Artificial Feeding Systems for Vector-Borne Disease Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Use of Vertebrate Hosts to Study Arthropod Feeding and Pathogen Transmission
3. Artificial Feeding Systems for Vectors
Feeding Systems | Advantages | Limitations | References |
---|---|---|---|
Animal models | Practicality of use Physiological and genetic similarity to humans Availability Flexibility to genetic manipulations | Biological variations between animals and humans Ethical considerations Resource- and cost-intensive Variability in vector feeding patterns | [8,9,10,14,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,55,60,61,62,64,163,164,165] |
Human challenge studies | Realistic outcomes Maintenance of temperature homeostasis and cues Controlled environment | Ethical considerations Variability in disease severity among individuals Potential risk to participants | [65,66,71,76,79,80,85,86,87,88,89] |
Artificial membrane feeding | Controlled feeding Facilitate oral studies and the collection of saliva from vectors Eliminates ethical concerns Flexibility in blood sources Easy observation of vector feeding Easy to use, readily available, convenient, and cost-effective Reproducibility | Limited realism compared to natural hosts Variability in vector feeding behaviors Challenges in mimicking specific feeding mechanisms and conditions Animal pelt membrane limitations Biosafety protocols for glass feeders High cost Need for technical expertise | [23,107,117,118,141,142,143,144] |
Capillary feeding | Precise control and standardization Easy collection of vector saliva Easy observation of vector feeding Eliminates ethical concerns | Limited to certain vectors Blood volume available is relatively small compared to a live host. Technical complexities Invasive for mosquitoes | [146,149,150,151,152,153,154,170,171] |
Engineered biocompatible constructs | Close simulation of natural conditions Eliminates ethical concerns Biocompatibility with living cells and tissues Controlled and reproducible environment Flexibility to mimic different skin types Easy collection of vector salivary components | Limited realism Limited lifespan due to degradation High cost Need for technical expertise | [18,155,156,162,163,164,165,166,167,168,169] |
4. Application of Artificial Feeding Systems
5. Future Directions for Artificial Feeding Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine (US) Forum on Microbial Threats. Vector-Borne Disease Emergence and Resurgence. In Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections: Workshop Summary; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Javed, N.; Bhatti, A.; Paradkar, P.N. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021, 10, 1376. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 6 August 2023).
- Athni, T.S.; Shocket, M.S.; Couper, L.I.; Nova, N.; Caldwell, I.R.; Caldwell, J.M.; Childress, J.N.; Childs, M.L.; De Leo, G.A.; Kirk, D.G.; et al. The influence of vector-borne disease on human history: Socio-ecological mechanisms. Ecol. Lett. 2021, 24, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Klempner, M.S.; Unnasch, T.R.; Hu, L.T. Taking a Bite Out of Vector-Transmitted Infectious Diseases. N. Engl. J. Med. 2007, 356, 2567–2569. [Google Scholar] [CrossRef]
- Onyango, M.G.; Ciota, A.T.; Kramer, L.D. The Vector—Host—Pathogen Interface: The Next Frontier in the Battle Against Mosquito-Borne Viral Diseases? Front. Cell. Infect. Microbiol. 2020, 10, 564518. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.P.; Plante, J.A.; Plante, K.S.; Weaver, S.C. Yellow Fever: Roles of Animal Models and Arthropod Vector Studies in Understanding Epidemic Emergence. Microorganisms 2022, 10, 1578. [Google Scholar] [CrossRef]
- Lucas, C.J.; Morrison, T.E. Chapter Two—Animal Models of Alphavirus Infection and Human Disease. In Advances in Virus Research; Kielian, M., Mettenleiter, T.C., Roossinck, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 113, pp. 25–88. [Google Scholar]
- Vourc’h, G.; Halos, L.; Desvars, A.; Boué, F.; Pascal, M.; Lecollinet, S.; Zientara, S.; Duval, T.; Nzonza, A.; Brémont, M. Chikungunya Antibodies Detected in Non-Human Primates and Rats in Three Indian Ocean Islands after the 2006 ChikV Outbreak. Vet. Res. 2014, 45, 52. [Google Scholar] [CrossRef]
- Stuchin, M.; Machalaba, C.C.; Karesh, W.B. Vector-borne diseases: Animals and patterns. In Global Health Impacts of Vector-Borne Diseases: Workshop Summary; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Migné, C.V.; Hönig, V.; Bonnet, S.I.; Palus, M.; Rakotobe, S.; Galon, C.; Heckmann, A.; Vyletova, E.; Devillers, E.; Attoui, H.; et al. Evaluation of Two Artificial Infection Methods of Live Ticks as Tools for Studying Interactions between Tick-Borne Viruses and Their Tick Vectors. Sci. Rep. 2022, 12, 491. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of Animal Models in Biomedical Research: A Review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef]
- Barré-Sinoussi, F.; Montagutelli, X. Animal Models Are Essential to Biological Research: Issues and Perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef]
- Harikrishnan, V.S. 14—Ethical Issues in Animal Experimentation. In Biomedical Product and Materials Evaluation; Mohanan, P.V., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2022; pp. 355–372. ISBN 978-0-12-823966-7. [Google Scholar]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman Primate Models of Human Viral Infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L.; et al. Genomic Responses in Mouse Models Poorly Mimic Human Inflammatory Diseases. Proc. Natl. Acad. Sci. USA 2013, 110, 3507–3512. [Google Scholar] [CrossRef]
- Janson, K.D.; Carter, B.H.; Jameson, S.B.; de Verges, J.E.; Dalliance, E.S.; Royse, M.K.; Kim, P.; Wesson, D.M.; Veiseh, O. Development of an Automated Biomaterial Platform to Study Mosquito Feeding Behavior. Front. Bioeng. Biotechnol. 2023, 11, 1103748. [Google Scholar] [CrossRef]
- Kocan, K.M.; Yoshioka, J.; Sonenshine, D.E.; De La Fuente, J.; Ceraul, S.M.; Blouin, E.F.; Almazán, C. Capillary Tube Feeding System for Studying Tick-Pathogen Interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). J. Med. Entomol. 2005, 42, 864–874. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Park, H.; Ha, D.-H.; Yun, H.-S.; Yi, H.-G.; Lee, H. 3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks. Polymers 2021, 13, 366. [Google Scholar] [CrossRef]
- Cosgrove, J.B.; Wood, R.J.; Petrić, D.; Evans, D.T.; Abbott, R.H. A Convenient Mosquito Membrane Feeding System. J. Am. Mosq. Control Assoc. 1994, 10, 434–436. [Google Scholar] [PubMed]
- Andrade, J.; Xu, G.; Rich, S. A Silicone Membrane for In Vitro Feeding of Ixodes scapularis (Ixodida: Ixodidae). J. Med. Entomol. 2014, 51, 878–879. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Stefanini, C.; Canale, A.; Benelli, G. Artificial Blood Feeders for Mosquitoes and Ticks—Where from, Where To? Acta Trop. 2018, 183, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, N.; Griffin, G.; Gauthier, C. The Welfare of Animals Used in Science: How the “Three Rs” Ethic Guides Improvements. Can. Vet. J. 2009, 50, 523–530. [Google Scholar] [PubMed]
- Bonnet, S.; Liu, X. Laboratory Artificial Infection of Hard Ticks: A Tool for the Analysis of Tick-Borne Pathogen Transmission. Acarologia 2012, 52, 453–464. [Google Scholar] [CrossRef]
- Fatemi, M.; Saeidi, Z.; Noruzian, P.; Akhavan, A.A. Designing and Introducing a New Artificial Feeding Apparatus for Sand Fly Rearing. J. Arthropod-Borne Dis. 2018, 12, 426–431. [Google Scholar]
- Ribeiro, C.C.D.U.; Cordeiro, M.D.; Cepeda, P.B.; Valim, J.R.A.; Fonseca, A.H.; de Azevedo Baêta, B. Artificial Feeding of Ornithodoros rostratus Using a Silicone Membrane System. Parasitol. Res. 2023, 122, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.L.H.; Roth, T.L. Animal Models and Their Contribution to Our Understanding of the Relationship Between Environments, Epigenetic Modifications, and Behavior. Genes 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Baldon, L.V.R.; de Mendonça, S.F.; Ferreira, F.V.; Rezende, F.O.; Amadou, S.C.G.; Leite, T.H.J.F.; Rocha, M.N.; Marques, J.T.; Moreira, L.A.; Ferreira, A.G.A. AG129 Mice as a Comprehensive Model for the Experimental Assessment of Mosquito Vector Competence for Arboviruses. Pathogens 2022, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Parise, C.M.; Breuner, N.E.; Hojgaard, A.; Osikowicz, L.M.; Replogle, A.J.; Eisen, R.J.; Eisen, L. Experimental Demonstration of Reservoir Competence of the White-Footed Mouse, Peromyscus leucopus (Rodentia: Cricetidae), for the Lyme Disease Spirochete, Borrelia mayonii (Spirochaetales: Spirochaetaceae). J. Med. Entomol. 2020, 57, 927–932. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Chiao, D.-J.; Hsu, Y.-L.; Lin, C.-C.; Wu, H.-L.; Shu, P.-Y.; Chang, S.-F.; Chang, J.-H.; Kuo, S.-C. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020, 12, 336. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. J. Trop. Med. Hyg. 1940, s1-20, 471–492. [Google Scholar] [CrossRef]
- Beaty, B.J.; Marquardt, W.C. The Biology of Disease Vectors; University Press of Colorado: Norman, OK, USA, 1996; ISBN 978-0-87081-411-2. [Google Scholar]
- Gutiérrez-López, R.; Martínez-de la Puente, J.; Gangoso, L.; Soriguer, R.; Figuerola, J. Effects of Host Sex, Body Mass and Infection by Avian Plasmodium on the Biting Rate of Two Mosquito Species with Different Feeding Preferences. Parasites Vectors 2019, 12, 87. [Google Scholar] [CrossRef]
- Poché, D.; Franckowiak, G.; Clarke, T.; Tseveenjav, M.; Polyakova, L.; Poche, R. Efficacy of a Low Dose Fipronil Bait against Blacklegged Tick (Ixodes scapularis) Larvae Feeding on White-Footed Mice (Peromyscus leucopus) under Laboratory Conditions. Parasites Vectors 2020, 13, 391. [Google Scholar] [CrossRef]
- Uraki, R.; Hastings, A.K.; Gloria-Soria, A.; Powell, J.R.; Fikrig, E. Altered Vector Competence in an Experimental Mosquito-Mouse Transmission Model of Zika Infection. PLoS Negl. Trop. Dis. 2018, 12, e0006350. [Google Scholar] [CrossRef] [PubMed]
- Wei Xiang, B.W.; Saron, W.A.A.; Stewart, J.C.; Hain, A.; Walvekar, V.; Missé, D.; Thomas, F.; Kini, R.M.; Roche, B.; Claridge-Chang, A.; et al. Dengue Virus Infection Modifies Mosquito Blood-Feeding Behavior to Increase Transmission to the Host. Proc. Natl. Acad. Sci. USA 2022, 119, e2117589119. [Google Scholar] [CrossRef]
- Zeidner, N.S.; Higgs, S.; Happ, C.M.; Beaty, B.J.; Miller, B.R. Mosquito Feeding Modulates Th1 and Th2 Cytokines in Flavivirus Susceptible Mice: An Effect Mimicked by Injection of Sialokinins, but Not Demonstrated in Flavivirus Resistant Mice. Parasite Immunol. 1999, 21, 35–44. [Google Scholar] [CrossRef]
- Coroian, M.; Silaghi, C.; Tews, B.A.; Baltag, E.Ș.; Marinov, M.; Alexe, V.; Kalmár, Z.; Cintia, H.; Lupșe, M.S.; Mihalca, A.D. Serological Survey of Mosquito-Borne Arboviruses in Wild Birds from Important Migratory Hotspots in Romania. Pathogens 2022, 11, 1270. [Google Scholar] [CrossRef]
- Rahmati, M.; Norouzian, H.; Nayebzadeh, H.; Shokrani, H. Molecular Detection and Phylogenetic Analysis of Avian Haemosporidian Parasites in House Sparrows (Passer domesticus) of Western Iran. J. Wildl. Dis. 2023, 59, 155–160. [Google Scholar] [CrossRef]
- Koller, K.; Kernbach, M.; Reese, D.; Unnasch, T.; Martin, L.B. House Sparrows Vary Seasonally in Their Ability to Transmit West Nile Virus. Physiol. Biochem. Zool. 2023, 96, 332–341. [Google Scholar] [CrossRef]
- Kothera, L.; Mutebi, J.-P.; Kenney, J.L.; Saxton-Shaw, K.; Ward, M.P.; Savage, H.M. Bloodmeal, Host Selection, and Genetic Admixture Analyses of Culex pipiens Complex (Diptera: Culicidae) Mosquitoes in Chicago, IL. J. Med. Entomol. 2020, 57, 78–87. [Google Scholar] [CrossRef]
- Lawal, J.R.; Ibrahim, U.I.; Biu, A.A.; Musa, H.I. Molecular Detection of Avian Haemosporidian Parasites in Village Chickens (Gallus gallus domesticus) in Gombe State, Nigeria. J. Vet. Med. Animal Sci. 2022, 5, 1095. [Google Scholar]
- Salinas-Torres, J.; Varas-Parada, E.; Peña-Moreno, C.; Guerra-Zúñiga, M.; Henríquez, C.; Romero, W.; Collao-Ferrada, X. Serological Determination of West Nile Virus in Domestic Birds from Rapa Nui, Chile. Vector-Borne Zoonotic Dis. 2023, 23, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.C.; Linske, M.A.; Stafford, K.C. Orally delivered fipronil-laced bait reduces juvenile blacklegged tick (Ixodes scapularis) burdens on wild white-footed mice (Peromyscus leucopus). Ticks Tick-Borne Dis. 2023, 14, 102189. [Google Scholar] [CrossRef] [PubMed]
- Agliani, G.; Giglia, G.; de Bruin, E.; van Mastrigt, T.; Blom, R.; Sikkema, R.S.; Kik, M.; Koopmans, M.P.G.; Gröne, A.; Van den Brand, J.M.A. The Pathology of Co-Infection with Usutu Virus and Plasmodium spp. in Naturally Infected Eurasian Blackbirds (Turdus merula). One Health 2023, 16, 100534. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, A.J.; Rund, S.S.C.; Reece, S.E. Time-of-Day of Blood-Feeding: Effects on Mosquito Life History and Malaria Transmission. Parasites Vectors 2019, 12, 301. [Google Scholar] [CrossRef]
- Krokovsky, L.; Lins, C.R.B.; Guedes, D.R.D.; Wallau, G.d.L.; Ayres, C.F.J.; Paiva, M.H.S. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023, 15, 799. [Google Scholar] [CrossRef]
- Embers, M.E.; Grasperge, B.J.; Jacobs, M.B.; Philipp, M.T. Feeding of Ticks on Animals for Transmission and Xenodiagnosis in Lyme Disease Research. J. Vis. Exp. JoVE 2013, 78, e50617. [Google Scholar] [CrossRef]
- Ahmed, W.; Rajendran, K.V.; Neelakanta, G.; Sultana, H. An Experimental Murine Model to Study Acquisition Dynamics of Tick-Borne Langat Virus in Ixodes scapularis. Front. Microbiol. 2022, 13, 849313. [Google Scholar] [CrossRef]
- Pflughoeft, K.J.; Mash, M.; Hasenkampf, N.R.; Jacobs, M.B.; Tardo, A.C.; Magee, D.M.; Song, L.; LaBaer, J.; Philipp, M.T.; Embers, M.E.; et al. Multi-Platform Approach for Microbial Biomarker Identification Using Borrelia burgdorferi as a Model. Front. Cell. Infect. Microbiol. 2019, 9, 179. [Google Scholar] [CrossRef]
- Phillips, K.A.; Bales, K.L.; Capitanio, J.P.; Conley, A.; Czoty, P.W.; ’t Hart, B.A.; Hopkins, W.D.; Hu, S.L.; Miller, L.A.; Nader, M.A.; et al. Why primate models matter. Am. J. Primatol. 2014, 76, 801–827. [Google Scholar] [CrossRef]
- Kendricks, A.L.; Gray, S.B.; Wilkerson, G.K.; Sands, C.M.; Abee, C.R.; Bernacky, B.J.; Hotez, P.J.; Bottazzi, M.E.; Craig, S.L.; Jones, K.M. Reproductive Outcomes in Rhesus Macaques (Macaca mulatta) with Naturally-Acquired Trypanosoma cruzi Infection. Comp. Med. 2020, 70, 152–159. [Google Scholar] [CrossRef]
- Passos, P.H.O.; Ramos, D.G.; Romano, A.P.; Cavalcante, K.R.L.J.; Miranda, L.H.M.; Coelho, J.M.C.O.; Barros, R.C.; Martins Filho, A.J.; Quaresma, J.A.S.; Macêdo, I.L.; et al. Hepato-pathological hallmarks for the surveillance of Yellow Fever in South American non-human primates. Acta Trop. 2022, 231, 106468. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.; Gaspar, A.; Knight, A.; Vicente, L. Ethical and Scientific Pitfalls Concerning Laboratory Research with Non-Human Primates, and Possible Solutions. Animals 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Krebs, B.L.; Anderson, T.K.; Goldberg, T.L.; Hamer, G.L.; Kitron, U.D.; Newman, C.M.; Ruiz, M.O.; Walker, E.D.; Brawn, J.D. Host Group Formation Decreases Exposure to Vector-Borne Disease: A Field Experiment in a ‘Hotspot’ of West Nile Virus Transmission. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141586. [Google Scholar] [CrossRef]
- Dumas, A.; Bouchard, C.; Dibernardo, A.; Drapeau, P.; Lindsay, L.R.; Ogden, N.H.; Leighton, P.A. Transmission Patterns of Tick-Borne Pathogens among Birds and Rodents in a Forested Park in Southeastern Canada. PLoS ONE 2022, 17, e0266527. [Google Scholar] [CrossRef]
- Rataud, A.; Galon, C.; Bournez, L.; Henry, P.-Y.; Marsot, M.; Moutailler, S. Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France. Pathogens 2022, 11, 946. [Google Scholar] [CrossRef] [PubMed]
- Burkett-Cadena, N.D.; Ligon, R.A.; Liu, M.; Hassan, H.K.; Hill, G.E.; Eubanks, M.D.; Unnasch, T.R. Vector–Host Interactions in Avian Nests: Do Mosquitoes Prefer Nestlings over Adults? Am. J. Trop. Med. Hyg. 2010, 83, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Hackam, D.G. Translating Animal Research into Clinical Benefit. BMJ 2007, 334, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Layton, R.; Layton, D.; Beggs, D.; Fisher, A.; Mansell, P.; Stanger, K.J. The Impact of Stress and Anesthesia on Animal Models of Infectious Disease. Front. Vet. Sci. 2023, 10, 1086003. [Google Scholar] [CrossRef]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255–E266. [Google Scholar] [CrossRef]
- Kang, M.; Long, T.; Chang, C.; Meng, T.; Ma, H.; Li, Z.; Li, P.; Chen, Y. A Review of the Ethical Use of Animals in Functional Experimental Research in China Based on the “Four R” Principles of Reduction, Replacement, Refinement, and Responsibility. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2022, 28, e938807. [Google Scholar] [CrossRef] [PubMed]
- Pound, P.; Ebrahim, S.; Sandercock, P.; Bracken, M.B.; Roberts, I.; Reviewing Animal Trials Systematically (RATS) Group. Where Is the Evidence That Animal Research Benefits Humans? BMJ 2004, 328, 514. [Google Scholar] [CrossRef] [PubMed]
- Jamrozik, E.; Selgelid, M.J. History of Human Challenge Studies. In Human Challenge Studies in Endemic Settings; Springer: Cham, Switzerland, 2020; pp. 9–23. [Google Scholar] [CrossRef]
- Adams-Phipps, J.; Toomey, D.; Więcek, W.; Schmit, V.; Wilkinson, J.; Scholl, K.; Jamrozik, E.; Osowicki, J.; Roestenberg, M.; Manheim, D. A Systematic Review of Human Challenge Trials, Designs, and Safety. Clin. Infect. Dis. 2023, 76, 609–619. [Google Scholar] [CrossRef]
- Capanna, E. Grassi versus Ross: Who solved the riddle of malaria? Int. Microbiol. Off. J. Span. Soc. Microbiol. 2006, 9, 69–74. [Google Scholar] [CrossRef]
- Tulchinsky, T.H. Chapter 13—Ethical Issues in Public Health. In Case Studies in Public Health; Academic Press: San Diego, CA, USA, 2018; pp. 277–316. [Google Scholar] [CrossRef]
- Adler, S.; Theodor, O. The Experimental Transmission of Cutaneous Leishmaniasis to Man from Phlebotomus papatasii. Ann. Trop. Med. Parasitol. 1925, 19, 365–371. [Google Scholar] [CrossRef]
- Roestenberg, M.; Hoogerwerf, M.-A.; Ferreira, D.M.; Mordmüller, B.; Yazdanbakhsh, M. Experimental Infection of Human Volunteers. Lancet Infect. Dis. 2018, 18, e312–e322. [Google Scholar] [CrossRef]
- Harrington, L.C.; Foy, B.D.; Bangs, M.J. Considerations for Human Blood-Feeding and Arthropod Exposure in Vector Biology Research: An Essential Tool for Investigations and Disease Control. Vector-Borne Zoonotic Dis. 2020, 20, 807–816. [Google Scholar] [CrossRef]
- Kamau, W.W.; Sang, R.; Rotich, G.; Agha, S.B.; Menza, N.; Torto, B.; Tchouassi, D.P. Patterns of Aedes aegypti Abundance, Survival, Human-Blood Feeding and Relationship with Dengue Risk, Kenya. Front. Trop. Dis. 2023, 4, 1113531. [Google Scholar] [CrossRef]
- Kamau, W.W.; Sang, R.; Ogola, E.O.; Rotich, G.; Getugi, C.; Agha, S.B.; Menza, N.; Torto, B.; Tchouassi, D.P. Survival Rate, Blood Feeding Habits and Sibling Species Composition of Aedes simpsoni Complex: Implications for Arbovirus Transmission Risk in East Africa. PLoS Negl. Trop. Dis. 2022, 16, e0010171. [Google Scholar] [CrossRef] [PubMed]
- Killeen, G.F.; Seyoum, A.; Gimnig, J.E.; Stevenson, J.C.; Drakeley, C.J.; Chitnis, N. Made-to-Measure Malaria Vector Control Strategies: Rational Design Based on Insecticide Properties and Coverage of Blood Resources for Mosquitoes. Malar. J. 2014, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Alkema, M.; Yap, X.Z.; de Jong, G.M.; Reuling, I.J.; de Mast, Q.; van Crevel, R.; Ockenhouse, C.F.; Collins, K.A.; Bousema, T.; McCall, M.B.B.; et al. Controlled Human Malaria Infections by Mosquito Bites Induce More Severe Clinical Symptoms than Asexual Blood-Stage Challenge Infections. eBioMedicine 2022, 77, 103919. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.; Solarte, Y.; Jordán-Villegas, A.; Echavarría, J.F.; Rocha, L.; Palacios, R.; Ramírez, Ó.; Vélez, J.D.; Epstein, J.E.; Richie, T.L.; et al. Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers. Am. J. Trop. Med. Hyg. 2011, 84, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Coler, R.N.; Duthie, M.S.; Hofmeyer, K.A.; Guderian, J.; Jayashankar, L.; Vergara, J.; Rolf, T.; Misquith, A.; Laurance, J.D.; Raman, V.S.; et al. From Mouse to Man: Safety, Immunogenicity and Efficacy of a Candidate Leishmaniasis Vaccine LEISH-F3+GLA-SE. Clin. Transl. Immunol. 2015, 4, e35. [Google Scholar] [CrossRef]
- Kaye, P.M.; Parkash, V.; Layton, A.M.; Lacey, C.J.N. The Utility of a Controlled Human Infection Model for Developing Leishmaniasis Vaccines. In Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges: Focus on Leprosy, Leishmaniasis, Melioidosis and Tuberculosis; Christodoulides, M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 263–279. ISBN 978-3-031-24355-4. [Google Scholar]
- Sekhar, A.; Kang, G. Human Challenge Trials in Vaccine Development. Semin. Immunol. 2020, 50, 101429. [Google Scholar] [CrossRef] [PubMed]
- Lally, C.; Naulls, S. Human Challenge Studies in the Study of Infectious Diseases. 2023. Available online: https://post.parliament.uk/human-challenge-studies-in-the-study-of-infectious-diseases/ (accessed on 15 December 2023).
- Villanueva-Lizama, L.E.; Cruz-Chan, J.V.; Aguilar-Cetina, A.d.C.; Herrera-Sanchez, L.F.; Rodriguez-Perez, J.M.; Rosado-Vallado, M.E.; Ramirez-Sierra, M.J.; Ortega-Lopez, J.; Jones, K.; Hotez, P.; et al. Trypanosoma cruzi Vaccine Candidate Antigens Tc24 and TSA-1 Recall Memory Immune Response Associated with HLA-A and -B Supertypes in Chagasic Chronic Patients from Mexico. PLoS Negl. Trop. Dis. 2018, 12, e0006240. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, B.D.; Whitehead, S.S.; Pierce, K.K.; Tibery, C.M.; Grier, P.L.; Hynes, N.A.; Larsson, C.J.; Sabundayo, B.P.; Talaat, K.R.; Janiak, A.; et al. The Live Attenuated Dengue Vaccine TV003 Elicits Complete Protection against Dengue in a Human Challenge Model. Sci. Transl. Med. 2016, 8, 330ra36. [Google Scholar] [CrossRef] [PubMed]
- Coronel-MartÍnez, D.L.; Park, J.; López-Medina, E.; Capeding, M.R.; Cadena Bonfanti, A.A.; Montalbán, M.C.; Ramírez, I.; Gonzales, M.L.A.; DiazGranados, C.A.; Zambrano, B.; et al. Immunogenicity and Safety of Simplified Vaccination Schedules for the CYD-TDV Dengue Vaccine in Healthy Individuals Aged 9–50 Years (CYD65): A Randomised, Controlled, Phase 2, Non-Inferiority Study. Lancet Infect. Dis. 2021, 21, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Wollner, C.J.; Richner, M.; Hassert, M.A.; Pinto, A.K.; Brien, J.D.; Richner, J.M. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. J. Virol. 2021, 95, e02482-20. [Google Scholar] [CrossRef] [PubMed]
- Reuling, I.J.; van de Schans, L.A.; Coffeng, L.E.; Lanke, K.; Meerstein-Kessel, L.; Graumans, W.; van Gemert, G.-J.; Teelen, K.; Siebelink-Stoter, R.; van de Vegte-Bolmer, M.; et al. A Randomized Feasibility Trial Comparing Four Antimalarial Drug Regimens to Induce Plasmodium falciparum Gametocytemia in the Controlled Human Malaria Infection Model. eLife 2018, 7, e31549. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.W.; Thompson, F.M.; Berthoud, T.K.; Hutchings, C.L.; Andrews, L.; Biswas, S.; Poulton, I.; Prieur, E.; Correa, S.; Rowland, R.; et al. A Human Phase I/IIa Malaria Challenge Trial of a Polyprotein Malaria Vaccine. Vaccine 2011, 29, 7514–7522. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Yadava, A.; Tosh, D.; Sattabongkot, J.; Komisar, J.; Ware, L.A.; McCarthy, W.F.; Cowden, J.J.; Regules, J.; Spring, M.D.; et al. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy. PLoS Negl. Trop. Dis. 2016, 10, e0004423. [Google Scholar] [CrossRef]
- Church, D.L. Major Factors Affecting the Emergence and Re-Emergence of Infectious Diseases. Clin. Lab. Med. 2004, 24, 559–586. [Google Scholar] [CrossRef]
- Casanova, J.-L. Human Genetic Basis of Interindividual Variability in the Course of Infection. Proc. Natl. Acad. Sci. USA 2015, 112, E7118–E7127. [Google Scholar] [CrossRef]
- Umemiya-Shirafuji, R.; Hatta, T.; Okubo, K.; Sato, M.; Maeda, H.; Kume, A.; Yokoyama, N.; Igarashi, I.; Tsuji, N.; Fujisaki, K.; et al. Transovarial Persistence of Babesia Ovata DNA in a Hard Tick, Haemaphysalis longicornis, in a Semi-Artificial Mouse Skin Membrane Feeding System. Acta Parasitol. 2017, 62, 836–841. [Google Scholar] [CrossRef]
- Hatta, T.; Miyoshi, T.; Matsubayashi, M.; Islam, M.K.; Alim, M.A.; Anisuzzaman; Yamaji, K.; Fujisaki, K.; Tsuji, N. Semi-Artificial Mouse Skin Membrane Feeding Technique for Adult Tick, Haemaphysalis longicornis. Parasites Vectors 2012, 5, 263. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Uzcátegui, Y.d.V.; dos Santos, E.J.M.; Matos, E.R.; Silveira, F.T.; Vasconcelos dos Santos, T.; Póvoa, M.M. Artificial Blood-Feeding of Phlebotomines (Diptera: Psychodidae: Phlebotominae): Is It Time to Repurpose Biological Membranes in Light of Ethical Concerns? Parasites Vectors 2022, 15, 399. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M. A Simple Parafilm M-Based Method for Blood-Feeding Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2003, 40, 588–589. [Google Scholar] [CrossRef] [PubMed]
- Krull, C.; Böhme, B.; Clausen, P.-H.; Nijhof, A.M. Optimization of an Artificial Tick Feeding Assay for Dermacentor reticulatus. Parasites Vectors 2017, 10, 60. [Google Scholar] [CrossRef]
- Bilgiç, H.B.; Hacilarlioğlu, S.; Pekağirbaş, M.; Karagenç, T.; Eren, H.; Bakirci, S. In Vitro Feeding of Hyalomma excavatum and Hyalomma marginatum Tick Species. Parasitol. Res. 2023, 122, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Nijhof, A.M.; Tyson, K.R. In Vitro Feeding Methods for Hematophagous Arthropods and Their Application in Drug Discovery. In Ectoparasites; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 187–204. ISBN 978-3-527-80288-3. [Google Scholar]
- Hagen, H.E.; Grunewald, J. Routine Blood-Feeding of Aedes aegypti via a New Membrane. J. Am. Mosq. Control Assoc. 1990, 6, 535–536. [Google Scholar] [PubMed]
- Fontaine, A.; Jiolle, D.; Moltini-Conclois, I.; Lequime, S.; Lambrechts, L. Excretion of Dengue Virus RNA by Aedes aegypti Allows Non-Destructive Monitoring of Viral Dissemination in Individual Mosquitoes. Sci. Rep. 2016, 6, 24885. [Google Scholar] [CrossRef]
- Dias, L.S.; Caldeira, J.C.; Bauzer, L.G.S.R.; Lima, J.B.P. Assessment of Synthetic Membranes for Artificial Blood Feeding of Culicidae. Insects 2020, 12, 15. [Google Scholar] [CrossRef]
- Deng, L.; Koou, S.-Y.; Png, A.; Ng, L.C.; Lam-Phua, S.G. A Novel Mosquito Feeding System for Routine Blood-Feeding of Aedes aegypti and Aedes albopictus. Trop. Biomed. 2012, 29, 169–174. [Google Scholar]
- Ogston, C.W.; Yanovski, A.D. An Improved Artificial Feeder for Bloodsucking Insects. J. Med. Entomol. 1982, 19, 42–44. [Google Scholar] [CrossRef]
- Kröber, T.; Guerin, P.M. In Vitro Feeding Assays for Hard Ticks. Trends Parasitol. 2007, 23, 445–449. [Google Scholar] [CrossRef]
- Christofferson, R.C.; Mores, C.N. Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype. PLoS ONE 2011, 6, e16298. [Google Scholar] [CrossRef] [PubMed]
- Agha, S.B.; Chepkorir, E.; Mulwa, F.; Tigoi, C.; Arum, S.; Guarido, M.M.; Ambala, P.; Chelangat, B.; Lutomiah, J.; Tchouassi, D.P.; et al. Vector Competence of Populations of Aedes aegypti from Three Distinct Cities in Kenya for Chikungunya Virus. PLoS Negl. Trop. Dis. 2017, 11, e0005860. [Google Scholar] [CrossRef] [PubMed]
- Calle-Tobón, A.; Holguin-Rocha, A.F.; Moore, C.; Rippee-Brooks, M.; Rozo-Lopez, P.; Harrod, J.; Fatehi, S.; Rua-Uribe, G.L.; Park, Y.; Londoño-Rentería, B. Blood Meals with Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front. Microbiol. 2021, 12, 724345. [Google Scholar] [CrossRef] [PubMed]
- Graumans, W.; Schinkel, M.; van Gemert, G.-J.; Spitzen, J.; Bousema, T.; Miesen, P. Comparative Analysis of Glass and Hemotek Membrane Feeding Systems for Malaria Transmission Research. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, N.; Ranathunge, T.; Udayanga, L.; Abeyewickreme, W. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae) for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka. BioMed Res. Int. 2017, 2017, 3196924. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Albiter, H.M.; Regnault, C.; Alpizar-Sosa, E.A.; McGuinness, D.; Barrett, M.; Dillon, R.J. Non-Invasive Visualisation and Identification of Fluorescent Leishmania tarentolae in Infected Sand Flies. Wellcome Open Res. 2018, 3, 160. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.S.; Aguiar-Martins, K.; Costa, S.G.; Bates, P.A.; Dillon, R.J.; Genta, F.A. Second Blood Meal by Female Lutzomyia longipalpis: Enhancement by Oviposition and Its Effects on Digestion, Longevity, and Leishmania Infection. BioMed Res. Int. 2018, 2018, 2472508. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Albiter, H.; Sant’Anna, M.R.V.; Genta, F.A.; Dillon, R.J. Reactive Oxygen Species-Mediated Immunity against Leishmania mexicana and Serratia marcescens in the Phlebotomine Sand Fly Lutzomyia longipalpis. J. Biol. Chem. 2012, 287, 23995–24003. [Google Scholar] [CrossRef]
- Valente, A.; Jiolle, D.; Ravel, S.; Porciani, A.; Vial, L.; Michaud, V.; Kwiatek, O.; Pedarrieu, A.; Misse, D.; Ferraris, P.; et al. Flying Syringes for Emerging Enzootic Virus Screening: Proof of Concept for the Development of Noninvasive Xenosurveillance Tools Based on Tsetse Flies. Transbound. Emerg. Dis. 2023, 2023, e9145289. [Google Scholar] [CrossRef]
- Pilotte, N.; Cook, D.A.N.; Pryce, J.; Zulch, M.F.; Minetti, C.; Reimer, L.J.; Williams, S.A. Laboratory Evaluation of Molecular Xenomonitoring Using Mosquito and Tsetse Fly Excreta/Feces to Amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res. 2020, 3, 1734. [Google Scholar] [CrossRef]
- Durden, C.; Tian, Y.; Knape, K.; Klemashevich, C.; Norman, K.N.; Carey, J.B.; Hamer, S.A.; Hamer, G.L. Fluralaner Systemic Treatment of Chickens Results in Mortality in Triatoma gerstaeckeri, Vector of the Agent of Chagas Disease. Parasites Vectors 2023, 16, 178. [Google Scholar] [CrossRef] [PubMed]
- Gysin, G.; Urbano, P.; Brandner-Garrod, L.; Begum, S.; Kristan, M.; Walker, T.; Hernández, C.; Ramírez, J.D.; Messenger, L.A. Towards Environmental Detection of Chagas Disease Vectors and Pathogen. Sci. Rep. 2022, 12, 9849. [Google Scholar] [CrossRef] [PubMed]
- Busselman, R.E.; Zecca, I.B.; Hamer, G.L.; Hamer, S.A. Canine Systemic Insecticides Fluralaner and Lotilaner Induce Acute Mortality of Triatoma gerstaeckeri, North American Vector of the Chagas Disease Parasite. Am. J. Trop. Med. Hyg. 2023, 109, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Bland, D.M.; Hinnebusch, B.J. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS Negl. Trop. Dis. 2016, 10, e0004413. [Google Scholar] [CrossRef] [PubMed]
- Astete, H.; Briesemeister, V.; Campos, C.; Puertas, A.; Scott, T.W.; López-Sifuentes, V.; Larson, R.; Fisher, M.; Vásquez, G.M.; Escobedo-Vargas, K.; et al. Evaluation of “Caserotek” a Low Cost and Effective Artificial Blood-Feeding Device for Mosquitoes. PLoS Negl. Trop. Dis. 2023, 17, e0011563. [Google Scholar] [CrossRef] [PubMed]
- Studies on the Feeding Response of Mosquitoes to Nutritive Solutions in a New Membrane Feeder. Available online: https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V24_N4_P407-419.pdf (accessed on 24 December 2023).
- Abd Rahim, A.H.; Ab Majid, A.H.; Ahmad, A.H. Laboratory Rearing of Cimex hemipterus F. (Hemiptera: Cimicidae) Feeding on Different Types of Human Blood Compositions by Using Modified Artificial Feeding System. Asian Pac. J. Trop. Dis. 2015, 5, 930–934. [Google Scholar] [CrossRef]
- Barredo, E.; Raji, J.I.; Ramon, M.; DeGennaro, M.; Theobald, J. Carbon Dioxide and Blood-Feeding Shift Visual Cue Tracking during Navigation in Aedes aegypti Mosquitoes. Biol. Lett. 2022, 18, 20220270. [Google Scholar] [CrossRef]
- Eisen, R.J.; Vetter, S.M.; Holmes, J.L.; Bearden, S.W.; Montenieri, J.A.; Gage, K.L. Source of Host Blood Affects Prevalence of Infection and Bacterial Loads of Yersinia pestis in Fleas. J. Med. Entomol. 2008, 45, 933–938. [Google Scholar] [CrossRef]
- Prasadini, M.; Dayananda, P.; Fernando, S.; Harischandra, I.; De Silva, N. Blood Feeding Preference of Female Aedes aegypti Mosquitoes for Human Blood Group Types and Its Impact on Their Fecundity: Implications for Vector Control. Am. J. Entomol. 2019, 3, 43–48. [Google Scholar] [CrossRef]
- Phasomkusolsil, S.; Tawong, J.; Monkanna, N.; Kornkan, T.; Jitbantrengphan, T.; Chaiyasab, M.; Pongda, N.; Kamram, T.; Lindroth, E.J. The Effects of Human and Rhesus Macaque Blood Meal Sources on Mosquito Reproduction and Adult Survival Under Laboratory Conditions. SSRN. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4493772 (accessed on 8 August 2023).
- Robison, A.; Young, M.C.; Byas, A.D.; Rückert, C.; Ebel, G.D. Comparison of Chikungunya Virus and Zika Virus Replication and Transmission Dynamics in Aedes aegypti Mosquitoes. Am. J. Trop. Med. Hyg. 2020, 103, 869–875. [Google Scholar] [CrossRef]
- Paton, D.G.; Childs, L.M.; Itoe, M.A.; Holmdahl, I.E.; Buckee, C.O.; Catteruccia, F. Exposing Anopheles Mosquitoes to Antimalarials Blocks Plasmodium Parasite Transmission. Nature 2019, 567, 239–243. [Google Scholar] [CrossRef]
- Wechtaisong, W.; Bonnet, S.I.; Lien, Y.-Y.; Chuang, S.-T.; Tsai, Y.-L. Transmission of Bartonella henselae within Rhipicephalus sanguineus: Data on the Potential Vector Role of the Tick. PLoS Negl. Trop. Dis. 2020, 14, e0008664. [Google Scholar] [CrossRef]
- Wechtaisong, W.; Bonnet, S.I.; Chomel, B.B.; Lien, Y.-Y.; Chuang, S.-T.; Tsai, Y.-L. Investigation of Transovarial Transmission of Bartonella henselae in Rhipicephalus sanguineus sensu Lato Ticks Using Artificial Feeding. Microorganisms 2021, 9, 2501. [Google Scholar] [CrossRef] [PubMed]
- Oliva Chávez, A.S.; Guzman Valencia, S.; Lynn, G.E.; Rosario, C.A.; Thomas, D.B.; Johnson, T.L. Evaluation of the in Vitro Acaricidal Effect of Five Organic Compounds on the Cattle Fever Tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp. Appl. Acarol. 2023, 89, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Volf, P.; Volfova, V. Establishment and Maintenance of Sand Fly Colonies. J. Vector Ecol. 2011, 36, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Lawyer, P.; Killick-Kendrick, M.; Rowland, T.; Rowton, E.; Volf, P. Laboratory Colonization and Mass Rearing of Phlebotomine Sand Flies (Diptera, Psychodidae). Parasite 2017, 24, 42. [Google Scholar] [CrossRef] [PubMed]
- Jancarova, M.; Bichaud, L.; Hlavacova, J.; Priet, S.; Ayhan, N.; Spitzova, T.; Volf, P.; Charrel, R.N. Experimental Infection of Sand Flies by Massilia Virus and Viral Transmission by Co-Feeding on Sugar Meal. Viruses 2019, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, L.; Pérez-Torres, A.; Gudiño-Zayas, M.E.; Zamora-Chimal, J.; Meneses, C.; Kamhawi, S.; Valenzuela, J.G.; Becker, I. Leishmania major-Infected Phlebotomus duboscqi Sand Fly Bites Enhance Mast Cell Degranulation. Pathogens 2023, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Vaselek, S.; Prudhomme, J.; Myskova, J.; Lestinova, T.; Spitzova, T.; Bañuls, A.-L.; Volf, P. Comparative Study of Promastigote- and Amastigote-Initiated Infection of Leishmania infantum (Kinetoplastida: Trypanosomatidae) in Phlebotomus perniciosus (Diptera: Psychodidae) Conducted in Different Biosafety Level Laboratories. J. Med. Entomol. 2020, 57, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Laroche, L.; Ayhan, N.; Charrel, R.; Bañuls, A.-L.; Prudhomme, J. Persistence of Toscana Virus in Sugar and Blood Meals of Phlebotomine Sand Flies: Epidemiological and Experimental Consequences. Sci. Rep. 2023, 13, 5608. [Google Scholar] [CrossRef]
- Lemon, A.; Silva-Rohwer, A.; Sagawa, J.; Vadyvaloo, V. Co-Infection Assay to Determine Yersinia pestis Competitive Fitness in Fleas. In Pathogenic Yersinia: Methods and Protocols; Vadyvaloo, V., Lawrenz, M.B., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; pp. 153–166. ISBN 978-1-4939-9541-7. [Google Scholar]
- Tajeri, S.; Razmi, G.; Haghparast, A. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection. PLoS ONE 2016, 11, e0169053. [Google Scholar] [CrossRef]
- Voigt, W.P.; Young, A.S.; Mwaura, S.N.; Nyaga, S.G.; Njihia, G.M.; Mwakima, F.N.; Morzaria, S.P. In Vitro Feeding of Instars of the Ixodid Tick Amblyomma variegatum on Skin Membranes and Its Application to the Transmission of Theileria mutans and Cowdria ruminatium. Parasitology 1993, 107 Pt 3, 257–263. [Google Scholar] [CrossRef]
- Faber, P.A.; Dorai, A.J.A.P.S.; Chown, S.L. A Standardised Low-Cost Membrane Blood-Feeder for Aedes aegypti Made Using Common Laboratory Materials. PeerJ 2022, 10, e14247. [Google Scholar] [CrossRef]
- Costa-da-Silva, A.L.; Carvalho, D.O.; Kojin, B.B.; Capurro, M.L. Implementation of the Artificial Feeders in Hematophagous Arthropod Research Cooperates to the Vertebrate Animal Use Replacement, Reduction and Refinement (3Rs) Principle. J. Clin. Res. Bioeth. 2014, 5, 167. [Google Scholar] [CrossRef]
- Young, A.S.; Waladde, S.M.; Morzaria, S.P. Artificial Feeding Systems for Ixodid Ticks as a Tool for Study of Pathogen Transmission. Ann. N. Y. Acad. Sci. 1996, 791, 211–218. Available online: https://www.ilri.org/knowledge/publications/artificial-feeding-systems-ixodid-ticks-tool-study-pathogen-transmission (accessed on 25 December 2023). [CrossRef]
- Sri-in, C.; Weng, S.-C.; Shiao, S.-H.; Tu, W.-C. A Simplified Method for Blood Feeding, Oral Infection, and Saliva Collection of the Dengue Vector Mosquitoes. PLoS ONE 2020, 15, e0233618. [Google Scholar] [CrossRef]
- Siria, D.J.; Batista, E.P.A.; Opiyo, M.A.; Melo, E.F.; Sumaye, R.D.; Ngowo, H.S.; Eiras, A.E.; Okumu, F.O. Evaluation of a Simple Polytetrafluoroethylene (PTFE)-Based Membrane for Blood-Feeding of Malaria and Dengue Fever Vectors in the Laboratory. Parasites Vectors 2018, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, P.S.; Król, N.; Novoa, M.B.; Nijhof, A.M.; Pfeffer, M.; Nava, S.; Obiegala, A. Preliminary Study on Artificial versus Animal-Based Feeding Systems for Amblyomma Ticks (Acari: Ixodidae). Microorganisms 2023, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Cote, M.; Paul, R.E.L.; Bonnet, S.I. Impact of Feeding System and Infection Status of the Blood Meal on Ixodes ricinus Feeding. Ticks Tick-Borne Dis. 2014, 5, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Suppan, J.; Engel, B.; Marchetti-Deschmann, M.; Nürnberger, S. Tick Attachment Cement—Reviewing the Mysteries of a Biological Skin Plug System. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1056–1076. [Google Scholar] [CrossRef]
- Sadlova, J.; Bacikova, D.; Becvar, T.; Vojtkova, B.; England, M.; Shaw, J.; Volf, P. Porcisia Transmission by Prediuresis of Sand Flies. Front. Cell. Infect. Microbiol. 2022, 12, 981071. [Google Scholar] [CrossRef]
- Broadwater, A.H.; Sonenshine, D.E.; Hynes, W.L.; Ceraul, S.; de Silva, A.M. Glass Capillary Tube Feeding: A Method for Infecting Nymphal Ixodes scapularis (Acari: Ixodidae) with The Lyme Disease Spirochete Borrelia burgdorferi. J. Med. Entomol. 2002, 39, 285–292. [Google Scholar] [CrossRef]
- Inokuma, H.; Kemp, D.H. Establishment of Boophilus microplus Infected with Babesia bigemina by Using In Vitro Tube Feeding Technique. J. Vet. Med. Sci. 1998, 60, 509–512. [Google Scholar] [CrossRef]
- Antunes, S.; Merino, O.; Mosqueda, J.; Moreno-Cid, J.A.; Bell-Sakyi, L.; Fragkoudis, R.; Weisheit, S.; Pérez de la Lastra, J.M.; Alberdi, P.; Domingos, A.; et al. Tick Capillary Feeding for the Study of Proteins Involved in Tick-Pathogen Interactions as Potential Antigens for the Control of Tick Infestation and Pathogen Infection. Parasites Vectors 2014, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.E. The Role of Leishmania proteophosphoglycans in Sand Fly Transmission and Infection of the Mammalian Host. Front. Microbiol. 2012, 3, 223. [Google Scholar] [CrossRef] [PubMed]
- Bullard, R.; Allen, P.; Chao, C.-C.; Douglas, J.; Das, P.; Morgan, S.E.; Ching, W.-M.; Karim, S. Structural Characterization of Tick Cement Cones Collected from in Vivo and Artificial Membrane Blood-Fed Lone Star Ticks (Amblyomma americanum). Ticks Tick-Borne Dis. 2016, 7, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.L.; Richards, S.L.; Smartt, C.T. A simple method for determining arbovirus transmission in mosquitoes. J. Am. Mosq. Control Assoc. 2010, 26, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Patton, T.G.; Dietrich, G.; Brandt, K.; Dolan, M.C.; Piesman, J.; Gilmore, R.D. Saliva, Salivary Gland, and Hemolymph Collection from Ixodes Scapularis Ticks. J. Vis. Exp. JoVE 2012, 60, e3894. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.P.; Burns, P.L.; Perinet, L.C.; Powers, A.M.; Byers, N.M. Improved Mosquito Housing and Saliva Collection Method Enhances Safety While Facilitating Longitudinal Assessment of Individual Mosquito Vector Competence for Arboviruses. Vector-Borne Zoonotic Dis. 2024, 24, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Seavey, C.E.; Doshi, M.; Panarello, A.P.; Felice, M.A.; Dickerson, A.K.; Jewett, M.W.; Willenberg, B.J. Engineered Human Tissue as a New Platform for Mosquito Bite-Site Biology Investigations. Insects 2023, 14, 514. [Google Scholar] [CrossRef]
- Pu, L.; Wang, H.; Zhao, Y.; Yuan, Z.; Zhang, Y.; Ding, J.; Qu, K.; Sun, W.; Xue, Z.; Xu, W.; et al. Skin-like Hydrogels: Design Strategy and Mechanism, Properties, and Sensing Applications. J. Mater. Chem. C 2023, 11, 8358–8377. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
- Seliktar, D. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science 2012, 336, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering Hydrogels as Extracellular Matrix Mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Kuraishi, Y.; Ohtsuka, E.; Nakano, T.; Kawai, S.; Andoh, T.; Nojima, H.; Kamimura, K. Possible Involvement of 5-Lipoxygenase Metabolite in Itch-Associated Response of Mosquito Allergy in Mice. J. Pharmacol. Sci. 2007, 105, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Styer, L.M.; Lim, P.-Y.; Louie, K.L.; Albright, R.G.; Kramer, L.D.; Bernard, K.A. Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. J. Virol. 2011, 85, 1517–1527. [Google Scholar] [CrossRef]
- Uraki, R.; Hastings, A.K.; Marin-Lopez, A.; Sumida, T.; Takahashi, T.; Grover, J.R.; Iwasaki, A.; Hafler, D.A.; Montgomery, R.R.; Fikrig, E. Aedes aegypti AgBR1 Antibodies Modulate Early Zika Virus Infection of Mice. Nat. Microbiol. 2019, 4, 948–955. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, X. Study on a 3D Hydrogel-Based Culture Model for Characterizing Growth of Fibroblasts under Viral Infection and Drug Treatment. SLAS Discov. Adv. Life Sci. R&D 2017, 22, 626–634. [Google Scholar] [CrossRef]
- Barrila, J.; Crabbé, A.; Yang, J.; Franco, K.; Nydam, S.D.; Forsyth, R.J.; Davis, R.R.; Gangaraju, S.; Ott, C.M.; Coyne, C.B.; et al. Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect. Immun. 2018, 86, e00282-18. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dawson, C.; Lamb, M.; Mueller, E.; Stefanek, E.; Akbari, M.; Hoare, T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front. Bioeng. Biotechnol. 2022, 10, 849831. [Google Scholar] [CrossRef]
- Maldonado-Ruiz, L.P.; Park, Y.; Zurek, L. Liquid Water Intake of the Lone Star Tick, Amblyomma americanum: Implications for Tick Survival and Management. Sci. Rep. 2020, 10, 6000. [Google Scholar] [CrossRef]
- Purnell, R.E.; Joyner, L.P. Artificial Feeding Technique for Rhipicephalus appendiculatus and the Transmission of Theileria parva from the Salivary Secretion. Nature 1967, 216, 484–485. [Google Scholar] [CrossRef]
- Shaw, W.R.; Catteruccia, F. Vector Biology Meets Disease Control: Using Basic Research to Fight Vector-Borne Diseases. Nat. Microbiol. 2019, 4, 20–34. [Google Scholar] [CrossRef]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef]
- Waltmann, A.; Koepfli, C.; Tessier, N.; Karl, S.; Fola, A.; Darcy, A.W.; Wini, L.; Harrison, G.L.A.; Barnadas, C.; Jennison, C.; et al. Increasingly Inbred and Fragmented Populations of Plasmodium vivax Associated with the Eastward Decline in Malaria Transmission across the Southwest Pacific. PLoS Negl. Trop. Dis. 2018, 12, e0006146. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Rückert, C.; Chotiwan, N.; Nguyen, C.; Luna, S.M.G.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector Competence of American Mosquitoes for Three Strains of Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar] [CrossRef]
- Chepkorir, E.; Lutomiah, J.; Mutisya, J.; Mulwa, F.; Limbaso, K.; Orindi, B.; Ng’ang’a, Z.; Sang, R. Vector Competence of Aedes aegypti Populations from Kilifi and Nairobi for Dengue 2 Virus and the Influence of Temperature. Parasites Vectors 2014, 7, 435. [Google Scholar] [CrossRef] [PubMed]
- Göertz, G.P.; Vogels, C.B.F.; Geertsema, C.; Koenraadt, C.J.M.; Pijlman, G.P. Mosquito Co-Infection with Zika and Chikungunya Virus Allows Simultaneous Transmission without Affecting Vector Competence of Aedes aegypti. PLoS Negl. Trop. Dis. 2017, 11, e0005654. [Google Scholar] [CrossRef] [PubMed]
- de Beer, C.J.; Boikanyo, S.N.B.; Venter, G.J. Assessment of the Hemotek® System for the In Vitro Feeding of Field-Collected Culicoides imicola (Diptera: Ceratopogonidae) in South Africa. Med. Vet. Entomol. 2021, 35, 177–186. [Google Scholar] [CrossRef]
- Lambrechts, L.; Chevillon, C.; Albright, R.G.; Thaisomboonsuk, B.; Richardson, J.H.; Jarman, R.G.; Scott, T.W. Genetic Specificity and Potential for Local Adaptation between Dengue Viruses and Mosquito Vectors. BMC Evol. Biol. 2009, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Bozic, J.; Mathias, D.; Smartt, C.T. Immune-Related Transcripts, Microbiota and Vector Competence Differ in Dengue-2 Virus-Infected Geographically Distinct Aedes aegypti Populations. Parasites Vectors 2023, 16, 166. [Google Scholar] [CrossRef]
- Shapiro, L.L.M.; Whitehead, S.A.; Thomas, M.B. Quantifying the Effects of Temperature on Mosquito and Parasite Traits That Determine the Transmission Potential of Human Malaria. PLoS Biol. 2017, 15, e2003489. [Google Scholar] [CrossRef]
- Tusting, L.S.; Bousema, T.; Smith, D.L.; Drakeley, C. Measuring Changes in Plasmodium falciparum Transmission: Precision, Accuracy and Costs of Metrics. Adv. Parasitol. 2014, 84, 151–208. [Google Scholar] [CrossRef]
- Campbell, C.L.; Snell, T.K.; Bennett, S.; Wyckoff, J.H., III; Heaslip, D.; Flatt, J.; Harris, E.K.; Hartman, D.A.; Lian, E.; Bird, B.H.; et al. Safety Study of Rift Valley Fever Human Vaccine Candidate (DDVax) in Mosquitoes. Transbound. Emerg. Dis. 2022, 69, 2621–2633. [Google Scholar] [CrossRef]
- Damiati, S.; Kompella, U.B.; Damiati, S.A.; Kodzius, R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes 2018, 9, 103. [Google Scholar] [CrossRef]
- Li, T.; Eappen, A.G.; Richman, A.M.; Billingsley, P.F.; Abebe, Y.; Li, M.; Padilla, D.; Rodriguez-Barraquer, I.; Sim, B.K.L.; Hoffman, S.L. Robust, Reproducible, Industrialized, Standard Membrane Feeding Assay for Assessing the Transmission Blocking Activity of Vaccines and Drugs against Plasmodium falciparum. Malar. J. 2015, 14, 150. [Google Scholar] [CrossRef]
- Luckhart, S.; Giulivi, C.; Drexler, A.L.; Antonova-Koch, Y.; Sakaguchi, D.; Napoli, E.; Wong, S.; Price, M.S.; Eigenheer, R.; Phinney, B.S.; et al. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host. PLoS Pathog. 2013, 9, e1003180. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals 2021, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Hol, F.J.; Lambrechts, L.; Prakash, M. BiteOscope, an Open Platform to Study Mosquito Biting Behavior. eLife 2020, 9, e56829. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Willett, D.S.; George, J.; Willett, N.S.; Stelinski, L.L.; Lapointe, S.L. Machine Learning for Characterization of Insect Vector Feeding. PLoS Comput. Biol. 2016, 12, e1005158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olajiga, O.M.; Jameson, S.B.; Carter, B.H.; Wesson, D.M.; Mitzel, D.; Londono-Renteria, B. Artificial Feeding Systems for Vector-Borne Disease Studies. Biology 2024, 13, 188. https://doi.org/10.3390/biology13030188
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. Biology. 2024; 13(3):188. https://doi.org/10.3390/biology13030188
Chicago/Turabian StyleOlajiga, Olayinka M., Samuel B. Jameson, Brendan H. Carter, Dawn M. Wesson, Dana Mitzel, and Berlin Londono-Renteria. 2024. "Artificial Feeding Systems for Vector-Borne Disease Studies" Biology 13, no. 3: 188. https://doi.org/10.3390/biology13030188