The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Vulnerability of Food Systems in Africa
2.1. Abiotic Factors and Their Effect on Food Systems in Africa
2.2. Biotic Factors and Their Effect on Food Systems in Africa
3. Biological Invasions: Donors, Drivers and Processes Involved
3.1. Biological Invasions
3.2. ‘Donors’ of Biological Invasions
3.3. Drivers of Biological Invasions
3.3.1. Anthropogenic Activities
3.3.2. Climate Change and Environmental Attributes
3.3.3. Species and Event Attributes Leading to Biological Invasions in Africa
Species and Event Attributes of Spodoptera frugiperda
Species and Event Attributes of Prostephanus truncatus
4. Impacts of S. frugiperda and P. truncatus Biological Invasions
4.1. Overview
4.2. Economic Costs of S. frugiperda and P. truncatus Invasions
4.3. Direct and Indirect Effects of S. frugiperda and P. truncatus on Human Health and Nutrition
4.4. Ecological Costs of Biological Invasions
5. Management Strategies for S. frugiperda and P. truncatus Biological Invasions
5.1. Overview
5.2. Prevention through Quarantine Measures
5.3. Curative Measures
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renault, D.; Laparie, M.; McCauley, S.J.; Bonte, D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions. Annu. Rev. Entomol. 2018, 63, 345–368. [Google Scholar] [CrossRef] [PubMed]
- Perrings, C.; Williamson, M.; Barbier, E.B.; Delfino, D.; Dalmazzone, S.; Shogren, J.; Simmons, P.; Watkinson, A. Biological Invasion Risks and the Public Good: An Economic Perspective. Conserv. Ecol. 2002, 6, 1. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem Consequences of Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; Pascal, M.; Pys, P. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The Sustainable Development Goals Report 2022 (Internet); United Nations: New York, NY, USA, 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 16 August 2023).
- Lodge, D.M. Biological invasions: Lessons for ecology. Trends Ecol. Evol. 1993, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Westbrooks, R. Biological Invasions as Global Environmental Change. 1996. Available online: https://pubag.nal.usda.gov/catalog/61 (accessed on 18 June 2023).
- Bjornlund, V.; Bjornlund, H.; van Rooyen, A. Why food insecurity persists in sub-Saharan Africa: A review of existing evidence. Food Secur. 2022, 14, 845–864. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]
- Pratt, C.F.; Constantine, K.L.; Murphy, S.T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Secur. 2017, 14, 31–37. [Google Scholar] [CrossRef]
- Durocher-Granger, L.; Mfune, T.; Musesha, M.; Lowry, A.; Reynolds, K.; Buddie, A.; Kenis, M. Factors influencing the occurrence of fall armyworm parasitoids in Zambia. J. Pest Sci. 2021, 94, 1133–1146. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Nyamukondiwa, C.; Machekano, H.; Chidawanyika, F.; Mutamiswa, R.; Ma, G.; Ma, C.-S. Geographic dispersion of invasive crop pests: The role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Curr. Opin. Insect Sci. 2022, 50, 100878. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 12 May 2023).
- Bekele, D. Role of postharvest management for food security: A review. Adv. Crop Sci. Technol. 2021, 9, 1–6. [Google Scholar]
- Bechoff, A.; Shee, A.; Mvumi, B.M.; Ngwenyama, P.; Debelo, H.; Ferruzzi, M.G.; Nyanga, L.K.; Mayanja, S.; Tomlins, K.I. Estimation of nutritional postharvest losses along food value chains: A case study of three key food security commodities in sub-Saharan Africa. Food Secur. 2022, 14, 571–590. [Google Scholar] [CrossRef]
- Totobesola, M.; Delve, R.; Nkundimana, J.D.; Cini, L.; Gianfelici, F.; Mvumi, B.; Gaiani, S.; Pani, A.; Barraza, A.S.; Rolle, R.S. A holistic approach to food loss reduction in Africa: Food loss analysis, integrated capacity development and policy implications. Food Secur. 2022, 14, 1401–1415. [Google Scholar] [CrossRef]
- Goodell, K.; Parker, I.M.; Gilbert, G.S. Biological impacts of species invasions: Implications for policy makers. In Incorporating Science, Economics, and Sociology in Developing Sanitary And Phytosanitary Standards In International Trade; Caswell, J., Ed.; National Academic Press: Washington, DC, USA, 2000; pp. 87–117. [Google Scholar]
- Diagne, C.; Leroy, B.; Gozlan, R.E.; Vaissière, A.-C.; Assailly, C.; Nuninger, L.; Roiz, D.; Jourdain, F.; Jarić, I.; Courchamp, F. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 2020, 7, 277. [Google Scholar] [CrossRef] [PubMed]
- Zenni, R.D.; Essl, F.; García-Berthou, E.; McDermott, S.M. The economic costs of biological invasions around the world. NeoBiota 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Sileshi, G.W.; Gebeyehu, S.; Mafongoya, P.L. The threat of alien invasive insect and mite species to food security in Africa and the need for a continent-wide response. Food Secur. 2019, 11, 763–775. [Google Scholar] [CrossRef]
- World Bank; NRI; FAO. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan African; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Tefera, T. Post-harvest losses in African maize in the face of increasing food shortage. Food Secur. 2012, 4, 267–277. [Google Scholar] [CrossRef]
- FAO. Global Agriculture towards 2050. High Level Expert Forum—How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insects pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Hodges, R. The biology and control of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae)—A destructive storage pest with an increasing range. J. Stored Prod. Res. 1986, 22, 1–14. [Google Scholar] [CrossRef]
- Richter, J.; Biliwa, A.; Helbig, J.; Henning-Helbig, S. Impact of Teretriosoma nigrescens Lewis (Coleoptera: Histeridae) on Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and losses in traditional maize stores in southern Togo. J. Stored Prod. Res. 1997, 33, 137–142. [Google Scholar] [CrossRef]
- Quellhorst, H.; Athanassiou, C.G.; Zhu, K.Y.; Morrison, W.R. The biology, ecology and management of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res. 2021, 94, 101860. [Google Scholar] [CrossRef]
- Muatinte, B.L.; Kavallieratos, N.G.; Boukouvala, M.C.; García-Lara, S.; López-Castillo, L.M.; Mvumi, B.M. The threat of the larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae) and practical control options for the pest. CABI Rev. 2019, 14, 1–25. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Munyua, B.; Palmas, S.; Kassie, M.; Bruce, A. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 2020, 292, 106804. [Google Scholar] [CrossRef]
- Abro, Z.; Kimathi, E.; De Groote, H.; Tefera, T.; Sevgan, S.; Niassy, S.; Kassie, M. Socioeconomic and health impacts of fall armyworm in Ethiopia. PLoS ONE 2021, 16, e0257736. [Google Scholar] [CrossRef]
- Boxall, R. Damage and Loss Caused by the Larger Grain Borer Prostephanus truncatus. Integr. Pest Manag. Rev. 2002, 7, 105–121. [Google Scholar] [CrossRef]
- Mutambuki, K.; Ngatia, C.M. Assessment of grain damage and weight loss on farm stored maize in highlands areas of Bungoma district, Kenya. J. Agric. Sci. Technol. B 2012, 2, 349. [Google Scholar]
- Muatinte, B.L.; Cugala, D.R. Monitoring the Establishment and Dispersal of Teretrius nigrescens Lewis (Coleoptera: Histeridae), a Predator of Prostephanus truncatus Horn (Coleoptera: Bostrichidae) in Manica Province, Mozambique. Afr. Entomol. 2015, 23, 251–254. [Google Scholar] [CrossRef]
- Mlambo, S.; Mvumi, B.M.; Stathers, T.; Mubayiwa, M.; Nyabako, T. Field efficacy and persistence of synthetic pesticidal dusts on stored maize grain under contrasting agroclimatic conditions. J. Stored Prod. Res. 2018, 76, 129–139. [Google Scholar] [CrossRef]
- Mlambo, S.; Mvumi, B.M.; Stathers, T.; Mubayiwa, M.; Nyabako, T. Field efficacy of hermetic and other maize grain storage options under smallholder farmer management. Crop. Prot. 2017, 98, 198–210. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.; Zhou, H.; Ren, Y.; Li, Z.; Xing, L.; Zhang, B.; Qiao, X.; Liu, B.; et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar]
- Timilsena, B.P.; Niassy, S.; Kimathi, E.; Abdel-Rahman, E.M.; Seidl-Adams, I.; Wamalwa, M.; Tonnang, H.E.Z.; Ekesi, S.; Hughes, D.P.; Rajotte, E.G.; et al. Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci. Rep. 2022, 12, 539. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Kassie, M.; Wossen, T.; De Groote, H.; Tefera, T.; Sevgan, S.; Balew, S. Economic impacts of fall armyworm and its management strategies: Evidence from southern Ethiopia. Eur. Rev. Agric. Econ. 2020, 47, 1473–1501. [Google Scholar] [CrossRef]
- Rwomushana, I.; Bateman, M.; Beale, T.; Beseh, P.; Cameron, K.; Chiluba, M.; Clottey, V.; Davis, T.; Day, R.; Early, R.; et al. Fall Armyworm: Impacts and Implications for Africa; Evidence Note Update; CABI: Wallingford, UK, 2018. [Google Scholar]
- FAO. The Global Action for Fall Armyworm Control: Action Framework 2020–2022. Working Together to Tame the Global Threat; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Nyamutukwa, S.; Mvumi, B.M.; Chinwada, P. Sustainable management of fall armyworm, Spodoptera frugiperda (JE Smith): Challenges and proposed solutions from an African perspective. Int. J. Pest Manag. 2022. [Google Scholar] [CrossRef]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.A.; Day, R.; Desneux, N.; Wu, K. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022, 43, 187–241. [Google Scholar]
- McLeod, P.; Studebaker, G. Major insect pests of field corn in Arkansas and their management. In Corn Production Handbook; Espinoza, L., Ross, J., Eds.; Cooperative Extension Miscellaneous Publication 437; University of Arkansas: Fayetteville, AR, USA, 2003; pp. 29–44. [Google Scholar]
- Scholz, D.; Borgemeister, C.; Markham, R.H.; Poehling, H. Flight initiation in Prostephanus truncatus: Influence of population density and aggregation pheromone. Entomol. Exp. Appl. 1997, 85, 237–245. [Google Scholar]
- Hodges, R.J.; Addo, S.; Birkinshaw, L. Can observation of climatic variables be used to predict the flight dispersal rates of Prostephanus truncatus? Agric. For. Entomol 2003, 5, 123–135. [Google Scholar]
- Tefera, T.; Mugo, S.; Likhayo, P. Effects of insect population density and storage time on grain damage and weight loss in maize due to the maize weevil Sitophilus zeamais and the larger grain borer Prostephanus truncatus. Acad. J. 2011, 6, 2249–2254. [Google Scholar]
- Dunstan, W.R.; Magazini, I.A. Outbreaks and new records, United Republic of Tanzania. The larger grain borer on stored products. FAO Plant Prot. Bull. 1981, 29, 80–81. [Google Scholar]
- Hodges, R.J.; Dunstan, W.R.; Magazini, I.; Golob, P. An outbreak of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in East Africa. Prot. Ecol. 1983, 5, 183–194. [Google Scholar]
- Morey, A. Prostephanus truncatus (Larger Grain Borer). CABI Digital Library. 2023. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.1079/cabicompendium.44524 (accessed on 18 June 2023).
- Borgemeister, C.; Tchabi, A.; Scholz, D. Trees or stores? The origin of migrating Prostephanus truncatus collected in different ecological habitats in southern Benin. Entomol. Exp. Appl. 1998, 87, 285–294. [Google Scholar] [CrossRef]
- Markham, R.H.; Scholz, D. Exploitation of a wood host plant and Cerambycid associated volatiles as host find cues by the larger grain borer (Horn) (Coleoptera: Bostrichidae). Ann. Entomol. Soc. Am. 1998, 91, 741–747. [Google Scholar]
- Nang’Ayo, F.; Hill, M.; Chandi, E.; Chiro, C.; Nzeve, D.; Obiero, J. The natural environment as reservoir for the larger grain borer Prostephanus truncates (Horn) (Coleoptera: Bostrichidae) in Kenya. Afr. Crop. Sci. J. 1993, 1, 39–47. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Wyatt, T.D. Flight initiation by Prostephanus truncatus in relation to time of day, temperature, relative humidity and starvation. Entomol. Exp. Appl. 1995, 75, 273–277. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Wyatt, T.D.; Birch, M.C. Flight Activity of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Relation to Population Density, Resource Quality, Age, and Sex. J. Insect. Behav. 1996, 9, 339–351. [Google Scholar]
- Nansen, C.; Meikle, W.G. The biology of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Integr. Pest Manag. 2002, 7, 91–104. [Google Scholar] [CrossRef]
- Tefera, T.; Mugo, S.; Beyene, Y. Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Secur. 2016, 8, 211–220. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H.; Morrison, W.R.; Morey, A.C. Modeling the potential range expansion of larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae). Sci. Rep. 2019, 9, 6862. [Google Scholar] [CrossRef]
- Crowther, M.; Lim, W.; Crowther, M.A. Systematic review and meta-analysis methodology. Blood 2010, 116, 3140–3146. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Reiswig, J. Mendeley. J. Med. Libr. Assoc. 2010, 98, 193–194. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive Species, Environmental Change and Management, and Health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef]
- Tian, X.; Yu, X. Crop yield gap and yield convergence in African countries. Food Secur. 2019, 11, 1305–1319. [Google Scholar] [CrossRef]
- Debray, V.; Wezel, A.; Lambert-Derkimba, A.; Roesch, K.; Lieblein, G.; Francis, C.A. Agroecological practices for climate change adaptation in semiarid and subhumid Africa. Agroecol. Sustain. Food Syst. 2018, 43, 429–456. [Google Scholar] [CrossRef]
- Mtambanengwe, F.; Mapfumo, P. Organic matter management as an underlying cause for soil fertility gradients on small-holder farms in Zimbabwe. Nutr. Cycling Agroecosyst. 2005, 73, 227–243. [Google Scholar] [CrossRef]
- Nezomba, H.; Mtambanengwe, F.; Rurinda, J.; Mapfumo, P. Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa. Field Crops Res. 2018, 224, 102–114. [Google Scholar] [CrossRef]
- FAOSTAT. Agricultural Production Statistics 2000–2021; FAOSTAT Analytical Brief Series No. 60; FAOSTAT: Rome, Italy, 2022; Volume 60. [Google Scholar]
- Masvaya, E.N.; Nyamangara, J.; Giller, K.E.; Descheemaeker, K. Risk management options in maize cropping systems in semiarid areas of Southern Africa. Field Crop. Res. 2018, 228, 110–121. [Google Scholar] [CrossRef]
- Holtz, L.; Golubski, C. Figure of the Week: Climate Change and African Agriculture 2021, Brookings Institution. United States of America. Available online: https://policycommons.net/artifacts/4142941/figure-of-the-week/4951528/ (accessed on 18 September 2023).
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar] [CrossRef]
- Milgroom, J.; Giller, K. Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid southern Africa. Agric. Syst. 2013, 118, 91–104. [Google Scholar] [CrossRef]
- Stathers, T.; Lamboll, R.; Mvumi, B.M. Postharvest agriculture in changing climates: Its importance to African smallholder farmers. Food Secur. 2013, 5, 361–392. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef]
- Ofori, S.A.; Cobbina, S.J.; Obiri, S. Climate Change, Land, Water, and Food Security: Perspectives From Sub-Saharan Africa. Front. Sustain. Food Syst. 2021, 5, 680924. [Google Scholar] [CrossRef]
- Denning, G.; Kabambe, P.; Sanchez, P.; Malik, A.; Flor, R.; Harawa, R.; Nkhoma, P.; Zamba, C.; Banda, C.; Magombo, C.; et al. Input Subsidies to Improve Smallholder Maize Productivity in Malawi: Toward an African Green Revolution. PLoS Biol. 2009, 7, e1000023. [Google Scholar] [CrossRef] [PubMed]
- Mhango, W.G.; Snapp, S.S.; Phiri, G.Y. Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renew. Agric. Food Syst. 2013, 28, 234–244. [Google Scholar] [CrossRef]
- Chigoverah, A.A.; Mvumi, B.M. Efficacy of metal silos and hermetic bags against stored-maize insect pests under simulated smallholder farmer conditions. J. Stored Prod. Res. 2016, 69, 179–189. [Google Scholar] [CrossRef]
- Chigoverah, A.A.; Mvumi, B.M. Comparative efficacy of four hermetic bag brands against Prostephanus truncatus (Coleoptera: Bostrichidae) in Stored Maize Grain. J. Econ. Entomol. 2018, 111, 2467–2475. [Google Scholar] [CrossRef]
- Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crop. Res. 2012, 143, 76–90. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef]
- Technoserve. How Is Climate Change Affecting Post-Harvest Loss in Nigeria? 2022. Available online: https://www.technoserve.org/blog/how-is-climate-change-affecting-post-harvest-loss-in-nigeria/ (accessed on 28 June 2023).
- Sands, B.; Mgidiswa, N.; Nyamukondiwa, C.; Wall, R. Environmental consequences of deltamethrin residues in cattle feces in an African agricultural landscape. Ecol. Evol. 2018, 8, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L. Analysis of invasive insects: Links to climate change. In Invasive Species and Global Climate Change; Ziska, L.H., Dukes, J.S., Eds.; CABI Publishing: Wallingford, UK, 2014; pp. 45–61. [Google Scholar] [CrossRef]
- Chown, S.; Nicolson, S. Insect Physiological Ecology: Mechanisms and Patterns; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Renault, D.; Hess, M.C.; Braschi, J.; Cuthbert, R.N.; Sperandii, M.G.; Bazzichetto, M.; Chabrerie, O.; Thiébaut, G.; Buisson, E.; Grandjean, F.; et al. Advancing biological invasion hypothesis testing using functional diversity indices. Sci. Total Environ. 2022, 834, 155102. [Google Scholar] [CrossRef] [PubMed]
- Fried, G.; Chauvel, B.; Reynaud, P.; Sache, I. Decreases in Crop Production by Non-native Weeds, Pests, and Pathogens. In Impact of Biological Invasions on Ecosystem Services; Invading Nature—Springer Series in Invasion Ecology; Springer: Berlin/Heidelberg, Germany, 2017; Volume 12. [Google Scholar] [CrossRef]
- Kumschick, S.; Richardson, D.M. Species-based risk assessments for biological invasions: Advances and challenges. Divers. Distrib. 2013, 19, 1095–1105. [Google Scholar] [CrossRef]
- Gippet, J.M.; Liebhold, A.M.; Fenn-Moltu, G.; Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 2019, 35, 96–102. [Google Scholar] [CrossRef]
- Hallman, G. Phytosanitary measures to prevent the introduction of invasive species. In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 367–384. [Google Scholar]
- McGeoch, M.; Jetz, W. Measure and Reduce the Harm Caused by Biological Invasions. One Earth 2019, 1, 171–174. [Google Scholar] [CrossRef]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef]
- Crooks, J.A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Écoscience 2005, 12, 316–329. [Google Scholar] [CrossRef]
- Ricciardi, A.; Blackburn, T.M.; Carlton, J.T.; Dick, J.T.; Hulme, P.E.; Iacarella, J.C.; Jeschke, J.M.; Liebhold, A.M.; Lockwood, J.L.; MacIsaac, H.J.; et al. Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends Ecol. Evol. 2017, 32, 464–474. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Huang, L.; Dong, Y.; Huang, W.; Ma, H.; Zhang, H.; Zhang, X.; Chen, X.; Xu, Y. Migration risk of fall armyworm (Spodoptera frugiperda) from North Africa to Southern Europe. Front. Plant Sci. 2023, 14, 1141470. [Google Scholar] [CrossRef] [PubMed]
- Lieurance, D.; Kendig, A.; Romagosa, C. The Stages of Invasion: How does a nonnative species transition to an invader? EDIS 2022, 4, 1–10. [Google Scholar] [CrossRef]
- Holst, N.; Meikle, W.G. Teretrius nigrescens against larger grain borer Prostephanus truncatus in African maize stores: Biological control at work? J. Appl. Ecol. 2003, 40, 307–319. [Google Scholar] [CrossRef]
- Tigar, B.; Osborne, P.; Key, G.; Flores, S.M.; Vazquez, A.M. Insect pests associated with rural maize stores in Mexico with particular reference to Prostephanus truncatus (Coleoptera: Bostrichidae). J. Stored Prod. Res. 1994, 30, 267–281. [Google Scholar] [CrossRef]
- Hodges, R.J.; Farrell, G.; Golob, P. Review of the Larger Grain Borer outbreak in East Africa—Rate of spread and pest status. In Management of Farm Storage Pests in East and Central Africa, Proceedings of the East and Central Africa Storage Workshop, Naivasha, Kenya, 14–19 April 1996; Farrell, G., Greathead, A.H., Hill, M.G., Kibata, G.N., Eds.; International Institute of Biological Control: Ascot, UK, 1996. [Google Scholar]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Venette, R.C.; Hutchison, W.D. Invasive Insect Species: Global Challenges, Strategies & Opportunities. Front. Insect Sci. 2021, 1, 650520. [Google Scholar] [CrossRef]
- Golob, P. Current Status of the Larger Grain Borer Prostephanus truncatus (Horn) in Africa. Int. J. Trop. Insect Sci. 1988, 9, 737–745. [Google Scholar] [CrossRef]
- Darwin, C.; Bynum, W.F. The Origin of Species by Means of Natural Selection: Or, the Preservation of Favored Races in the Struggle for Life; AL Burt: New York, NY, USA, 2009; pp. 441–764. [Google Scholar]
- van Kleunen, M.; Dawson, W.; Essl, F.; Pergl, J.; Winter, M.; Weber, E.; Kreft, H.; Weigelt, P.; Kartesz, J.; Nishino, M.; et al. Global exchange and accumulation of non-native plants. Nature 2015, 525, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Pesquera, L.M.; Tejedo, M.; Olalla-Tárraga, M.Á.; Duarte, H.; Nicieza, A.; Solé, M. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 2016, 43, 1166–1178. [Google Scholar] [CrossRef]
- Tay, W.T.; Meagher, R.L.; Czepak, C.; Groot, A.T. Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annu. Rev. Entomol. 2023, 68, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Goldewijk, K.K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; D’Antonio, C.M. Forecasting Biological Invasions with Increasing International Trade. Conserv. Biol. 2003, 17, 322–326. [Google Scholar] [CrossRef]
- Vilà, M.; Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 2011, 26, 461–472. [Google Scholar] [CrossRef]
- Wang, C.; Singh, N.; Zha, C.; Cooper, R. Efficacy of Selected Insecticide Sprays and Aerosols against the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae). Insects 2016, 7, 5. [Google Scholar] [CrossRef]
- Rendon, D.; Walton, V.M. Drip and Overhead Sprinkler Irrigation in Blueberry as Cultural Control for Drosophila suzukii (Diptera: Drosophilidae) in Northwestern United States. J. Econ. Entomol. 2019, 112, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-X.; Yang, M.; Arnó, J.; Kriticos, D.J.; Desneux, N.; Zalucki, M.P.; Lu, Z. Protected agriculture matters: Year-round persistence of Tuta absoluta in China where it should not. Entomol. Gen. 2023. [Google Scholar] [CrossRef]
- Wan, F.-H.; Yang, N.-W. Invasion and Management of Agricultural Alien Insects in China. Annu. Rev. Entomol. 2016, 61, 77–98. [Google Scholar] [CrossRef]
- Baudron, F.; Zaman-Allah, M.A.; Chaipa, I.; Chari, N.; Chinwada, P. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop. Prot. 2019, 120, 141–150. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Hill, M.P.; Clusella-Trullas, S.; Terblanche, J.S.; Richardson, D.M. Drivers, impacts, mechanisms and adaptation in insect invasions. Biol. Invasions 2016, 18, 883–891. [Google Scholar] [CrossRef]
- Segaiso, B.; Machekano, H.; Cuthbert, R.N.; Nyamukondiwa, C. Thermal fitness costs and benefits of developmental acclimation in fall armyworm. Sci. Afr. 2022, 17, e01369. [Google Scholar] [CrossRef]
- Jamieson, M.A.; Burkle, L.A.; Manson, J.S.; Runyon, J.B.; Trowbridge, A.M.; Zientek, J. Global change effects on plant–insect interactions: The role of phytochemistry. Curr. Opin. Insect Sci. 2017, 23, 70–80. [Google Scholar] [CrossRef]
- Gerken, A.R.; Morrison, W.R., III. Pest management in the postharvest agricultural supply chain under climate change. Front. Agron. 2022, 4, 918845. [Google Scholar] [CrossRef]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2022, 93, e1553. [Google Scholar] [CrossRef]
- Chown, S.L.; Slabber, S.; McGeoch, M.A.; Janion, C.; Leinaas, H.P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B Biol. Sci. 2007, 274, 2531–2537. [Google Scholar] [CrossRef] [PubMed]
- Weldon, C.W.; Boardman, L.; Marlin, D.; Terblanche, J.S. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Front. Zool 2016, 13, 15. [Google Scholar] [CrossRef]
- Finch, D.M.; Butler, J.L.; Runyon, J.B.; Fettig, C.J.; Kilkenny, F.F.; Jose, S.; Amelon, S.K. Effects of climate change on invasive species. In Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector; Springer: Berlin/Heidelberg, Germany, 2021; pp. 57–83. [Google Scholar]
- Walther, G.-R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef]
- Hulme, P.E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 2016, 92, 1297–1313. [Google Scholar] [CrossRef] [PubMed]
- Crowl, T.A.; Crist, T.O.; Parmenter, R.R.; Belovsky, G.; Lugo, A.E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 2008, 6, 238–246. [Google Scholar] [CrossRef]
- Olyarnik, S.V.; Bracken, M.E.; Byrnes, J.E.; Hughes, A.R.; Hultgren, K.M.; Stachowicz, J.J. Ecological factors affecting community invasibility. In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives; Springer: Berlin/Heidelberg, Germany, 2009; pp. 215–238. [Google Scholar]
- Briski, E.; Chan, F.T.; Darling, J.A.; Lauringson, V.; MacIsaac, H.J.; Zhan, A.; Bailey, S.A. Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 2018, 16, 345–353. [Google Scholar] [CrossRef]
- Tarusikirwa, V.L.; Machekano, H.; Mutamiswa, R.; Chidawanyika, F.; Nyamukondiwa, C. Tuta absoluta (Meyrick) (lepidoptera: Gelechiidae) on the “offensive” in Africa: Prospects for integrated management initiatives. Insects 2020, 11, 764. [Google Scholar] [CrossRef]
- Gerken, A.R.; Morrison, W.R., III. Farm2Fork through the lens of community ecology: Concepts and applications in postharvest storage. Front. Sustain. Food Syst. 2023, 7, 1137683. [Google Scholar] [CrossRef]
- Colautti, R.I.; Lau, J.A. Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 2015, 24, 1999–2017. [Google Scholar] [CrossRef] [PubMed]
- Stotter, R.L.; Terblanche, J.S. Low-temperature tolerance of false codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa. J. Therm. Biol. 2009, 34, 320–325. [Google Scholar] [CrossRef]
- Fischer, M.; Bossdorf, O.; Gockel, S.; Hänsel, F.; Hemp, A.; Hessenmöller, D.; Weisser, W.W. Implementing large-scale and longterm functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 2010, 11, 473–485. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Terblanche, J.S. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). J. Insect Physiol. 2011, 57, 108–117. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Nyamukondiwa, C.; Strathie, L.; Fischer, K. Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE 2017, 12, e0169371. [Google Scholar] [CrossRef]
- Nyamukondiwa, C.; Chidawanyika, F.; Machekano, H.; Mutamiswa, R.; Sands, B.; Mgidiswa, N.; Wall, R. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. PLoS ONE 2018, 13, e0198610. [Google Scholar] [CrossRef] [PubMed]
- Keosentse, O.; Mutamiswa, R.; Nyamukondiwa, C. Interaction effects of desiccation and temperature stress resistance across Spodoptera frugiperda (Lepidoptera, Noctuidae) developmental stages. NeoBiota 2022, 73, 87–108. [Google Scholar] [CrossRef]
- Tarusikirwa, V.L.; Cuthbert, R.N.; Mutamiswa, R.; Gotcha, N.; Nyamukondiwa, C. Water Balance and Desiccation Tolerance of the Invasive South American Tomato Pinworm. J. Econ. Entomol. 2021, 114, 1743–1751. [Google Scholar] [CrossRef]
- Gibbs, A.G. Water balance in desert Drosophila: Lessons from non-charismatic microfauna. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Shine, R.; Porter, W.P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. USA 2009, 106, 3835–3840. [Google Scholar] [CrossRef]
- Bodlah, M.A.; Iqbal, J.; Ashiq, A.; Bodlah, I.; Jiang, S.; Mudassir, M.A.; Fareen, A.G.E. Insect behavioral restraint and adaptation strategies under heat stress: An inclusive review. J. Saudi Soc. Agric. Sci. 2023, 22, 327–350. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Srinivasan, D.G.; Brisson, J.A. Aphids: A Model for Polyphenism and Epigenetics. Genet. Res. Int. 2012, 2012, 431531. [Google Scholar] [CrossRef]
- Kelley, A.L. The role thermal physiology plays in species invasion. Conserv. Physiol. 2014, 2, cou045. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; Adler, P.B.; Yelenik, S.G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 2004, 7, 975–989. [Google Scholar] [CrossRef]
- DeRivera, C.E.; Ruiz, G.M.; Hines, A.H.; Jivoff, P. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab. Ecology 2005, 86, 3364–3376. [Google Scholar] [CrossRef]
- Nyamukondiwa, C.; Kleynhans, E.; Terblanche, J.S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 2010, 35, 565–575. [Google Scholar] [CrossRef]
- Decker, K.L.; Allen, C.R.; Acosta, L.; Hellman, M.L.; Jorgensen, C.F.; Stutzman, R.J.; Yans, M. Land use, landscapes, and biological invasions. Invasive Plant Sci. Manag. 2012, 5, 108–116. [Google Scholar] [CrossRef]
- Ayres, J.S.; Schneider, D.S. The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila. PLoS Biol. 2009, 7, e1000150. [Google Scholar] [CrossRef]
- Khaliq, A.; Javed, M.; Sohail, M.; Sagheer, M. Environmental effects on insects and their population dynamics. J. Entomol. Zool. Stud. 2014, 2, 1–7. [Google Scholar]
- Singano, C.D.; Mvumi, B.M.; Stathers, T.E. Effectiveness of grain storage facilities and protectants in controlling stored-maize insect pests in a climate-risk prone area of Shire Valley, Southern Malawi. J. Stored Prod. Res. 2019, 83, 130–147. [Google Scholar] [CrossRef]
- Hill, M.G.; Borgemeister, C.; Nansen, C. Ecological studies on the larger grain borer, Prostephanus truncatus (Horn) (Col.: Bostrichidae) and their implications for integrated pest management. Integr. Pest Manag. Rev. 2002, 7, 201–221. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Mudavanhu, P.; Nyamukondiwa, C. Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Front. Ecol. Evol. 2019, 7, 80. [Google Scholar] [CrossRef]
- Hance, T.; van Baaren, J.; Vernon, P.; Boivin, G. Impact of extreme temperatures of parasitoids in a climate change perspective. Annu. Rev. Entomol. 2007, 52, 107–126. [Google Scholar] [CrossRef]
- Machekano, H.; Mutamiswa, R.; Singano, C.; Joseph, V.; Chidawanyika, F.; Nyamukondiwa, C. Thermal resilience of Prostephanus truncatus (Horn): Can we derive optimum temperature-time combinations for commodity treatment? J. Stored Prod. Res. 2020, 86, 101568. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Tendeng, E.; Labou, B.; Diatte, M.; Djiba, S.; Diarra, K. The fall armyworm Spodoptera frugiperda (J.E. Smith), a new pest of maize in Africa: Biology and first native natural enemies detected. Int. J. Biol. Chem. Sci. 2019, 13, 1011. [Google Scholar] [CrossRef]
- Mubayiwa, M.; Machekano, H.; Chidawanyika, F.; Mvumi, B.M.; Segaiso, B.; Nyamukondiwa, C. Sub-optimal host plants have developmental and thermal fitness costs to the invasive fall armyworm. Front. Insect Sci. 2023, 3, 1204278. [Google Scholar] [CrossRef]
- Sangle, P.M.; Satpute, S.B.; Khan, F.S.; Rode, N.S. Impact of Climate Change on Insects. Trends Biosci. 2015, 8, 3579–3582. [Google Scholar]
- Siliceo, I.; Díaz, J.A. A comparative study of clutch size, range size, and the conservation status of island vs. mainland lacertid lizards. Biol. Conserv. 2010, 143, 2601–2608. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, K.; Taylor, K.J.; De Palma, A.; Essl, F.; Dawson, W.; Kreft, H.; Purvis, A. Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE 2020, 15, e0227169. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Weller, S.G. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Tarusikirwa, V.L.; Cuthbert, R.N.; Mutamiswa, R.; Nyamukondiwa, C. Context-dependent integrated stress resistance promotes a global invasive pest. Insect Sci. 2022, 29, 1790–1804. [Google Scholar] [CrossRef]
- Snyder, W.E.; Evans, E.W. Ecological Effects of Invasive Arthropod Generalist Predators. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 95–122. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Ross, L.; Hardy, N.B.; Okusu, A.; Normark, B.B. Large population size predicts the distribution of asexuality in scale insects. Evolution 2012, 67, 196–206. [Google Scholar] [CrossRef]
- Christodoulides, N.; Van Dam, A.R.; Peterson, D.A.; Frandsen, R.J.N.; Mortensen, U.H.; Petersen, B.; Rasmussen, S.; Normark, B.B.; Hardy, N.B. Gene expression plasticity across hosts of an invasive scale insect species. PLoS ONE 2017, 12, e0176956. [Google Scholar] [CrossRef] [PubMed]
- Sisay, B.; Sevgan, S.; Weldon, C.W.; Krüger, K.; Torto, B.; Tamiru, A. Responses of the fall armyworm (Spodoptera frugiperda) to different host plants: Implications for its management strategy. Pest Manag. Sci. 2023, 79, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Qin, Y.; Wang, X.; Zheng, X.; Lu, W. Fitness of the fall armyworm Spodoptera frugiperda to a new host plant, banana (Musa nana Lour.). Chem. Biol. Technol. Agric. 2022, 9, 78. [Google Scholar] [CrossRef]
- Hailu, G.; Niassy, S.; Bässler, T.; Ochatum, N.; Studer, C.; Salifu, D.; Subramanian, S. Could fall armyworm, Spodoptera frugiperda (JE Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. Int. J. Trop. Insect Sci. 2021, 41, 1753–1762. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Chen, Y.; Herron, G.A. Preliminary characterisation of known pesticide resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in its invasive Australian range. Austral Entomol. 2021, 60, 782–790. [Google Scholar] [CrossRef]
- Rose, A.H.; Silversides, R.H.; Lindquist, O.H. Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera: Noctuidae). Can. Entomol. 1975, 107, 567–576. [Google Scholar] [CrossRef]
- Tay, W.T.; Rane, R.V.; James, W.; Gordon, K.H.J.; Downes, S.; Kim, J.; Walsh, T.K. Resistance bioassays and allele characterization inform analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) introduction pathways in Asia and Australia. J. Econ. Entomol. 2022, 115, 1790–1805. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Huang, L.; Xu, C.-F.; Li, J.-H.; Wang, F.-Y.; Cheng, W.; Gao, B.-Y.; Chapman, J.W.; Hu, G. Flight Capability and the Low Temperature Threshold of a Chinese Field Population of the Fall Armyworm Spodoptera frugiperda. Insects 2022, 13, 422. [Google Scholar] [CrossRef]
- Sokame, B.M.; Subramanian, S.; Kilalo, D.C.; Juma, G.; Calatayud, P. Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer Chilo partellus, and indigenous maize stemborers in Africa. Entomol. Exp. Appl. 2020, 168, 322–331. [Google Scholar] [CrossRef]
- Colautti, R.I.; Grigorovich, I.A.; MacIsaac, H.J. Propagule Pressure: A Null Model for Biological Invasions. Biol. Invasions 2006, 8, 1023–1037. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. Earth Environ. 2006, 30, 409–431. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 2009, 15, 22–40. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Bernardi, D.; Salmeron, E.; Horikoshi, R.J.; Bernardi, O.; Dourado, P.M.; Carvalho, R.A.; Omoto, C. Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 2015, 10, e0140130. [Google Scholar] [CrossRef]
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-Evolved Resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to Synthetic Insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2018, 112, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Reavey, C.E.; Walker, A.S.; Joyce, S.P.; Broom, L.; Willse, A.; Ercit, K.; Poletto, M.; Barnes, Z.H.; Marubbi, T.; Troczka, B.J.; et al. Self-limiting fall armyworm: A new approach in development for sustainable crop protection and resistance management. BMC Biotechnol. 2022, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, J.G.D.; Takahashi, T.A.; Figueiredo, L.L.; Fernandes, P.M.; Camargo, L.F.; Watanabe, I.M.; Shimbori, E.M. First record of Cotesia scotti (Spodoptera cosmioides (Walk, 1858) and Spodoptera eridania (Stoll, 1782) (Lepidoptera: Noctuidae) in Brazil. Rev. Bras. Entomol. 2019, 63, 238–244. [Google Scholar] [CrossRef]
- Meagher, R.L.; Nagoshi, R.N. Differential Feeding of Fall Armyworm Lepidoptera (Lepidoptera: Noctuidae) Host Strains on Meridic and Natural Diets. Ann. Entomol. Soc. Am. 2012, 105, 462–470. [Google Scholar] [CrossRef]
- Baliota, G.V.; Scheff, D.S.; Morrison, W.R.; Athanassiou, C.G. Competition between Prostephanus truncatus and Sitophilus oryzae on maize: The species that gets there first matters. Bull. Entomol. Res. 2022, 112, 520–527. [Google Scholar] [CrossRef]
- Ngom, D.; Fauconnier, M.L.; Malumba, P.; Dia, C.A.K.M.; Thiaw, C.; Sembène, M. Varietal susceptibility of maize to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae), based on grain physicochemical parameters. PLoS ONE 2020, 15, e0232164. [Google Scholar] [CrossRef]
- Giga, D.P.; Canhao, J., Sr. Competition between Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.) in maize at two temperatures. J. Stored Prod. Res. 1993, 29, 63–70. [Google Scholar] [CrossRef]
- Quellhorst, H.; Athanassiou, C.G.; Bruce, A.; Scully, E.D.; Morrison, W.R., III. Temperature-mediated competition between the invasive larger grain borer (Coleoptera: Bostrichidae) and the cosmopolitan maize weevil (Coleoptera: Curculionidae). Environ. Entomol. 2020, 49, 255–264. [Google Scholar] [CrossRef]
- Doganay, I.; Agrafioti, P.; Isikber, A.; Saglam, O.; Athanassiou, C. Immediate and delayed mortality of the larger grain borer, Prostephanus truncatus (Horn), on different surfaces treated with thiamethoxam and alpha-cypermethrin. J. Stored Prod. Res. 2018, 76, 1–6. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Dutton, A.C.; Athanassiou, C.G. Comparison of two pirimiphos-methyl formulations against major stored-product insect species. J. Stored Prod. Res. 2013, 55, 106–115. [Google Scholar] [CrossRef]
- Quellhorst, H.E.; Arthur, F.H.; Zhu, K.Y.; Bruce, A.; Morrison, W.R. The dispersal ability of the invasive larger grain borer and the cosmopolitan maize weevil after brief exposure to a newer insecticide formulation. J. Stored Prod. Res. 2023, 102, 102125. [Google Scholar] [CrossRef]
- Mutambuki, K.; Affognon, H.; Likhayo, P.; Baributsa, D. Evaluation of Purdue improved crop storage triple layer hermetic storage bag against Prostephanus truncatus (Horn) (coleoptera: Bostrichidae) and Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Insects 2019, 10, 204. [Google Scholar] [CrossRef]
- Muatinte, B.L.; Van Den Berg, J. Suitability of wild host plants and firewood as hosts of Prostephanus truncatus (Coleoptera: Bostrichidae) in Mozambique. J. Econ. Entomol. 2019, 112, 1705–1712. [Google Scholar] [CrossRef]
- Muatinte, B.L.; Berg, J.V.D. Modeling the Influence of Abiotic and Biotic Factors on Spatial and Temporal Fluctuations of Prostephanus truncatus (Coleoptera: Bostrichidae) Populations in Mozambique. Environ. Entomol. 2021, 51, 118–131. [Google Scholar] [CrossRef]
- Vázquez-Arista, M.; Smith, R.; Martínez-Gallardo, N.; Blanco-Labra, A. Enzymatic differences in the digestive system of the adult and larva of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res. 1999, 35, 167–174. [Google Scholar] [CrossRef]
- Mendiola-Olaya, E.; Valencia-Jimenez, A.; Valdes-Rodrıguez, S.; Delano-Frier, J.; Blanco-Labra, A. Digestive amylase from the larger grain borer, Prostephanus truncatus Horn. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 126, 425–433. [Google Scholar] [CrossRef]
- Castro-Guillén, J.L.; Mendiola-Olaya, E.; García-Gasca, T.; Blanco-Labra, A. Partial characterization of serine peptidases in larvae of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), reveals insensitive peptidases to some plant peptidase inhibitors. J. Stored Prod. Res. 2012, 50, 28–35. [Google Scholar] [CrossRef]
- Tambo, J.A.; Kansiime, M.K.; Mugambi, I.; Rwomushana, I.; Kenis, M.; Day, R.K.; Lamontagne-Godwin, J. Understanding smallholders’ responses to fall armyworm (Spodoptera frugiperda) invasion: Evidence from five African countries. Sci. Total Environ. 2020, 740, 140015. [Google Scholar] [CrossRef] [PubMed]
- Eade, D.; Williams, S. The Oxfam Handbook of Development and Relief; Oxfam: Nairobi, Kenya, 1995; Volume 2. [Google Scholar]
- Jensen, R. Agricultural Volatility and Investments in Children. Am. Econ. Rev. 2000, 90, 399–404. [Google Scholar] [CrossRef]
- Isman, M. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Yainna, S.; Tay, W.T.; Durand, K.; Fiteni, E.; Hilliou, F.; Legeai, F.; Clamens, A.-L.; Gimenez, S.; Asokan, R.; Kalleshwaraswamy, C.M.; et al. The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda). Sci. Rep. 2022, 12, 21063. [Google Scholar] [CrossRef] [PubMed]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Eschen, R.; Beale, T.; Bonnin, J.M.; Constantine, K.L.; Duah, S.; Finch, E.A.; Makale, F.; Nunda, W.; Ogunmodede, A.; Pratt, C.F.; et al. Towards estimating the economic cost of invasive alien species to African crop and livestock production. CABI Agric. Biosci. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Schulten, G.G.M.; Toet, A.J. (Eds.) Technical Papers Presented at the Workshop on the Containment and Control of the Larger Grain Borer; Ministry of Agriculture and Livestock Development: Arusha, Tanzania; FAO: Rome, Italy, 1988. [Google Scholar]
- Tyler, P.S.; Walker, D.J.; Donaldson, T.J. Management of Drought-Relief Maize; Natural Resources Institute: Chatham, UK, 1994. [Google Scholar]
- Farrell, G.; Schulten, G. Larger Grain Borer in Africa; A History of Efforts to Limit its Impact. Integr. Pest Manag. Rev. 2002, 7, 67–84. [Google Scholar] [CrossRef]
- Ngwenyama, P.; Mvumi, B.M.; Stathers, T.E.; Nyanga, L.K.; Siziba, S. How different hermetic bag brands and maize varieties affect grain damage and loss during smallholder farmer storage. Crop Prot. 2022, 153, 105861. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar]
- United Nations Development Programme (UNDP). Human Development Report 2015, Work for Human Development; United Nations Development Programme (UNDP): New York, NY, USA, 2015. [Google Scholar]
- Sisay, B.; Simiyu, J.; Mendesil, E.; Likhayo, P.; Ayalew, G.; Mohamed, S.; Subramanian, S.; Tefera, T. Fall Armyworm, Spodoptera frugiperda Infestations in East Africa: Assessment of Damage and Parasitism. Insects 2019, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Tambo, J.A.; Aliamo, C.; Davis, T.; Mugambi, I.; Romney, D.; Onyango, D.O.; Kansiime, M.; Alokit, C.; Byantwale, S.T. The impact of ICT-enabled extension campaign on farmers’ knowledge and management of fall armyworm in Uganda. PLoS ONE 2019, 14, e0220844. [Google Scholar] [CrossRef] [PubMed]
- Mutyambai, D.M.; Niassy, S.; Calatayud, P.A.; Subramanian, S. Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya. Insects 2022, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Machekano, H.; Mutamiswa, R.; Nyamukondiwa, C. Evidence of rapid spread and establishment of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in semi-arid Botswana. Agric. Food Secur. 2018, 7, 48. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P.; Carlton, J.T. A compendium of essential concepts and terminology in invasion ecology. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Volume 1, pp. 409–420. [Google Scholar]
- Castaño-Quintero, S.; Escobar-Luján, J.; Osorio-Olvera, L.; Peterson, A.T.; Chiappa-Carrara, X.; Martínez-Meyer, E.; Yañez-Arenas, C. Supraspecific units in correlative niche modeling improves the prediction of geographic potential of biological invasions. PeerJ 2020, 8, e10454. [Google Scholar] [CrossRef] [PubMed]
- CBD. Convention on Biological Diversity, Programme of Work on Invasive Alien Species. 2016. Available online: https://www.cbd.int/invasive (accessed on 13 November 2022).
- Mačić, V.; Albano, P.G.; Almpanidou, V.; Claudet, J.; Corrales, X.; Essl, F.; Evagelopoulos, A.; Giovos, I.; Jimenez, C.; Kark, S.; et al. Biological Invasions in Conservation Planning: A Global Systematic Review. Front. Mar. Sci. 2018, 5, 178. [Google Scholar] [CrossRef]
- Bradley, B.A.; Laginhas, B.B.; Whitlock, R.; Allen, J.M.; Bates, A.E.; Bernatchez, G.; Sorte, C.J. Disentangling the abundance–impact relationship for invasive species. Proc. Nat. Aca. Sci. USA 2019, 116, 9919–9924. [Google Scholar] [CrossRef]
- Ntiri, E.S.; Calatayud, P.-A.; Berg, J.V.D.; Le Ru, B.P. Spatio-Temporal Interactions Between Maize Lepidopteran Stemborer Communities and Possible Implications From the Recent Invasion of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Sub-Saharan Africa. Environ. Entomol. 2019, 48, 573–582. [Google Scholar] [CrossRef]
- Jaric, I.; Heger, T.; Monzon, F.C.; Jeschke, J.M.; Kowarik, I.; Mcconkey, K.R.; Py, P.; Sagouis, A.; Essl, F. Crypticity in Biological Invasions. Trends Ecol. Evol. 2019, 34, 291–302. [Google Scholar] [CrossRef]
- Sherpa, S.; Després, L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol. Appl. 2021, 14, 1463–1484. [Google Scholar] [CrossRef]
- Rane, R.; Walsh, T.K.; Lenancker, P.; Gock, A.; Dao, T.H.; Nguyen, V.L.; Khin, T.N.; Amalin, D.; Chittarath, K.; Faheem, M.; et al. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci. Rep. 2023, 13, 660. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Throne, J.E.; Nakas, C.T. Competition among Species of Stored-Product Psocids (Psocoptera) in Stored Grain. PLoS ONE 2014, 9, e102867. [Google Scholar] [CrossRef]
- Sakka, M.K.; Athanassiou, C.G. Competition of three stored-product bostrychids on different temperatures and commodities. J. Stored Prod. Res. 2018, 79, 34–39. [Google Scholar] [CrossRef]
- Guntrip, J.; Sibly, R.; Smith, R. A phenotypic and genetic comparison of egg to adult life-history traits between and within two strains of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res. 1996, 32, 213–223. [Google Scholar] [CrossRef]
- Omondi, B.; Berg, J.v.D.; Masiga, D.; Schulthess, F. Phylogeographic structure of Teretrius nigrescens (Coleoptera: Histeridae) predator of the invasive post harvest pest Prostephanus truncatus (Coleoptera: Bostrichidae). Bull. Entomol. Res. 2011, 101, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Diagne, C.; Hudgins, E.J.; Turbelin, A.; Ahmed, D.A.; Albert, C.; Bodey, T.W.; Briski, E.; Essl, F.; Haubrock, P.J.; et al. Biological invasion costs reveal insufficient proactive management worldwide. Sci. Total Environ. 2022, 819, 153404. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.; McAusland, C.; Liebhold, A.; Mwebaze, P.; Springborn, M.R. Biological Invasions and International Trade: Managing a Moving Target. Rev. Environ. Econ. Policy 2021, 15, 180–190. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Hudgins, E.J.; Cuthbert, R.N.; Kourantidou, M.; Diagne, C.; Haubrock, P.J.; Leung, B.; Liu, C.; Leroy, B.; Petrovskii, S.; et al. Managing biological invasions: The cost of inaction. Biol. Invasions 2022, 24, 1927–1946. [Google Scholar] [CrossRef]
- Salama, H.S.; Abd-Elgawad, M.M.M. Quarantine problems: An analytical approach with special reference to palm weevils and phytonematodes. Arch. Phytopathol. Plant Prot. 2003, 36, 41–46. [Google Scholar] [CrossRef]
- Nyabako, T.; Mvumi, B.M.; Stathers, T.; Machekano, H. Smallholder grain postharvest management in a variable climate: Practices and perceptions of smallholder farmers and their service-providers in semi-arid areas. Environ. Dev. Sustain. 2021, 23, 9196–9222. [Google Scholar] [CrossRef]
- Stokstad, E. New crop pest takes Africa at lightning speed. Science 2017, 356, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Chinwada, P.; Fiaboe, K.K.M.; Akem, C.; Dixon, A.; Chikoye, D. Assessment of effectiveness of cyantraniliprole and thiamethoxam maize seed treatments for fall armyworm, Spodoptera frugiperda (JE Smith) management. Crop Prot. 2023, 174, 106418. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Likhayo, P.; Kanampiu, F.; Tefera, T.; Hellin, J. Effectiveness of hermetic systems in controlling maize storage pests in Kenya. J. Stored Prod. Res. 2013, 53, 27–36. [Google Scholar] [CrossRef]
- Ndegwa, M.K.; De Groote, H.; Gitonga, Z.M.; Bruce, A.Y. Effectiveness and economics of hermetic bags for maize storage: Results of a randomized controlled trial in Kenya. Crop. Prot. 2016, 90, 17–26. [Google Scholar] [CrossRef]
- Tsaganou, F.K.; Vassilakos, T.N.; Athanassiou, C.G. Influence of temperature and relative humidity on the efficacy of thiamethoxam for the control of three stored product beetle species. J. Stored Prod. Res. 2021, 92, 101784. [Google Scholar] [CrossRef]
- Luke, B.; Acheampong, M.A.; Rangel, D.E.; Cornelius, E.W.; Asante, S.K.; Nboyine, J.A.; Mikaelyan, A. The use of Beauveria bassiana for the control of the larger grain borer, Prostephanus truncatus, in stored maize: Semi-field trials in Ghana. Fungal Biol. 2023; in press. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Chinwada, P.; Richardson-Kageler, S.J.; Rwafa, R. Efficacy of diatomaceous earths and their lowdose combinations with spinosad or deltamethrin against three beetle pests of stored-maize. J. Stored Prod. Res. 2017, 72, 128–137. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Chinwada, P.; Kageler, S.J.; Rwafa, R. Evaluation of alternatives to synthetic pesticides under small-scale farmer-managed grain storage conditions. Crop Prot. 2019, 126, 104941. [Google Scholar] [CrossRef]
- Harish, G.; Nataraja, M.V.; Ajay, B.C.; Holajjer, P.; Savaliya, S.D.; Gedia, M.V. Comparative efficacy of storage bags, storability and damage potential of bruchid beetle. J. Food Sci. Technol. 2014, 51, 4047–4053. [Google Scholar] [CrossRef]
- Waongo, A.; Traore, F.; Ba, M.N.; Dabire-Binso, C.; Murdock, L.L.; Baributsa, D.; Sanon, A. Effects of PICS bags on insect pests of sorghum during long-term storage in Burkina Faso. J. Stored Prod. Res. 2019, 83, 261–266. [Google Scholar] [CrossRef]
- Baributsa, D.; Bakoye, O.N.; Ibrahim, B.; Murdock, L.L. Performance of five postharvest storage methods for maize preservation in Northern Benin. Insects 2020, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Ngwenyama, P.; Mvumi, B.M.; Nyanga, L.K.; Stathers, T.E.; Siziba, S. Comparative performance of five hermetic bag brands during on-farm smallholder cowpea (Vigna unguiculata L.Walp) storage. J. Stored Prod. Res. 2020, 88, 101658. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.D.A.; Tótola, M.R.; Guedes, R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. 2007, 63, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Chidemo, S.C.; Musundire, R.; Mashavakure, N. Higher dosage of phosphine is required to control resistant strains of pests in outdoor grain storage systems: Evidence from Zimbabwe. J. Stored Prod. Res. 2023, 100, 102046. [Google Scholar] [CrossRef]
- Stathers, T.; Holcroft, D.; Kitinoja, L.; Mvumi, B.M.; English, A.; Omotilewa, O.; Torero, M. A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nat. Sustain. 2020, 3, 821–835. [Google Scholar] [CrossRef]
- Stathers, T.; Ognakossan, K.E.; Priebe, J.; Mvumi, B.M.; Tran, B. Counting losses to cut losses: Quantifying legume postharvest losses to help achieve food and nutrition security. In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018; pp. 8–18. [Google Scholar]
- Anon. The African Postharvest Losses Information System (APHLIS). Natural Resources Institute, UK. 2023. Available online: https://www.aphlis.net/en (accessed on 29 September 2023).
- Rembold, F.; Hodges, R.; Bernard, M.; Knipschild, H.; Léo, O. The African Postharvest Losses Information System (APHLIS); European Union: Luxembourg, 2011. [Google Scholar]
- Hodges, R.; Bernard, M.; Rembold, F. APHLIS-Postharvest Cereal Losses in Sub-Saharan Africa, Their Estimation, Assessment and Reduction; JRC Technical Report; European Union: Luxembourg, 2014; pp. 1–60. [Google Scholar]
- Wilson, J.R.U.; Gairifo, C.; Gibson, M.R.; Arianoutsou, M.; Bakar, B.B.; Baret, S.; Celesti-Grapow, L.; DiTomaso, J.M.; Dufour-Dror, J.; Kueffer, C.; et al. Risk assessment, eradication, and biological control: Global efforts to limit Australian acacia invasions. Divers. Distrib. 2011, 17, 1030–1046. [Google Scholar] [CrossRef]
- García-De-Lomas, J.; Vilà, M. Lists of harmful alien organisms: Are the national regulations adapted to the global world? Biol. Invasions 2015, 17, 3081–3091. [Google Scholar] [CrossRef]
- Gu, S.; Qi, T.; Rohr, J.R.; Liu, X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat. Ecol. Evol. 2023, 1, 1–24. [Google Scholar] [CrossRef]
- Buchadas, A.; Vaz, A.S.; Honrado, J.P.; Alagador, D.; Bastos, R.; Cabral, J.A.; Santos, M.; Vicente, J.R. Dynamic models in research and management of biological invasions. J. Environ. Manag. 2017, 196, 594–606. [Google Scholar] [CrossRef]
S. frugiperda | P. truncatus |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
Reported Loss/Costs (USD) | Year | Loss/Cost Description | Country | Reference |
---|---|---|---|---|
40.2 million * (134,000 tonnes maize) | 2017 | Field damage to crops, amount of food that can feed 1.1 million people. | Ethiopia | [43] |
2.5–6.2 million (8.3–20.6 tonnes maize) | 2022 | Estimated yield losses. | 12 African countries | [42,45] |
3 million | 2017 | For pesticides and provision for replanting. Cost of pesticides per household was USD 14.20 without subsidies and USD 7.30 with subsidies. | Zambia | [44,45] |
159 million | 2018 | Value of maize field losses. | Zambia | [45] |
4 million | Procurement of plant protection products. | Ghana | [45] | |
177 million | 2018 | Value of maize field losses. | Ghana | [45] |
$25.30 | 2017 | The amount spent on pesticides per household for those without subsidies. For those who received subsidies, the cost was USD 13.30. | Ghana | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlambo, S.; Mubayiwa, M.; Tarusikirwa, V.L.; Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. Biology 2024, 13, 160. https://doi.org/10.3390/biology13030160
Mlambo S, Mubayiwa M, Tarusikirwa VL, Machekano H, Mvumi BM, Nyamukondiwa C. The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. Biology. 2024; 13(3):160. https://doi.org/10.3390/biology13030160
Chicago/Turabian StyleMlambo, Shaw, Macdonald Mubayiwa, Vimbai L. Tarusikirwa, Honest Machekano, Brighton M. Mvumi, and Casper Nyamukondiwa. 2024. "The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems" Biology 13, no. 3: 160. https://doi.org/10.3390/biology13030160
APA StyleMlambo, S., Mubayiwa, M., Tarusikirwa, V. L., Machekano, H., Mvumi, B. M., & Nyamukondiwa, C. (2024). The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. Biology, 13(3), 160. https://doi.org/10.3390/biology13030160