Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence
Simple Summary
Abstract
1. Introduction
2. Overall Aspects of High-Throughput Sequencing
2.1. NGS in the Study of MM
2.2. Insights and Advances in the Different Stages of MM
MM Stage | Key Findings [Reference] | Related Prognosis |
---|---|---|
NDMM | Amp(1q) [83]; del(1p) and del(12p) [84]; del (17p) and hypodiploidy/hyperploidy [61,85,86]; lambda translocations [19]; kappa alterations [87,88]; mutation ZFHX4 [36]; general hypermutation [17,89], APOBEC alterations [3,31,92] | Risk factor and poor prognosis |
NDMM | Mutations EGR1 and IRF4 [36] | Good prognosis |
MGUS | Global state of higher mutation rate than NDMM and lower mutation rate than SMM [7,94]; genomic-defining events that lead to successive stages [94,95,96,97] | Bad prognosis when reaching high-risk MGUS from low-risk and intermediate-risk stages |
SMM | General higher mutation rate than MGUS [57,90,91,92,93]; genomic changes, environmental factors, and mutational burden [3,66,99]; IGH-MYC [100]; complex rearrangements with lower cancer cell ratio than MM [3]; chr(8p) deletions [46] | Bad prognosis |
MM and RRMM | High rate of mutations, abnormalities in the copy numbers, rearrangements, and novel signatures [17,31,44,63,101]; co-occurrence of 1q21 gain/amplification and MAPK mutations [103] | Bad prognosis and possible development of extramedullary MM |
2.3. Third-Generation Sequencing Advances and Current State
3. Proteomics, Metabolomics, and Metagenomics Advances in the Study of MM
4. Overall Aspects of Artificial Intelligence
4.1. Innovations in Multiple Myeloma Diagnosis Through Artificial Intelligence
4.2. Prognosis of Multiple Myeloma: Advances Through Artificial Intelligence
4.2.1. Advancements in Risk Stratification
4.2.2. Integrating Imaging Data and AI for Improved Risk Stratification in MM
4.2.3. Predictive Modeling for Treatment Responses
4.2.4. Minimal Residual Disease (MRD) Prediction
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Dizon, D.S.; Kamal, A.H. Cancer Statistics 2024: All Hands on Deck. CA. Cancer J. Clin. 2024, 74, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Salem, K.; Glavey, S.V.; Roccaro, A.M.; Ghobrial, I.M. Genomic Aberrations in Multiple Myeloma. Cancer Treat. Res. 2016, 169, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Bolli, N.; Maura, F.; Minvielle, S.; Gloznik, D.; Szalat, R.; Fullam, A.; Martincorena, I.; Dawson, K.J.; Samur, M.K.; Zamora, J.; et al. Genomic Patterns of Progression in Smoldering Multiple Myeloma. Nat. Commun. 2018, 9, 3363. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple Myeloma: 2022 Update on Diagnosis, Risk Stratification, and Management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef]
- Abduh, M.S. An Overview of Multiple Myeloma: A Monoclonal Plasma Cell Malignancy’s Diagnosis, Management, and Treatment Modalities. Saudi J. Biol. Sci. 2024, 31, 103920. [Google Scholar] [CrossRef]
- Medina-Herrera, A.; Sarasquete, M.E.; Jiménez, C.; Puig, N.; García-Sanz, R. Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future. Cancers 2023, 15, 3687. [Google Scholar] [CrossRef]
- Gerecke, C.; Fuhrmann, S.; Strifler, S.; Schmidt-Hieber, M.; Einsele, H.; Knop, S. Diagnostik und Therapie des Multiplen Myeloms. Dtsch. Arztebl. Int. 2016, 113, 470–476. [Google Scholar] [CrossRef]
- Hernández-Rivas, J.Á.; Mesa, M.G. Healthcare Reality of the Treatment of the High-Risk Multiple Myeloma in Spain. Med. Clin. 2020, 154, 315–319. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Barsouk, A.; Rawla, P.; Vakiti, A.; Kolhe, R.; Kota, V.; Ajebo, G.H. Epidemiology, Staging, and Management of Multiple Myeloma. Med. Sci. 2021, 9, 3. [Google Scholar] [CrossRef]
- Hussain, M.; Yellapragada, S.; Al Hadidi, S. Differential Diagnosis and Therapeutic Advances in Multiple Myeloma: A Review Article. Blood Lymphat. Cancer Targets Ther. 2023, 13, 33–57. [Google Scholar] [CrossRef]
- Carmichael, J.; Seymour, F.; McIlroy, G.; Tayabali, S.; Amerikanou, R.; Feyler, S.; Popat, R.; Pratt, G.; Parrish, C.; Ashcroft, A.J.; et al. Delayed Diagnosis Resulting in Increased Disease Burden in Multiple Myeloma: The Legacy of the COVID-19 Pandemic. Blood Cancer J. 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Am, R.; Sv, R. Interpretation of Cytogenetic Results in Multiple Myeloma for Clinical Practice. Blood Cancer J. 2015, 5, e365. [Google Scholar] [CrossRef]
- Soliman, A.M.; Das, S.; Teoh, S.L. Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int. J. Mol. Sci. 2021, 22, 7470. [Google Scholar] [CrossRef]
- Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.P.; Ahmann, G.J.; Adli, M.; et al. Initial Genome Sequencing and Analysis of Multiple Myeloma. Nature 2011, 471, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of Mutational Processes in Human Cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef]
- Bolli, N.; Avet-Loiseau, H.; Wedge, D.C.; Loo, P.V.; Alexandrov, L.B.; Martincorena, I.; Dawson, K.J.; Iorio, F.; Nik-Zainal, S.; Bignell, G.R.; et al. Heterogeneity of Genomic Evolution and Mutational Profiles in Multiple Myeloma. Nat. Commun. 2014, 5, 2997. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Dimopoulos, M.A. Pathogenesis of Bone Disease in Multiple Myeloma: From Bench to Bedside. Blood Cancer J. 2018, 8, 7. [Google Scholar] [CrossRef]
- Barwick, B.G.; Neri, P.; Bahlis, N.J.; Nooka, A.K.; Dhodapkar, M.V.; Jaye, D.L.; Hofmeister, C.C.; Kaufman, J.L.; Gupta, V.A.; Auclair, D.; et al. Multiple Myeloma Immunoglobulin Lambda Translocations Portend Poor Prognosis. Nat. Commun. 2019, 10, 1911. [Google Scholar] [CrossRef]
- Gupta, N.; Sharma, A.; Sharma, A. Emerging Biomarkers in Multiple Myeloma: A Review. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 503, 45–53. [Google Scholar] [CrossRef]
- Rustad, E.H.; Hultcrantz, M.; Yellapantula, V.D.; Akhlaghi, T.; Ho, C.; Arcila, M.E.; Roshal, M.; Patel, A.; Chen, D.; Devlin, S.M.; et al. Baseline Identification of Clonal V(D)J Sequences for DNA-Based Minimal Residual Disease Detection in Multiple Myeloma. PLoS ONE 2019, 14, e0211600. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [PubMed]
- Fechtner, K.; Hillengass, J.; Delorme, S.; Heiss, C.; Neben, K.; Goldschmidt, H.; Kauczor, H.-U.; Weber, M.-A. Staging Monoclonal Plasma Cell Disease: Comparison of the Durie-Salmon and the Durie-Salmon PLUS Staging Systems. Radiology 2010, 257, 195–204. [Google Scholar] [CrossRef]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients with Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef]
- Chawla, S.S.; Kumar, S.K.; Dispenzieri, A.; Greenberg, A.J.; Larson, D.R.; Kyle, R.A.; Lacy, M.Q.; Gertz, M.A.; Rajkumar, S.V. Clinical Course and Prognosis of Non-Secretory Multiple Myeloma. Eur. J. Haematol. 2015, 95, 57–64. [Google Scholar] [CrossRef]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Front. Artif. Intell. 2023, 6, 1227091. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Daneva, G.N.; Boti, M.A.; Dimitroulis, G.; Adamopoulos, P.G.; Scorilas, A. The Transition from Cancer “Omics” to “Epi-Omics” through Next- and Third-Generation Sequencing. Life 2022, 12, 2010. [Google Scholar] [CrossRef]
- Maura, F.; Degasperi, A.; Nadeu, F.; Leongamornlert, D.; Davies, H.; Moore, L.; Royo, R.; Ziccheddu, B.; Puente, X.S.; Avet-Loiseau, H.; et al. A Practical Guide for Mutational Signature Analysis in Hematological Malignancies. Nat. Commun. 2019, 10, 2969. [Google Scholar] [CrossRef] [PubMed]
- Rustad, E.H.; Yellapantula, V.; Glodzik, D.; Gundem, G.; Leongamornlert, D.A.; Campbell, P.J.; Papaemmanuil, E.; Landgren, O.; Maura, F. Revealing the Impact of Recurrent and Rare Structural Variations in Multiple Myeloma. Blood 2019, 134, 576. [Google Scholar] [CrossRef]
- Rheinbay, E.; Nielsen, M.M.; Abascal, F.; Wala, J.A.; Shapira, O.; Tiao, G.; Hornshøj, H.; Hess, J.M.; Juul, R.I.; Lin, Z.; et al. Analyses of Non-Coding Somatic Drivers in 2658 Cancer Whole Genomes. Nature 2020, 578, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, L.A.; Abascal, F.; Abeshouse, A.; Aburatani, H.; Adams, D.J.; Agrawal, N.; Ahn, K.S.; Ahn, S.-M.; Aikata, H.; Akbani, R.; et al. Pan-Cancer Analysis of Whole Genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The Repertoire of Mutational Signatures in Human Cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients with Newly Diagnosed Myeloma. J. Clin. Oncol. 2015, 33, 3911–3920. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational Heterogeneity in Cancer and the Search for New Cancer-Associated Genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, B.; Tekin, M.; Mahdieh, N. The Promise of Whole-Exome Sequencing in Medical Genetics. J. Hum. Genet. 2014, 59, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Bewicke-Copley, F.; Kumar, E.A.; Palladino, G.; Korfi, K.; Wang, J. Applications and Analysis of Targeted Genomic Sequencing in Cancer Studies. Comput. Struct. Biotechnol. J. 2019, 17, 1348–1359. [Google Scholar] [CrossRef]
- Bolli, N.; Li, Y.; Sathiaseelan, V.; Raine, K.; Jones, D.; Ganly, P.; Cocito, F.; Bignell, G.; Chapman, M.A.; Sperling, A.S.; et al. A DNA Target-Enrichment Approach to Detect Mutations, Copy Number Changes and Immunoglobulin Translocations in Multiple Myeloma. Blood Cancer J. 2016, 6, e467. [Google Scholar] [CrossRef]
- Kortüm, K.M.; Mai, E.K.; Hanafiah, N.H.; Shi, C.-X.; Zhu, Y.-X.; Bruins, L.; Barrio, S.; Jedlowski, P.; Merz, M.; Xu, J.; et al. Targeted Sequencing of Refractory Myeloma Reveals a High Incidence of Mutations in CRBN and Ras Pathway Genes. Blood 2016, 128, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef] [PubMed]
- Bolli, N.; Biancon, G.; Moarii, M.; Gimondi, S.; Li, Y.; de Philippis, C.; Maura, F.; Sathiaseelan, V.; Tai, Y.-T.; Mudie, L.; et al. Analysis of the Genomic Landscape of Multiple Myeloma Highlights Novel Prognostic Markers and Disease Subgroups. Leukemia 2018, 32, 2604–2616. [Google Scholar] [CrossRef]
- Corre, J.; Cleynen, A.; Robiou du Pont, S.; Buisson, L.; Bolli, N.; Attal, M.; Munshi, N.; Avet-Loiseau, H. Multiple Myeloma Clonal Evolution in Homogeneously Treated Patients. Leukemia 2018, 32, 2636–2647. [Google Scholar] [CrossRef]
- Smadbeck, J.; Peterson, J.F.; Pearce, K.E.; Pitel, B.A.; Figueroa, A.L.; Timm, M.; Jevremovic, D.; Shi, M.; Stewart, A.K.; Braggio, E.; et al. Mate Pair Sequencing Outperforms Fluorescence in Situ Hybridization in the Genomic Characterization of Multiple Myeloma. Blood Cancer J. 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, M.; Marchica, V.; Storti, P.; Ziccheddu, B.; Sammarelli, G.; Todaro, G.; Pelizzoni, F.; Salerio, S.; Notarfranchi, L.; Pompa, A.; et al. Application of Next-Generation Sequencing for the Genomic Characterization of Patients with Smoldering Myeloma. Cancers 2020, 12, 1332. [Google Scholar] [CrossRef]
- Nagahashi, M.; Shimada, Y.; Ichikawa, H.; Kameyama, H.; Takabe, K.; Okuda, S.; Wakai, T. Next Generation Sequencing-Based Gene Panel Tests for the Management of Solid Tumors. Cancer Sci. 2019, 110, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Yellapantula, V.; Hultcrantz, M.; Rustad, E.H.; Wasserman, E.; Londono, D.; Cimera, R.; Ciardiello, A.; Landau, H.; Akhlaghi, T.; Mailankody, S.; et al. Comprehensive Detection of Recurring Genomic Abnormalities: A Targeted Sequencing Approach for Multiple Myeloma. Blood Cancer J. 2019, 9, 101. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and Challenges in Long-Read Sequencing Data Analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef]
- Steyaert, W.; Callens, S.; Coucke, P.; Dermaut, B.; Hemelsoet, D.; Terryn, W.; Poppe, B. Future Perspectives of Genome-Scale Sequencing. Acta Clin. Belg. 2018, 73, 7–10. [Google Scholar] [CrossRef]
- Bolli, N.; Genuardi, E.; Ziccheddu, B.; Martello, M.; Oliva, S.; Terragna, C. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front. Oncol. 2020, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Rodriguez-Otero, P.; Bhutani, M.; Mateos, M.-V.; Miguel, J.S. Defining and Treating High-Risk Multiple Myeloma. Leukemia 2015, 29, 2119–2125. [Google Scholar] [CrossRef]
- Pawlyn, C.; Morgan, G.J. Evolutionary Biology of High-Risk Multiple Myeloma. Nat. Rev. Cancer 2017, 17, 543–556. [Google Scholar] [CrossRef]
- McKerrell, T.; Moreno, T.; Ponstingl, H.; Bolli, N.; Dias, J.M.L.; Tischler, G.; Colonna, V.; Manasse, B.; Bench, A.; Bloxham, D.; et al. Development and Validation of a Comprehensive Genomic Diagnostic Tool for Myeloid Malignancies. Blood 2016, 128, e1–e9. [Google Scholar] [CrossRef]
- Gerstung, M.; Papaemmanuil, E.; Martincorena, I.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Heuser, M.; Thol, F.; Bolli, N.; Ganly, P.; et al. Precision Oncology for Acute Myeloid Leukemia Using a Knowledge Bank Approach. Nat. Genet. 2017, 49, 332–340. [Google Scholar] [CrossRef]
- Mailankody, S.; Kazandjian, D.; Korde, N.; Roschewski, M.; Manasanch, E.; Bhutani, M.; Tageja, N.; Kwok, M.; Zhang, Y.; Zingone, A.; et al. Baseline Mutational Patterns and Sustained MRD Negativity in Patients with High-Risk Smoldering Myeloma. Blood Adv. 2017, 1, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Mikulasova, A.; Wardell, C.P.; Murison, A.; Boyle, E.M.; Jackson, G.H.; Smetana, J.; Kufova, Z.; Pour, L.; Sandecka, V.; Almasi, M.; et al. The Spectrum of Somatic Mutations in Monoclonal Gammopathy of Undetermined Significance Indicates a Less Complex Genomic Landscape than That in Multiple Myeloma. Haematologica 2017, 102, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Campo, C.; da Silva Filho, M.I.; Weinhold, N.; Mahmoudpour, S.H.; Goldschmidt, H.; Hemminki, K.; Merz, M.; Försti, A. Bortezomib-Induced Peripheral Neuropathy: A Genome-Wide Association Study on Multiple Myeloma Patients. Hematol. Oncol. 2018, 36, 232–237. [Google Scholar] [CrossRef]
- Zmorzyński, S.; Popek-Marciniec, S.; Szudy-Szczyrek, A.; Wojcierowska-Litwin, M.; Korszeń-Pilecka, I.; Chocholska, S.; Styk, W.; Hus, M.; Filip, A.A. The Association of GSTT1, GSTM1, and TNF-α Polymorphisms with the Risk and Outcome in Multiple Myeloma. Front. Oncol. 2019, 9, 1056. [Google Scholar] [CrossRef]
- Poi, M.J.; Li, J.; Johnson, J.A.; Cho, Y.K.; Sborov, D.W.; Phelps, M.A.; Hofmeister, C.C. A Single Nucleotide Polymorphism in SLC7A5 Was Associated with Clinical Response in Multiple Myeloma Patients. Anticancer Res. 2019, 39, 67–72. [Google Scholar] [CrossRef]
- Sawyer, J.R.; Tian, E.; Jr, J.D.S.; Epstein, J.; Swanson, C.M.; Stangeby, C.; Hale, C.L.; Parr, L.; Lynn, M.; Sammartino, G.; et al. Hyperhaploidy Is a Novel High-Risk Cytogenetic Subgroup in Multiple Myeloma. Leukemia 2017, 31, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Thakurta, A.; Ortiz, M.; Blecua, P.; Towfic, F.; Corre, J.; Serbina, N.V.; Flynt, E.; Yu, Z.; Yang, Z.; Palumbo, A.; et al. High Subclonal Fraction of 17p Deletion Is Associated with Poor Prognosis in Multiple Myeloma. Blood 2019, 133, 1217–1221. [Google Scholar] [CrossRef]
- Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Mitchell, T.J.; Fullam, A.; Gonzalez, S.; Szalat, R.; et al. Genomic Landscape and Chronological Reconstruction of Driver Events in Multiple Myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.; Jara-Acevedo, M.; Corchete, L.A.; Castillo, D.; Ordóñez, G.R.; Sarasquete, M.E.; Puig, N.; Martínez-López, J.; Prieto-Conde, M.I.; García-Álvarez, M.; et al. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma. J. Mol. Diagn. 2017, 19, 99–106. [Google Scholar] [CrossRef]
- Coffey, D.G.; Wu, Q.V.; Towlerton, A.M.H.; Ornelas, S.; Morales, A.J.; Xu, Y.; Green, D.J.; Warren, E.H. Ultradeep, Targeted Sequencing Reveals Distinct Mutations in Blood Compared to Matched Bone Marrow among Patients with Multiple Myeloma. Blood Cancer J. 2019, 9, 77. [Google Scholar] [CrossRef]
- Ledergor, G.; Weiner, A.; Zada, M.; Wang, S.-Y.; Cohen, Y.C.; Gatt, M.E.; Snir, N.; Magen, H.; Koren-Michowitz, M.; Herzog-Tzarfati, K.; et al. Single Cell Dissection of Plasma Cell Heterogeneity in Symptomatic and Asymptomatic Myeloma. Nat. Med. 2018, 24, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.G.; Kim, S.; Gould, J.; Knoechel, B.; Drier, Y.; Cotton, M.J.; Gray, D.; Birrer, N.; Wong, B.; Ha, G.; et al. Genetic Interrogation of Circulating Multiple Myeloma Cells at Single-Cell Resolution. Sci. Transl. Med. 2016, 8, 363ra147. [Google Scholar] [CrossRef]
- Kis, O.; Kaedbey, R.; Chow, S.; Danesh, A.; Dowar, M.; Li, T.; Li, Z.; Liu, J.; Mansour, M.; Masih-Khan, E.; et al. Circulating Tumour DNA Sequence Analysis as an Alternative to Multiple Myeloma Bone Marrow Aspirates. Nat. Commun. 2017, 8, 15086. [Google Scholar] [CrossRef]
- Oberle, A.; Brandt, A.; Voigtlaender, M.; Thiele, B.; Radloff, J.; Schulenkorf, A.; Alawi, M.; Akyüz, N.; März, M.; Ford, C.T.; et al. Monitoring Multiple Myeloma by Next-Generation Sequencing of V(D)J Rearrangements from Circulating Myeloma Cells and Cell-Free Myeloma DNA. Haematologica 2017, 102, 1105–1111. [Google Scholar] [CrossRef]
- Gerber, B.; Manzoni, M.; Spina, V.; Bruscaggin, A.; Lionetti, M.; Fabris, S.; Barbieri, M.; Ciceri, G.; Pompa, A.; Forestieri, G.; et al. Circulating Tumor DNA as a Liquid Biopsy in Plasma Cell Dyscrasias. Haematologica 2018, 103, e245–e248. [Google Scholar] [CrossRef]
- Manier, S.; Park, J.; Capelletti, M.; Bustoros, M.; Freeman, S.S.; Ha, G.; Rhoades, J.; Liu, C.J.; Huynh, D.; Reed, S.C.; et al. Whole-Exome Sequencing of Cell-Free DNA and Circulating Tumor Cells in Multiple Myeloma. Nat. Commun. 2018, 9, 1691. [Google Scholar] [CrossRef] [PubMed]
- Aktas Samur, A.; Fulciniti, M.; Avet-Loiseau, H.; Lopez, M.A.; Derebail, S.; Corre, J.; Minvielle, S.; Magrangeas, F.; Moreau, P.; Anderson, K.C.; et al. In-Depth Analysis of Alternative Splicing Landscape in Multiple Myeloma and Potential Role of Dysregulated Splicing Factors. Blood Cancer J. 2022, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, K.; Gimsing, P.; Grønbæk, K. The Role of Epigenetics in the Biology of Multiple Myeloma. Blood Cancer J. 2014, 4, e207. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Fabris, S.; Pegoraro, V.; Ronchetti, D.; Mosca, L.; Deliliers, G.L.; Motta, V.; Bertazzi, P.A.; Baccarelli, A.; Neri, A. Differential Repetitive DNA Methylation in Multiple Myeloma Molecular Subgroups. Carcinogenesis 2009, 30, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.F.; Johnson, D.C.; Wu, P.; Walker, B.A.; Brioli, A.; Mirabella, F.; Wardell, C.P.; Melchor, L.; Davies, F.E.; Morgan, G.J. Global Methylation Analysis Identifies Prognostically Important Epigenetically Inactivated Tumor Suppressor Genes in Multiple Myeloma. Blood 2013, 122, 219–226. [Google Scholar] [CrossRef]
- Sive, J.I.; Feber, A.; Smith, D.; Quinn, J.; Beck, S.; Yong, K. Global Hypomethylation in Myeloma Is Associated with Poor Prognosis. Br. J. Haematol. 2016, 172, 473–475. [Google Scholar] [CrossRef]
- Caprio, C.; Sacco, A.; Giustini, V.; Roccaro, A.M. Epigenetic Aberrations in Multiple Myeloma. Cancers 2020, 12, 2996. [Google Scholar] [CrossRef]
- Salomon-Perzyński, A.; Barankiewicz, J.; Machnicki, M.; Misiewicz-Krzemińska, I.; Pawlak, M.; Radomska, S.; Krzywdzińska, A.; Bluszcz, A.; Stawiński, P.; Rydzanicz, M.; et al. Tracking Clonal Evolution of Multiple Myeloma Using Targeted Next-Generation DNA Sequencing. Biomedicines 2022, 10, 1674. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Kumar, S.K.; Jin, F.; Dai, Y. Decoding DNA Methylation in Epigenetics of Multiple Myeloma. Blood Rev. 2022, 51, 100872. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a Role in Cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Chan, S.-H.; Wang, L.-H. Regulation of Cancer Metastasis by microRNAs. J. Biomed. Sci. 2015, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Liu, C.-J.; Avet-Loiseau, H.; Park, J.; Shi, J.; Campigotto, F.; Salem, K.Z.; Huynh, D.; Glavey, S.V.; Rivotto, B.; et al. Prognostic Role of Circulating Exosomal miRNAs in Multiple Myeloma. Blood 2017, 129, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A High-Risk, Double-Hit, Group of Newly Diagnosed Myeloma Identified by Genomic Analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Li, C.; Magrangeas, F.; Gouraud, W.; Charbonnel, C.; Harousseau, J.-L.; Attal, M.; Marit, G.; Mathiot, C.; Facon, T.; et al. Prognostic Significance of Copy-Number Alterations in Multiple Myeloma. J. Clin. Oncol. 2009, 27, 4585–4590. [Google Scholar] [CrossRef]
- Smadja, N.V.; Bastard, C.; Brigaudeau, C.; Leroux, D.; Fruchart, C. Hypodiploidy Is a Major Prognostic Factor in Multiple Myeloma. Blood 2001, 98, 2229–2238. [Google Scholar] [CrossRef]
- Peterson, J.F.; Rowsey, R.A.; Marcou, C.A.; Pearce, K.E.; Williamson, C.M.; Frederick, L.A.; Greipp, P.T.; Ketterling, R.P.; Kumar, S.; Viswanatha, D.S.; et al. Hyperhaploid Plasma Cell Myeloma Characterized by Poor Outcome and Monosomy 17 with Frequently Co-Occurring TP53 Mutations. Blood Cancer J. 2019, 9, 20. [Google Scholar] [CrossRef]
- Abdallah, N.; Rajkumar, S.V.; Greipp, P.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; et al. Cytogenetic Abnormalities in Multiple Myeloma: Association with Disease Characteristics and Treatment Response. Blood Cancer J. 2020, 10, 82. [Google Scholar] [CrossRef]
- Wang, S.-H.; Chen, N.-S.; Hsu, Y.-T.; Hsu, C.-W.; Medeiros, L.J.; Chang, K.-C. Gaucher-like Crystal-Storing Histiocytosis Associated with Kappa Chain Myeloma: A Case Report with next Generation Sequencing Study. Pathol. Res. Pract. 2024, 263, 155609. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.E.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. Identification of Novel Mutational Drivers Reveals Oncogene Dependencies in Multiple Myeloma. Blood 2018, 132, 587–597. [Google Scholar] [CrossRef]
- Boyd, K.D.; Ross, F.M.; Chiecchio, L.; Dagrada, G.P.; Konn, Z.J.; Tapper, W.J.; Walker, B.A.; Wardell, C.P.; Gregory, W.M.; Szubert, A.J.; et al. A Novel Prognostic Model in Myeloma Based on Co-Segregating Adverse FISH Lesions and the ISS: Analysis of Patients Treated in the MRC Myeloma IX Trial. Leukemia 2012, 26, 349–355. [Google Scholar] [CrossRef]
- Carballo-Zarate, A.A.; Medeiros, L.J.; Fang, L.; Shah, J.J.; Weber, D.M.; Thomas, S.K.; Manasanch, E.E.; Hao, S.; Shen, Q.; Orlowski, R.Z.; et al. Additional–Structural–Chromosomal Aberrations Are Associated with Inferior Clinical Outcome in Patients with Hyperdiploid Multiple Myeloma: A Single-Institution Experience. Mod. Pathol. 2017, 30, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Maura, F.; Petljak, M.; Lionetti, M.; Cifola, I.; Liang, W.; Pinatel, E.; Alexandrov, L.B.; Fullam, A.; Martincorena, I.; Dawson, K.J.; et al. Biological and Prognostic Impact of APOBEC-Induced Mutations in the Spectrum of Plasma Cell Dyscrasias and Multiple Myeloma Cell Lines. Leukemia 2018, 32, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Perrot, A.; Lauwers-Cances, V.; Tournay, E.; Hulin, C.; Chretien, M.-L.; Royer, B.; Dib, M.; Decaux, O.; Jaccard, A.; Belhadj, K.; et al. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma. J. Clin. Oncol. 2019, 37, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Lee-Six, H.; Olafsson, S.; Ellis, P.; Osborne, R.J.; Sanders, M.A.; Moore, L.; Georgakopoulos, N.; Torrente, F.; Noorani, A.; Goddard, M.; et al. The Landscape of Somatic Mutation in Normal Colorectal Epithelial Cells. Nature 2019, 574, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.; Leongamornlert, D.; Coorens, T.H.H.; Sanders, M.A.; Ellis, P.; Dentro, S.C.; Dawson, K.J.; Butler, T.; Rahbari, R.; Mitchell, T.J.; et al. The Mutational Landscape of Normal Human Endometrial Epithelium. Nature 2020, 580, 640–646. [Google Scholar] [CrossRef]
- Oben, B.; Froyen, G.; Maclachlan, K.H.; Leongamornlert, D.; Abascal, F.; Zheng-Lin, B.; Yellapantula, V.; Derkach, A.; Geerdens, E.; Diamond, B.T.; et al. Whole-Genome Sequencing Reveals Progressive versus Stable Myeloma Precursor Conditions as Two Distinct Entities. Nat. Commun. 2021, 12, 1861. [Google Scholar] [CrossRef]
- Landgren, O. Advances in MGUS Diagnosis, Risk Stratification, and Management: Introducing Myeloma-Defining Genomic Events. Hematology 2021, 2021, 662–672. [Google Scholar] [CrossRef]
- Bolli, N.; Manes, N.; McKerrell, T.; Chi, J.; Park, N.; Gundem, G.; Quail, M.A.; Sathiaseelan, V.; Herman, B.; Crawley, C.; et al. Characterization of Gene Mutations and Copy Number Changes in Acute Myeloid Leukemia Using a Rapid Target Enrichment Protocol. Haematologica 2015, 100, 214–222. [Google Scholar] [CrossRef]
- Dutta, A.K.; Fink, J.L.; Grady, J.P.; Morgan, G.J.; Mullighan, C.G.; To, L.B.; Hewett, D.R.; Zannettino, A.C.W. Subclonal Evolution in Disease Progression from MGUS/SMM to Multiple Myeloma Is Characterised by Clonal Stability. Leukemia 2019, 33, 457–468. [Google Scholar] [CrossRef]
- Misund, K.; Keane, N.; Stein, C.K.; Asmann, Y.W.; Day, G.; Welsh, S.; Wier, S.A.V.; Riggs, D.L.; Ahmann, G.; Chesi, M.; et al. MYC Dysregulation in the Progression of Multiple Myeloma. Leukemia 2020, 34, 322–326. [Google Scholar] [CrossRef]
- Weinhold, N.; Ashby, C.; Rasche, L.; Chavan, S.S.; Stein, C.; Stephens, O.W.; Tytarenko, R.; Bauer, M.A.; Meissner, T.; Deshpande, S.; et al. Clonal Selection and Double-Hit Events Involving Tumor Suppressor Genes Underlie Relapse in Myeloma. Blood 2016, 128, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Barrio, S.; Stühmer, T.; Da-Viá, M.; Barrio-Garcia, C.; Lehners, N.; Besse, A.; Cuenca, I.; Garitano-Trojaola, A.; Fink, S.; Leich, E.; et al. Spectrum and Functional Validation of PSMB5 Mutations in Multiple Myeloma. Leukemia 2019, 33, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, T.; Zihala, D.; Sevcikova, T.; Sithara, A.A.; Kapustova, V.; Sahinbegovic, H.; Venglar, O.; Muronova, L.; Broskevicova, L.; Nenarokov, S.; et al. Beyond the Marrow: Insights from Comprehensive next-Generation Sequencing of Extramedullary Multiple Myeloma Tumors. Leukemia 2024, 38, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, M.; Kotrová, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; Grioni, A.; et al. Standardized Next-Generation Sequencing of Immunoglobulin and T-Cell Receptor Gene Recombinations for MRD Marker Identification in Acute Lymphoblastic Leukaemia; a EuroClonality-NGS Validation Study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef]
- Kotrova, M.; Darzentas, N.; Pott, C.; Baldus, C.D.; Brüggemann, M. Immune Gene Rearrangements: Unique Signatures for Tracing Physiological Lymphocytes and Leukemic Cells. Genes 2021, 12, 979. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sereewattanawoot, S.; Suzuki, A. A New Era of Long-Read Sequencing for Cancer Genomics. J. Hum. Genet. 2020, 65, 3–10. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Marx, V. Method of the Year: Long-Read Sequencing. Nat. Methods 2023, 20, 6–11. [Google Scholar] [CrossRef]
- Shang, L.; He, W.; Wang, T.; Yang, Y.; Xu, Q.; Zhao, X.; Yang, L.; Zhang, H.; Li, X.; Lv, Y.; et al. A Complete Assembly of the Rice Nipponbare Reference Genome. Mol. Plant 2023, 16, 1232–1236. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Genome Assembly in the Telomere-to-Telomere Era. Nat. Rev. Genet. 2024, 25, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front. Genet. 2020, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Garalde, D.R.; Snell, E.A.; Jachimowicz, D.; Sipos, B.; Lloyd, J.H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; et al. Highly Parallel Direct RNA Sequencing on an Array of Nanopores. Nat. Methods 2018, 15, 201–206. [Google Scholar] [CrossRef]
- Stoiber, M.; Quick, J.; Egan, R.; Lee, J.E.; Celniker, S.; Neely, R.K.; Loman, N.; Pennacchio, L.A.; Brown, J. De Novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing. BioRxiv 2017, 094672. [Google Scholar] [CrossRef]
- Leger, A.; Amaral, P.P.; Pandolfini, L.; Capitanchik, C.; Capraro, F.; Miano, V.; Migliori, V.; Toolan-Kerr, P.; Sideri, T.; Enright, A.J.; et al. RNA Modifications Detection by Comparative Nanopore Direct RNA Sequencing. Nat. Commun. 2021, 12, 7198. [Google Scholar] [CrossRef]
- Pratanwanich, P.N.; Yao, F.; Chen, Y.; Koh, C.W.Q.; Wan, Y.K.; Hendra, C.; Poon, P.; Goh, Y.T.; Yap, P.M.L.; Chooi, J.Y.; et al. Identification of Differential RNA Modifications from Nanopore Direct RNA Sequencing with xPore. Nat. Biotechnol. 2021, 39, 1394–1402. [Google Scholar] [CrossRef]
- Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M.H.-Y.; et al. An Integrated Map of Structural Variation in 2504 Human Genomes. Nature 2015, 526, 75–81. [Google Scholar] [CrossRef]
- Horak, P.; Fröhling, S.; Glimm, H. Integrating Next-Generation Sequencing into Clinical Oncology: Strategies, Promises and Pitfalls. ESMO Open 2016, 1, e000094. [Google Scholar] [CrossRef]
- Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P.; et al. BreakDancer: An Algorithm for High-Resolution Mapping of Genomic Structural Variation. Nat. Methods 2009, 6, 677–681. [Google Scholar] [CrossRef]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid Detection of Structural Variants and Indels for Germline and Cancer Sequencing Applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural Variant Discovery by Integrated Paired-End and Split-Read Analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef] [PubMed]
- Wala, J.A.; Bandopadhayay, P.; Greenwald, N.F.; O’Rourke, R.; Sharpe, T.; Stewart, C.; Schumacher, S.; Li, Y.; Weischenfeldt, J.; Yao, X.; et al. SvABA: Genome-Wide Detection of Structural Variants and Indels by Local Assembly. Genome Res. 2018, 28, 581–591. [Google Scholar] [CrossRef]
- Zheng, G.X.Y.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.; Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; et al. Haplotyping Germline and Cancer Genomes with High-Throughput Linked-Read Sequencing. Nat. Biotechnol. 2016, 34, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Ott, A.; Schnable, J.C.; Yeh, C.-T.; Wu, L.; Liu, C.; Hu, H.-C.; Dalgard, C.L.; Sarkar, S.; Schnable, P.S. Linked Read Technology for Assembling Large Complex and Polyploid Genomes. BMC Genom. 2018, 19, 651. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.R.; Wijeratne, S.; McGrath, S.D.; Schieffer, K.M.; Miller, K.E.; Lee, K.; Mathew, M.; LaHaye, S.; Fitch, J.R.; Kelly, B.J.; et al. Pacific Biosciences Fusion and Long Isoform Pipeline for Cancer Transcriptome–Based Resolution of Isoform Complexity. J. Mol. Diagn. 2022, 24, 1292–1306. [Google Scholar] [CrossRef]
- Uguen, K.; Jubin, C.; Duffourd, Y.; Bardel, C.; Malan, V.; Dupont, J.-M.; Khattabi, L.E.; Chatron, N.; Vitobello, A.; Rollat-Farnier, P.-A.; et al. Genome Sequencing in Cytogenetics: Comparison of Short-Read and Linked-Read Approaches for Germline Structural Variant Detection and Characterization. Mol. Genet. Genom. Med. 2020, 8, e1114. [Google Scholar] [CrossRef]
- Liu, E.; Becker, N.; Sudha, P.; Mikulasova, A.; Zaid, M.A.; Suvannasankha, A.; Lee, K.P.; Abonour, R.; Walker, B.A. Unraveling Diverse Mechanisms of Complex Structural Variant Interactions through Multiomic Data in Multiple Myeloma. Blood 2023, 142, 641. [Google Scholar] [CrossRef]
- Mani, D.R.; Krug, K.; Zhang, B.; Satpathy, S.; Clauser, K.R.; Ding, L.; Ellis, M.; Gillette, M.A.; Carr, S.A. Cancer Proteogenomics: Current Impact and Future Prospects. Nat. Rev. Cancer 2022, 22, 298–313. [Google Scholar] [CrossRef]
- Langerhorst, P.; Noori, S.; Zajec, M.; De Rijke, Y.B.; Gloerich, J.; van Gool, A.J.; Caillon, H.; Joosten, I.; Luider, T.M.; Corre, J.; et al. Multiple Myeloma Minimal Residual Disease Detection: Targeted Mass Spectrometry in Blood vs Next-Generation Sequencing in Bone Marrow. Clin. Chem. 2021, 67, 1689–1698. [Google Scholar] [CrossRef]
- Ramberger, E.; Sapozhnikova, V.; Ng, Y.L.D.; Dolnik, A.; Ziehm, M.; Popp, O.; Sträng, E.; Kull, M.; Grünschläger, F.; Krüger, J.; et al. The Proteogenomic Landscape of Multiple Myeloma Reveals Insights into Disease Biology and Therapeutic Opportunities. Nat. Cancer 2024, 5, 1267–1284. [Google Scholar] [CrossRef]
- German, J.B.; Hammock, B.D.; Watkins, S.M. Metabolomics: Building on a Century of Biochemistry to Guide Human Health. Metabolomics 2005, 1, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Zeng, P.; Li, Y.; Chai, Y.; Wu, C.; Gao, B. Nontargeted and Targeted Metabolomics Approaches Reveal the Key Amino Acid Alterations Involved in Multiple Myeloma. PeerJ 2022, 10, e12918. [Google Scholar] [CrossRef] [PubMed]
- Varzieva, V.G.; Mesonzhnik, N.V.; Ilgisonis, I.S.; Belenkov, Y.N.; Kozhevnikova, M.V.; Appolonova, S.A. Metabolomic Biomarkers of Multiple Myeloma: A Systematic Review. Biochim. Biophys. Acta BBA-Rev. Cancer 2024, 1879, 189151. [Google Scholar] [CrossRef]
- Du, H.; Wang, L.; Liu, B.; Wang, J.; Su, H.; Zhang, T.; Huang, Z. Analysis of the Metabolic Characteristics of Serum Samples in Patients with Multiple Myeloma. Front. Pharmacol. 2018, 9, 884. [Google Scholar] [CrossRef] [PubMed]
- Steiner, N.; Müller, U.; Hajek, R.; Sevcikova, S.; Borjan, B.; Jöhrer, K.; Göbel, G.; Pircher, A.; Gunsilius, E. The Metabolomic Plasma Profile of Myeloma Patients Is Considerably Different from Healthy Subjects and Reveals Potential New Therapeutic Targets. PLoS ONE 2018, 13, e0202045. [Google Scholar] [CrossRef]
- Chanukuppa, V.; More, T.H.; Taunk, K.; Taware, R.; Chatterjee, T.; Sharma, S.; Rapole, S. Serum Metabolomic Alterations in Multiple Myeloma Revealed by Targeted and Untargeted Metabolomics Approaches: A Pilot Study. RSC Adv. 2019, 9, 29522–29532. [Google Scholar] [CrossRef]
- Fei, F.; Ma, T.; Zhou, X.; Zheng, M.; Cao, B.; Li, J. Metabolic Markers for Diagnosis and Risk-Prediction of Multiple Myeloma. Life Sci. 2021, 265, 118852. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Chen, F.; Li, X.; Zhang, J.; Shen, M.; Tang, R.; Huang, Z. Serum Abnormal Metabolites for Evaluating Therapeutic Response and Prognosis of Patients with Multiple Myeloma. Front. Oncol. 2022, 12, 808290. [Google Scholar] [CrossRef]
- Isoda, A.; Kaira, K.; Iwashina, M.; Oriuchi, N.; Tominaga, H.; Nagamori, S.; Kanai, Y.; Oyama, T.; Asao, T.; Matsumoto, M.; et al. Expression of L-Type Amino Acid Transporter 1 (LAT1) as a Prognostic and Therapeutic Indicator in Multiple Myeloma. Cancer Sci. 2014, 105, 1496–1502. [Google Scholar] [CrossRef]
- Bolzoni, M.; Chiu, M.; Accardi, F.; Vescovini, R.; Airoldi, I.; Storti, P.; Todoerti, K.; Agnelli, L.; Missale, G.; Andreoli, R.; et al. Dependence on Glutamine Uptake and Glutamine Addiction Characterize Myeloma Cells: A New Attractive Target. Blood 2016, 128, 667–679. [Google Scholar] [CrossRef]
- Gonsalves, W.I.; Ramakrishnan, V.; Hitosugi, T.; Ghosh, T.; Jevremovic, D.; Dutta, T.; Sakrikar, D.; Petterson, X.M.; Wellik, L.; Kumar, S.K.; et al. Glutamine-Derived 2-Hydroxyglutarate Is Associated with Disease Progression in Plasma Cell Malignancies. JCI Insight 2018, 3, e94543. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.M.; Dytfeld, D.; Reyes, L.; Robinson, R.M.; Smith, B.; Manevich, Y.; Jakubowiak, A.; Komarnicki, M.; Przybylowicz-Chalecka, A.; Szczepaniak, T.; et al. Glutaminase Inhibitor CB-839 Synergizes with Carfilzomib in Resistant Multiple Myeloma Cells. Oncotarget 2017, 8, 35863–35876. [Google Scholar] [CrossRef] [PubMed]
- Prelowska, M.K.; Mehlich, D.; Ugurlu, M.T.; Kedzierska, H.; Cwiek, A.; Kosnik, A.; Kaminska, K.; Marusiak, A.A.; Nowis, D. Inhibition of the ʟ-Glutamine Transporter ASCT2 Sensitizes Plasma Cell Myeloma Cells to Proteasome Inhibitors. Cancer Lett. 2021, 507, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhao, E.; Cui, H. Target Enzymes in Serine-Glycine-One-Carbon Metabolic Pathway for Cancer Therapy. Int. J. Cancer 2023, 152, 2446–2463. [Google Scholar] [CrossRef] [PubMed]
- Elsaadi, S.; Steiro, I.; Abdollahi, P.; Vandsemb, E.N.; Yang, R.; Slørdahl, T.S.; Rø, T.B.; Menu, E.; Sponaas, A.-M.; Børset, M. Targeting Phosphoglycerate Dehydrogenase in Multiple Myeloma. Exp. Hematol. Oncol. 2021, 10, 3. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Wu, X.; Du, W.; Zhu, Y.; Liu, X.; Liu, Z.; Meng, B.; Guo, J.; Yang, Q.; et al. Blocking Glycine Utilization Inhibits Multiple Myeloma Progression by Disrupting Glutathione Balance. Nat. Commun. 2022, 13, 4007. [Google Scholar] [CrossRef]
- Ingeniis, J.D.; Ratnikov, B.; Richardson, A.D.; Scott, D.A.; Aza-Blanc, P.; De, S.K.; Kazanov, M.; Pellecchia, M.; Ronai, Z.; Osterman, A.L.; et al. Functional Specialization in Proline Biosynthesis of Melanoma. PLoS ONE 2012, 7, e45190. [Google Scholar] [CrossRef]
- D’Aniello, C.; Patriarca, E.J.; Phang, J.M.; Minchiotti, G. Proline Metabolism in Tumor Growth and Metastatic Progression. Front. Oncol. 2020, 10, 776. [Google Scholar] [CrossRef]
- Oudaert, I.; Satilmis, H.; Vlummens, P.; Brouwer, W.D.; Maes, A.; Hose, D.; Bruyne, E.D.; Ghesquière, B.; Vanderkerken, K.; Veirman, K.D.; et al. Pyrroline-5-Carboxylate Reductase 1: A Novel Target for Sensitizing Multiple Myeloma Cells to Bortezomib by Inhibition of PRAS40-Mediated Protein Synthesis. J. Exp. Clin. Cancer Res. 2022, 41, 45. [Google Scholar] [CrossRef]
- Mohamed, A.; Collins, J.; Jiang, H.; Molendijk, J.; Stoll, T.; Torta, F.; Wenk, M.R.; Bird, R.J.; Marlton, P.; Mollee, P.; et al. Concurrent Lipidomics and Proteomics on Malignant Plasma Cells from Multiple Myeloma Patients: Probing the Lipid Metabolome. PLoS ONE 2020, 15, e0227455. [Google Scholar] [CrossRef]
- Teras, L.R.; Kitahara, C.M.; Birmann, B.M.; Hartge, P.A.; Wang, S.S.; Robien, K.; Patel, A.V.; Adami, H.-O.; Weiderpass, E.; Giles, G.G.; et al. Body Size and Multiple Myeloma Mortality: A Pooled Analysis of 20 Prospective Studies. Br. J. Haematol. 2014, 166, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Falank, C.; Fairfield, H.; Farrell, M.; Reagan, M. New Bone Cell Type Identified As Driver of Drug Resistance in Multiple Myeloma: The Bone Marrow Adipocyte. Blood 2017, 130, 122. [Google Scholar] [CrossRef]
- Calcinotto, A.; Brevi, A.; Chesi, M.; Ferrarese, R.; Perez, L.G.; Grioni, M.; Kumar, S.; Garbitt, V.M.; Sharik, M.E.; Henderson, K.J.; et al. Microbiota-Driven Interleukin-17-Producing Cells and Eosinophils Synergize to Accelerate Multiple Myeloma Progression. Nat. Commun. 2018, 9, 4832. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Coker, O.O.; Nakatsu, G.; Wu, W.K.K.; Zhao, L.; Chen, Z.; Chan, F.K.L.; Kristiansen, K.; Sung, J.J.Y.; Wong, S.H.; et al. Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome 2018, 6, 70. [Google Scholar] [CrossRef]
- Jian, X.; Zhu, Y.; Ouyang, J.; Wang, Y.; Lei, Q.; Xia, J.; Guan, Y.; Zhang, J.; Guo, J.; He, Y.; et al. Alterations of Gut Microbiome Accelerate Multiple Myeloma Progression by Increasing the Relative Abundances of Nitrogen-Recycling Bacteria. Microbiome 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Olivieri, R.; Lazzeri, E.; Medaglini, D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front. Microbiol. 2019, 10, 1305. [Google Scholar] [CrossRef]
- Lione, L.; Salvatori, E.; Petrazzuolo, A.; Massacci, A.; Maggio, R.; Confroti, A.; Compagnone, M.; Aurisicchio, L.; Ciliberto, G.; Palombo, F. Antitumor Efficacy of a Neoantigen Cancer Vaccine Delivered by Electroporation Is Influenced by Microbiota Composition. OncoImmunology 2021, 10, 1898832. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, Y.; Li, Y.; Zhang, J. Gut Microbiome in Multiple Myeloma: Mechanisms of Progression and Clinical Applications. Front. Immunol. 2022, 13, 1058272. [Google Scholar] [CrossRef]
- Shah, U.A.; Maclachlan, K.H.; Derkach, A.; Salcedo, M.; Barnett, K.; Caple, J.; Blaslov, J.; Tran, L.; Ciardiello, A.; Burge, M.; et al. Sustained Minimal Residual Disease Negativity in Multiple Myeloma Is Associated with Stool Butyrate and Healthier Plant-Based Diets. Clin. Cancer Res. 2022, 28, 5149–5155. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Manne, R.; Kantheti, S.C. Application of Artificial Intelligence in Healthcare: Chances and Challenges. Curr. J. Appl. Sci. Technol. 2021, 40, 78–89. [Google Scholar] [CrossRef]
- Jafari, M.; Wang, Y.; Amiryousefi, A.; Tang, J. Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine. Front. Pharmacol. 2020, 11, 1319. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Tucker, S.; Salameh, T.; Tucker, C. An Unsupervised Machine Learning Method for Discovering Patient Clusters Based on Genetic Signatures. J. Biomed. Inform. 2018, 85, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement Learning Algorithms: A Brief Survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Oh, S.H.; Park, J.; Lee, S.J.; Kang, S.; Mo, J. Reinforcement Learning-Based Expanded Personalized Diabetes Treatment Recommendation Using South Korean Electronic Health Records. Expert Syst. Appl. 2022, 206, 117932. [Google Scholar] [CrossRef]
- Deulofeu, M.; Kolářová, L.; Salvadó, V.; Peña-Méndez, E.M.; Almáši, M.; Štork, M.; Pour, L.; Boadas-Vaello, P.; Ševčíková, S.; Havel, J.; et al. Rapid Discrimination of Multiple Myeloma Patients by Artificial Neural Networks Coupled with Mass Spectrometry of Peripheral Blood Plasma. Sci. Rep. 2019, 9, 7975. [Google Scholar] [CrossRef] [PubMed]
- Clichet, V.; Harrivel, V.; Delette, C.; Guiheneuf, E.; Gautier, M.; Morel, P.; Assouan, D.; Merlusca, L.; Beaumont, M.; Lebon, D.; et al. Accurate Classification of Plasma Cell Dyscrasias Is Achieved by Combining Artificial Intelligence and Flow Cytometry. Br. J. Haematol. 2022, 196, 1175–1183. [Google Scholar] [CrossRef]
- Hagos, Y.B.; Lecat, C.S.Y.; Patel, D.; Mikolajczak, A.; Castillo, S.P.; Lyon, E.J.; Foster, K.; Tran, T.-A.; Lee, L.S.H.; Rodriguez-Justo, M.; et al. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res. 2024, 84, 493–508. [Google Scholar] [CrossRef]
- Fan, G.; Cui, R.; Zhang, R.; Zhang, S.; Guo, R.; Zhai, Y.; Yue, Y.; Wang, Q. Routine Blood Biomarkers for the Detection of Multiple Myeloma Using Machine Learning. Int. J. Lab. Hematol. 2022, 44, 558–566. [Google Scholar] [CrossRef]
- Yan, W.; Shi, H.; He, T.; Chen, J.; Wang, C.; Liao, A.; Yang, W.; Wang, H. Employment of Artificial Intelligence Based on Routine Laboratory Results for the Early Diagnosis of Multiple Myeloma. Front. Oncol. 2021, 11, 608191. [Google Scholar] [CrossRef]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas. Sci. Au 2022, 2, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Pečinka, L.; Vlachová, M.; Moráň, L.; Gregorová, J.; Porokh, V.; Kovačovicová, P.; Almáši, M.; Pour, L.; Štork, M.; Havel, J.; et al. Improved Screening of Monoclonal Gammopathy Patients by MALDI-TOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2023, 34, 2646–2653. [Google Scholar] [CrossRef] [PubMed]
- Malek, E.; Wang, G.-M.; Tatsuoka, C.; Cullen, J.; Madabhushi, A.; Driscoll, J.J. Machine Learning Approach for Rapid, Accurate Point-of-Care Prediction of M-Spike Values in Multiple Myeloma. JCO Clin. Cancer Inform. 2023, 7, e2300078. [Google Scholar] [CrossRef]
- Sopasakis, A.; Nilsson, M.; Askenmo, M.; Nyholm, F.; Hultén, L.M.; Sopasakis, V.R. Machine Learning Evaluation for Identification of M-Proteins in Human Serum. PLoS ONE 2024, 19, e0299600. [Google Scholar] [CrossRef]
- Ryu, J.H.; Zimolzak, A.J. Natural Language Processing of Serum Protein Electrophoresis Reports in the Veterans Affairs Health Care System. JCO Clin. Cancer Inform. 2020, 4, 749–756. [Google Scholar] [CrossRef]
- Chandradevan, R.; Aljudi, A.A.; Drumheller, B.R.; Kunananthaseelan, N.; Amgad, M.; Gutman, D.A.; Cooper, L.A.D.; Jaye, D.L. Machine-Based Detection and Classification for Bone Marrow Aspirate Differential Counts: Initial Development Focusing on Nonneoplastic Cells. Lab. Investig. 2020, 100, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Rasal, T.; Veerakumar, T.; Subudhi, B.N.; Esakkirajan, S. Segmentation and Counting of Multiple Myeloma Cells Using IEMD Based Deep Neural Network. Leuk. Res. 2022, 122, 106950. [Google Scholar] [CrossRef]
- Yang, G.; Qin, Z.; Mu, J.; Mao, H.; Mao, H.; Han, M. Efficient Diagnosis of Hematologic Malignancies Using Bone Marrow Microscopic Images: A Method Based on MultiPathGAN and MobileViTv2. Comput. Methods Programs Biomed. 2023, 237, 107583. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, L.; Cao, X.; Jin, X.; Chen, N.; Zhang, L.; Zhu, J.; Pan, B.; Wang, B.; Guo, W. Detection of Circulating Plasma Cells in Peripheral Blood Using Deep Learning-Based Morphological Analysis. Cancer 2024, 130, 1884–1893. [Google Scholar] [CrossRef]
- Yenamandra, A.; Hughes, C.; Maris, A.S. Artificial Intelligence in Plasma Cell Myeloma: Neural Networks and Support Vector Machines in the Classification of Plasma Cell Myeloma Data at Diagnosis. J. Pathol. Inform. 2021, 12, 35. [Google Scholar] [CrossRef]
- Westerland, O.; Amlani, A.; Kelly-Morland, C.; Fraczek, M.; Bailey, K.; Gleeson, M.; El-Najjar, I.; Streetly, M.; Bassett, P.; Cook, G.J.R.; et al. Comparison of the Diagnostic Performance and Impact on Management of 18F-FDG PET/CT and Whole-Body MRI in Multiple Myeloma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2558–2565. [Google Scholar] [CrossRef] [PubMed]
- Satoh, Y.; Funayama, S.; Onishi, H.; Kirito, K. Semi-Automated Histogram Analysis of Normal Bone Marrow Using 18F-FDG PET/CT: Correlation with Clinical Indicators. BMC Med. Imaging 2022, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Enqvist, O.; Ulén, J.; Kopp-Schneider, A.; Pan, L.; Jauch, A.; Hajiyianni, M.; John, L.; Weinhold, N.; Sauer, S.; et al. Application of an Artificial Intelligence-Based Tool in [18F]FDG PET/CT for the Assessment of Bone Marrow Involvement in Multiple Myeloma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Özgül, H.A.; Akin, I.B.; Mutlu, U.; Balci, A. Diagnostic Value of Machine Learning-Based Computed Tomography Texture Analysis for Differentiating Multiple Myeloma from Osteolytic Metastatic Bone Lesions in the Peripheral Skeleton. Skelet. Radiol. 2023, 52, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Baffour, F.I.; Huber, N.R.; Ferrero, A.; Rajendran, K.; Glazebrook, K.N.; Larson, N.B.; Kumar, S.; Cook, J.M.; Leng, S.; Shanblatt, E.R.; et al. Photon-Counting Detector CT with Deep Learning Noise Reduction to Detect Multiple Myeloma. Radiology 2023, 306, 229–236. [Google Scholar] [CrossRef]
- Farswan, A.; Gupta, A.; Gupta, R.; Hazra, S.; Khan, S.; Kumar, L.; Sharma, A. AI-Supported Modified Risk Staging for Multiple Myeloma Cancer Useful in Real-World Scenario. Transl. Oncol. 2021, 14, 101157. [Google Scholar] [CrossRef]
- Orgueira, A.M.; Pérez, M.S.G.; Arias, J.D.; Rosiñol, L.; Oriol, A.; Teruel, A.I.; Lopez, J.M.; Palomera, L.; Granell, M.; Blanchard, M.J.; et al. Unsupervised Machine Learning Improves Risk Stratification in Newly Diagnosed Multiple Myeloma: An Analysis of the Spanish Myeloma Group. Blood Cancer J. 2022, 12, 76. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Mills, R.E.; Guan, Y. Prognostic Model for Multiple Myeloma Progression Integrating Gene Expression and Clinical Features. GigaScience 2019, 8, giz153. [Google Scholar] [CrossRef]
- Orgueira, A.M.; Pérez, M.S.G.; Arias, J.Á.D.; Rodríguez, B.A.; Vence, N.A.; López, Á.B.; Blanco, A.A.; Pérez, L.B.; Raíndo, A.P.; López, M.C.; et al. Survival Prediction and Treatment Optimization of Multiple Myeloma Patients Using Machine-Learning Models Based on Clinical and Gene Expression Data. Leukemia 2021, 35, 2924–2935. [Google Scholar] [CrossRef]
- Sagar, D.; Aggarwal, P.; Farswan, A.; Gupta, R.; Gupta, A. GCRS: A Hybrid Graph Convolutional Network for Risk Stratification in Multiple Myeloma Cancer Patients. Comput. Biol. Med. 2022, 149, 106048. [Google Scholar] [CrossRef]
- Lee, H.; Hyun, S.H.; Cho, Y.S.; Moon, S.H.; Choi, J.Y.; Kim, K.; Lee, K.H. Cluster Analysis of Autoencoder-Extracted FDG PET/CT Features Identifies Multiple Myeloma Patients with Poor Prognosis. Sci. Rep. 2023, 13, 7881. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Huang, D.; Wu, J.; Chen, X.; Chen, Y.; Huang, C. 18F-FDG PET/CT Based Radiomics Features Improve Prediction of Prognosis: Multiple Machine Learning Algorithms and Multimodality Applications for Multiple Myeloma. BMC Med. Imaging 2023, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Schenone, D.; Dominietto, A.; Campi, C.; Frassoni, F.; Cea, M.; Aquino, S.; Angelucci, E.; Rossi, F.; Torri, L.; Bignotti, B.; et al. Radiomics and Artificial Intelligence for Outcome Prediction in Multiple Myeloma Patients Undergoing Autologous Transplantation: A Feasibility Study with Ct Data. Diagnostics 2021, 11, 1759. [Google Scholar] [CrossRef]
- Nandakumar, B.; Baffour, F.; Abdallah, N.H.; Kumar, S.K.; Dispenzieri, A.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; Hayman, S.R.; Kapoor, P.; et al. Sarcopenia Identified by Computed Tomography Imaging Using a Deep Learning-Based Segmentation Approach Impacts Survival in Patients with Newly Diagnosed Multiple Myeloma. Cancer 2023, 129, 385–392. [Google Scholar] [CrossRef]
- Morita, K.; Karashima, S.; Terao, T.; Yoshida, K.; Yamashita, T.; Yoroidaka, T.; Tanabe, M.; Imi, T.; Zaimoku, Y.; Yoshida, A.; et al. 3D CNN-Based Deep Learning Model-Based Explanatory Prognostication in Patients with Multiple Myeloma Using Whole-Body MRI. J. Med. Syst. 2024, 48, 30. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, P.; Guo, W.; Wang, C.; Geng, Y.; Lang, N.; Yuan, H. Prediction of High-Risk Cytogenetic Status in Multiple Myeloma Based on Magnetic Resonance Imaging: Utility of Radiomics and Comparison of Machine Learning Methods. J. Magn. Reson. Imaging 2021, 54, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, C.; Guo, W.; Zeng, P.; Liu, Y.; Lang, N.; Yuan, H. A Preliminary Study Using Spinal MRI-Based Radiomics to Predict High-Risk Cytogenetic Abnormalities in Multiple Myeloma. Radiol. Med. 2021, 126, 1226–1235. [Google Scholar] [CrossRef]
- Turki, T.; Wang, J.T.L. Clinical Intelligence: New Machine Learning Techniques for Predicting Clinical Drug Response. Comput. Biol. Med. 2019, 107, 302–322. [Google Scholar] [CrossRef]
- Borisov, N.; Sergeeva, A.; Suntsova, M.; Raevskiy, M.; Gaifullin, N.; Mendeleeva, L.; Gudkov, A.; Nareiko, M.; Garazha, A.; Tkachev, V.; et al. Machine Learning Applicability for Classification of PAD/VCD Chemotherapy Response Using 53 Multiple Myeloma RNA Sequencing Profiles. Front. Oncol. 2021, 11, 652063. [Google Scholar] [CrossRef]
- Povoa, L.V.; Ribeiro, C.H.C.; Silva, I.T. da Machine Learning Predicts Treatment Sensitivity in Multiple Myeloma Based on Molecular and Clinical Information Coupled with Drug Response. PLoS ONE 2021, 16, e0254596. [Google Scholar] [CrossRef]
- Ubels, J.; Sonneveld, P.; van Vliet, M.H.; de Ridder, J. Gene Networks Constructed through Simulated Treatment Learning Can Predict Proteasome Inhibitor Benefit in Multiple Myeloma. Clin. Cancer Res. 2020, 26, 5952–5961. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Xu, B.; Xu, J.; Li, J.; Jiang, J.; Ren, Y.; Liu, P. A Machine Learning Model to Predict Survival and Therapeutic Responses in Multiple Myeloma. Int. J. Mol. Sci. 2023, 24, 6683. [Google Scholar] [CrossRef] [PubMed]
- Kropivsek, K.; Kachel, P.; Goetze, S.; Wegmann, R.; Festl, Y.; Severin, Y.; Hale, B.D.; Mena, J.; van Drogen, A.; Dietliker, N.; et al. Ex Vivo Drug Response Heterogeneity Reveals Personalized Therapeutic Strategies for Patients with Multiple Myeloma. Nat. Cancer 2023, 4, 734–753. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, C.; Puig, N.; Cedena, M.T.; Goicoechea, I.; Perez, C.; Garcés, J.J.; Botta, C.; Calasanz, M.J.; Gutierrez, N.C.; Martin-Ramos, M.L.; et al. A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma. Clin. Cancer Res. 2022, 28, 2598–2609. [Google Scholar] [CrossRef]
- Estrada, F.G.A.; Miccoli, S.; Aniceto, N.; Garcia-Sosa, A.T.; Guedes, R.C. Exploring Ezh2-Proteasome Dual-Targeting Drug Discovery through a Computational Strategy to Fight Multiple Myeloma. Molecules 2021, 26, 5574. [Google Scholar] [CrossRef]
Genomic Alteration | Prognostic Implication | Detection Method |
---|---|---|
t(11;14)(q13;q32) | Intermediate prognosis, good response to treatment. | FISH, NGS, RT-PCR |
IgL locus | Poor prognosis, associated with reduced survival. | FISH, SNP arrays |
MYC/RAS overexpression | Associated with progression from MGUS to MM. | FISH, NGS |
Del(17p13) | Poor prognosis, hypodiploidy, resistance to treatment, and lower survival rate. | FISH, NGS |
Gain of 1q (Amp(1q)) | High-risk marker, associated with increased relapse rates. | FISH, NGS |
t(4;14) translocation | Intermediate/poor prognosis, therapeutic resistance. | FISH, NGS |
Lower frequency translocations (t(14;16)(q32;q23), t(14;20)(q32;q11) (2%) y t(8;14)(q24.3;q32)) | Poor prognosis, aggressive disease. | FISH, NGS |
Hyperdiploidy | Better prognosis. | Conventional karyotyping, FISH |
Hypodiploidy | Poor prognosis, associated with chromosomal losses. | FISH, SNP arrays, NGS |
Omic Approach | Key Findings | Clinical Applications | Technology [Reference] |
---|---|---|---|
Genomics (NGS) | Identification of mutations such as IRF4, EGR1, del(17p), and t(4;14). Identification of genetic loci related to bortezomib-induced peripheral neuropathy. | Personalized treatment strategies, risk stratification, and treatment optimization. | Whole-genome sequencing (WGS), targeted sequencing [51,58,63] |
Transcriptomics (RNA-seq) | Gene expression profiling (e.g., BCMA, SLAMF7); alternative splicing analysis. | Target discovery, understanding of MM clonal evolution, non-invasive monitoring. | RNA sequencing (RNA-seq), single-cell RNA-seq [32,66] |
Epigenomics | DNA methylation patterns, histone modifications associated with tumor progression, and miRNA signatures. | Prognostic biomarkers, potential therapeutic interventions targeting epigenetic modifications. | DNA methylation arrays, ChIP-seq [73,77,78] |
Proteomics | Protein signature/biomarkers for disease activity and progression, protein signatures for prognosis. | Non-invasive monitoring using blood tests, identifying therapeutic targets. | Mass spectrometry (MS), protein arrays, and combined techniques [128,130] |
Metabolomics | Alterations in amino acid metabolism, changes in the citrate cycle, arginine and proline metabolism, D-glutamine/D-glutamate metabolism, histidine metabolism, and urea cycle. | Therapeutic targets (e.g., glutamine inhibition). | NMR spectroscopy and mass spectrometry [133,139,144] |
Metagenomics | Links between gut microbiota and MM progression, potential immune modulation. | Microbiome-based interventions; enhanced understanding of disease mechanisms. | Next-Generation Sequencing (NGS), 16S rRNA sequencing [153,155,156] |
Method | Description | Examples |
---|---|---|
AI | Simulation of human intelligence through algorithms, including learning, reasoning, and decision-making. | Applied in healthcare for diagnosis, predictive analytics, and personalized treatment [160,161]. |
ML | Subfield of AI for data analysis and problem-solving includes supervised, unsupervised, and RL. | Used in medical diagnostics, genomics, and drug discovery. |
SML | Uses labeled data to train algorithms to predict target outcomes based on known input-output relationships. | Predictive models for disease outcomes, such as identifying cancer risk based on patient data [160]. |
UML | Analyzes unlabeled data to discover hidden patterns or clusters without predefined labels. | Clustering genetic data to identify groups of patients with similar disease traits improves diagnosis and treatment [162,163]. |
RL | An agent learns optimal decision-making through feedback (rewards/penalties) from interactions with the environment. | Used in personalized medicine, such as adjusting diabetes treatments based on patient response data [164,165]. |
DL | Creation of ANN inspired by the human brain structure. Passes data through layers to identify complex patterns. | Tasks like image recognition, natural language processing, and predicting medical outcomes, advancing diagnosis and treatment of complex diseases like MM [166]. |
AI Application Area | Selected Example | Clinical Applications | Technology [Reference] |
---|---|---|---|
AdaBoost-DecisionTable Model | Development of an innovative model using demographic and routine blood biomarkers; achieved high accuracy. | Rapid MM diagnosis based on readily available clinical and laboratory data from multiple hospitals. | AdaBoost-DecisionTable algorithm [169] |
Gradient Boosting Decision Tree (GBDT) | High precision in diagnosing MM based on biochemical records (e.g., hemoglobin, serum calcium, albumin). | Supports accurate MM diagnosis by analyzing biochemical markers, reducing reliance on invasive procedures. | GBDT algorithm [170] |
MoSaicNet and AwareNet | DL methods for analyzing BM trephine biopsies. Spatial heterogeneity differentiates MGUS from NDMM, highlighting reduced proximity of BLIMP1⁺ tumor cells to CD8⁺ T cells in MGUS. | Differentiation of MM and MGUS. | MoSaicNet and AwareNet [168] |
Random Forest (RF) for M-spike detection | Integrates clinical data to determine M-spike levels, showing correlation with conventional methods. | Supports detection of M-spike protein levels in MM without the need for specialized equipment, minimizing follow-up analyses. | RF algorithm [173] |
Convolutional Neural Networks (CNN) | Digital prototype using CNNs for detecting non-neoplastic and neoplastic cells in BM aspirates; high accuracy in cell classification. | Reduces manual work in BM analysis, assisting pathologists in MM diagnosis. | CNN [176] |
ANN Classification Model | Uses genetic and clinical features to assess high-risk status in MM with 94% accuracy. | Uses genetic and clinical features to assess high-risk status in MM with 94% accuracy [178]. | ANN model [180] |
Whole-Body Imaging Analysis | AI tool correlates well with traditional PET/CT analysis, offering consistent di-agnostic interpretation in MM. | Standardizes PET/CT for assessing BM metabolism in MM patients. | DL + PET/CT [183] |
AI Application Area | Key Features | Clinical Applications | Technology [Reference] |
---|---|---|---|
Unsupervised ML Model for Risk Stratification | Integrates clinical, biochemical, and cytogenetic data; improves accuracy in R-ISS 2 intermediate-risk group. | Identifies patient clusters with different survival outcomes, enhancing risk stratification. | UML integrating clinical, biochemical, and cytogenetic data [186] |
GEP and Clinical Data Model | Combines GEP with clinical data to identify gene signatures for MM progression; suggests adding cytogenetic data. | Provides insights into MM progression, suggesting treatment adjustments. | GEP, GuanRank with Gaussian process regression [188] |
IAC-50 Model | Integrates clinical, biochemical, and gene expression data from the CoMMpass cohort for personalized treatment. | Predicts overall survival and optimal drug combinations, aiding personalized treatments. | ML model from CoMMpass cohort data [189] |
AI Convolutional Autoencoder for PET/CT Imaging | Extracts feature clusters from PET/CT for progression-free survival prediction, limited by torso-only scans. | Supports MM prognosis by predicting progression-free survival (PFS). | AI-based PET/CT analysis [187] |
3D CNN and Grad-CAM for MRI Data. | Analyzes MRI signals from spleen and vertebral bones for PFS prediction; requires further research. | Predicts PFS solely from MRI data, offering a non-invasive prognosis tool. | 3D CNN, Grad-CAM for MRI [195] |
Simulated Treatment Learned Signatures (STLsig). | Identifies gene signatures predicting benefit from proteasome inhibitors; improves treatment decisions. | Supports targeted treatments by identifying responder patients. | STLsig for proteasome inhibitor response [201] |
ML Model for MRD Prediction. | Predicts MRD based on genetic factors and tumor markers; achieved 71–72% accuracy in prediction. | Predicts MRD status and guides therapy adjustments for MM patients. | ML model integrating genetic and tumor burden data [204] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-González, A.; Del Hierro, I.; Cariaga-Martínez, A.E. Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence. Biology 2024, 13, 923. https://doi.org/10.3390/biology13110923
Gutiérrez-González A, Del Hierro I, Cariaga-Martínez AE. Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence. Biology. 2024; 13(11):923. https://doi.org/10.3390/biology13110923
Chicago/Turabian StyleGutiérrez-González, Alejandra, Irene Del Hierro, and Ariel Ernesto Cariaga-Martínez. 2024. "Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence" Biology 13, no. 11: 923. https://doi.org/10.3390/biology13110923
APA StyleGutiérrez-González, A., Del Hierro, I., & Cariaga-Martínez, A. E. (2024). Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence. Biology, 13(11), 923. https://doi.org/10.3390/biology13110923