 | ALT—61.7 ± 16.4 AST—129.6 ± 19.2 |
TAA alone | ALT—816.9 ± 108.4 * AST—1987 ± 216.3 * | ALT—978.1 ± 116.8 * AST—2493 ± 316.9 * | ALT—959.3 ± 134.8 * AST—2652.7 ± 249.6 * | ALT—1162.9 ± 201.6 * AST—3108.9 ± 319.2 * |
EtOH | ALT—69.3 ± 12.9 AST—141.3 ± 22.7 | ALT—71.62 ± 14.9 AST—154.0 ± 21.6 | ALT—81.9 ± 18.6 AST—168.7 ± 28.7 | ALT—79.8 ± 20.3 AST—189.5 ± 28.6 |
TAA + EtOH | ALT—1219.6 ± 172.1 † AST—2801.6 ± 118.2 † | ALT—1311.7 ± 172.1 † AST—2819.6 ± 203.8 † | ALT—1272.8 ± 161.6 † AST—2918.3 ± 201.8 † | ALT—1619.4 ± 301.8 † AST—3672.1 ± 216.8 †≠ |
Acute HE (Liver Function Test, Female) | 6 Weeks Aged Rats | 5 Months Aged Rats | 12 Months Aged Rats | 24 Months Aged Rats |
---|---|---|---|---|
Control | ALT—52.4 ± 10.6 AST—112.8 ± 20.6 | ALT—46.3 ± 9.4 AST—83.7 ± 16.2 | ALT—61.7 ± 11.8 AST—124.2 ± 21.3 | ALT—61.9 ± 19.4 AST—122.8 ± 31.6 |
TAA alone | ALT—906.3 ± 82.1 * AST—2110.6 ± 186.2 * | ALT—800.9 ± 107.3 * AST—1914.6 ± 184.6 * | ALT—946.2 ± 119.1 * AST—2496.3 ± 206.8 * | ALT—1174.9 ± 126.8 * AST—2392.6 ± 201.8 * |
EtOH | ALT—69.2 ± 14.8 AST—131.9 ± 18.6 | ALT—56.9 ± 9.2 AST—124.2 ± 31.9 | ALT—72.6 ± 12.8 AST—146.3 ± 21.8 | ALT—76.4 ± 18.1 AST—157.5 ± 22.9 |
TAA + EtOH | ALT—1519.8 ± 154.2 †≠ AST—3514.7 ± 202.4 †≠ | ALT—1138.4 ± 105.1 †≠ AST—2591.3 ± 200.3 †≠ | ALT—1201.7 ± 94.2 †≠ AST—2617.4 ± 192.2 †≠ | ALT—1612.4 ± 141.8 †≠ AST—3491.5 ± 246.8 †≠ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, X.Y.; Hussain, H.; Shamaladevi, N.; Norenberg, M.D.; Fadel, A.; El Hiba, O.; Abdeljalil, E.g.; El-Mansoury, B.; Kempuraj, D.; Natarajan, S.; et al. Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol. Biology 2024, 13, 228. https://doi.org/10.3390/biology13040228
Tong XY, Hussain H, Shamaladevi N, Norenberg MD, Fadel A, El Hiba O, Abdeljalil Eg, El-Mansoury B, Kempuraj D, Natarajan S, et al. Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol. Biology. 2024; 13(4):228. https://doi.org/10.3390/biology13040228
Chicago/Turabian StyleTong, Xiao Y., Hussain Hussain, Nagarajarao Shamaladevi, Michael D. Norenberg, Aya Fadel, Omar El Hiba, El got Abdeljalil, Bilal El-Mansoury, Deepak Kempuraj, Sampath Natarajan, and et al. 2024. "Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol" Biology 13, no. 4: 228. https://doi.org/10.3390/biology13040228
APA StyleTong, X. Y., Hussain, H., Shamaladevi, N., Norenberg, M. D., Fadel, A., El Hiba, O., Abdeljalil, E. g., El-Mansoury, B., Kempuraj, D., Natarajan, S., Schally, A. V., Jaszberenyi, M., Salgueiro, L., Paidas, M. J., & Jayakumar, A. R. (2024). Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol. Biology, 13(4), 228. https://doi.org/10.3390/biology13040228