One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Crop Improvement through Heterosis
3. Polyploid Heterosis
4. Increasing Multi-Locus Nuclear Heterozygosity and Heterosis
♀ | A | a | |
♂ | |||
A | AA | Aa | |
a | Aa | aa |
♀ | AA | Aa | Aa | Aa | Aa | aa | |
♂ | |||||||
AA | AAAA | AAAa | AAAa | AAAa | AAAa | AAaa | |
Aa | AAAa | AAaa | AAaa | AAaa | AAaa | Aaaa | |
Aa | AAAa | AAaa | AAaa | AAaa | AAaa | Aaaa | |
Aa | AAAa | AAaa | AAaa | AAaa | AAaa | Aaaa | |
Aa | AAAa | AAaa | AAaa | AAaa | AAaa | Aaaa | |
aa | AAaa | Aaaa | Aaaa | Aaaa | Aaaa | aaaa |
Ploidy Status | Crop | Association Observed between Crossing Genetically Diverse Parent Lines in a Single Cross and Heterosis in F1? | Reference |
---|---|---|---|
Autotriploid | Sugar beet (Beta vulgaris subsp. vulgaris) | No | [123] |
Autotetraploid | Rye (Secale cereale) | Yes | [99] |
Potato (Solanum tuberosum) | Yes | [82,92,124] | |
No | [125] | ||
Alfalfa (Medicago sativa) | Yes | [83,84] | |
Maize (Zea mays) | Yes | [53,85] | |
Perennial ryegrass (Lolium perenne) | Yes | [126] | |
Rice (Oryza sativa) | Yes | [86,87] | |
Bahiagrass (Paspalum notatum) | Yes | [127] | |
Allotriploid | Willow ((Salix koriyanagi × S. purpurea) × S. miyabeana | Yes | [128] |
Allotetraploid | Peanut (Arachis hypogaea) | No | [129] |
Oilseed rape (Brassica napus) | Yes | [89,90] | |
No | [88] | ||
Arabica coffee (Coffea arabica) | Yes | [130] | |
Upland cotton (Gossypium hirsutum) | No | [131] | |
Allohexaploid | Bread wheat (Triticum aestivum subsp. aestivum) | No | [132,133] |
Triticale | Yes | [121] | |
Timothy (Phleum pratense) | Yes | [122] |
5. Commercial Breeding
6. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- East, E.M.; Hayes, H.K. Heterozygosis in Evolution and in Plant Breeding; U.S. Government Printing Office: Washington, WA, USA, 1912.
- Cheng, S.; Zhu, X.; Liao, T.; Li, Y.; Yao, P.; Suo, Y.; Zhang, P.; Wang, J.; Kang, X. Gene Expression Differences between High-Growth Populus Allotriploids and Their Diploid Parents. Forests 2015, 6, 839–857. [Google Scholar] [CrossRef]
- Schnable, P.S.; Springer, N.M. Progress toward Understanding Heterosis in Crop Plants. Annu. Rev. Plant Biol. 2013, 64, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front. Genet. 2021, 12, 643761. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.A.D.S.; Picoli, E.A.D.T.; Rocha, R.B.; Alfenas, A.C. A priori choice of hybrid parents in plants. Genet. Mol. Res. 2004, 3, 356–368. [Google Scholar] [PubMed]
- Washburn, J.D.; Birchler, J.A. Polyploids as a ‘model system’ for the study of heterosis. Plant Reprod. 2014, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shull, G.H. What Is ‘Heterosis’? Genetics 1948, 33, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Acquaah, G. Principles of Plant Genetics and Breeding; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Miller, F.R.; Kebede, Y. Genetic Contributions to Yield Gains in Sorghum, 1950 to 1980. In Genetic Contributions to Yield Gains of Five Major Crop Plants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1984; pp. 1–14. [Google Scholar]
- Russell, W.A. Genetic Improvement of Maize Yields. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1991; Volume 46, pp. 245–298. [Google Scholar]
- Brancourt-Hulmel, M.; Doussinault, G.; Lecomte, C.; Bérard, P.; Buanec, B.L.; Trottet, M. Genetic Improvement of Agronomic Traits of Winter Wheat Cultivars Released in France from 1946 to 1992. Crop Sci. 2003, 43, 37–45. [Google Scholar] [CrossRef]
- Duvick, D.N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2005; Volume 86, pp. 83–145. [Google Scholar]
- Egli, D.B. Comparison of Corn and Soybean Yields in the United States: Historical Trends and Future Prospects. Agron. J. 2008, 100, S-79–S-88. [Google Scholar] [CrossRef]
- Campbell, B.T.; Chee, P.W.; Lubbers, E.; Bowman, D.T.; Meredith, W.R.; Johnson, J.; Fraser, D.; Bridges, W.; Jones, D.C. Dissecting Genotype × Environment Interactions and Trait Correlations Present in the Pee Dee Cotton Germplasm Collection following Seventy Years of Plant Breeding. Crop Sci. 2012, 52, 690–699. [Google Scholar] [CrossRef]
- Loel, J.; Kenter, C.; Märländer, B.; Hoffmann, C.M. Assessment of breeding progress in sugar beet by testing old and new varieties under greenhouse and field conditions. Eur. J. Agron. 2014, 52, 146–156. [Google Scholar] [CrossRef]
- Hageman, R.H.; Leng, E.R.; Dudley, J.W. A Biochemical Approach to Corn Breeding. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1967; Volume 19, pp. 45–86. [Google Scholar]
- Rood, S.B.; Buzzell, R.I.; Mander, L.N.; Pearce, D.; Pharis, R.P. Gibberellins: A Phytohormonal Basis for Heterosis in Maize. Science 1988, 241, 1216–1218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ni, Z.; Yao, Y.; Nie, X.; Sun, Q. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet. 2007, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Kim, E.-D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Stokes, D.; Fraser, F.; Morgan, C.; O’neill, C.M.; Dreos, R.; Magusin, A.; Szalma, S.; Bancroft, I. An association transcriptomics approach to the prediction of hybrid performance. Mol. Breed. 2010, 26, 91–106. [Google Scholar] [CrossRef]
- Goff, S.A. A unifying theory for general multigenic heterosis: Energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol. 2011, 189, 923–937. [Google Scholar] [CrossRef]
- Barber, W.T.; Zhang, W.; Win, H.; Varala, K.K.; Dorweiler, J.E.; Hudson, M.E.; Moose, S.P. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 10444–10449. [Google Scholar] [CrossRef]
- Miller, M.; Song, Q.; Shi, X.; Juenger, T.E.; Chen, Z.J. Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat. Commun. 2015, 6, 7453. [Google Scholar] [CrossRef]
- Mo, Z.; Luo, W.; Pi, K.; Duan, L.; Wang, P.; Ke, Y.; Zeng, S.; Jia, R.; Liang, T.; Huang, Y.; et al. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K+ content heterosis of tobacco (Nicotiana tabacum L.). Front. Plant Sci. 2022, 13, 940787. [Google Scholar] [CrossRef] [PubMed]
- Shull, G.H. A pure-line method in corn breeding. J. Hered. 1909, 1, 51–58. [Google Scholar] [CrossRef]
- Shull, G.H. Hybridization Methods in Corn Breeding. J. Hered. 1910, 1, 98–107. [Google Scholar] [CrossRef]
- Shull, G.H. The Genotypes of Maize. Am. Nat. 1911, 45, 234–252. [Google Scholar] [CrossRef]
- Jones, D.F. Dominance of Linked Factors as a Means of Accounting for Heterosis. Proc. Natl. Acad. Sci. USA 1917, 3, 310–312. [Google Scholar] [CrossRef] [PubMed]
- East, E.M. Heterosis. Genetics 1936, 21, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef]
- Stuber, C.W.; Lincoln, S.E.; Wolff, D.W.; Helentjaris, T.; Lander, E.S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 1992, 132, 823–839. [Google Scholar] [CrossRef]
- Graham, G.I.; Wolff, D.W.; Stuber, C.W. Characterization of a Yield Quantitative Trait Locus on Chromosome Five of Maize by Fine Mapping. Crop Sci. 1997, 37, 1601–1610. [Google Scholar] [CrossRef]
- Springer, N.M.; Stupar, R.M. Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res. 2007, 17, 264–275. [Google Scholar] [CrossRef]
- Powers, L. An Expansion of Jones’s Theory for the Explanation of Heterosis. Am. Nat. 1944, 78, 275–280. [Google Scholar] [CrossRef]
- Monforte, A.J.; Tanksley, S.D. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: Breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor. Appl. Genet. 2000, 100, 471–479. [Google Scholar] [CrossRef]
- Yu, C.; Wan, J.; Zhai, H.; Wang, C.; Jiang, L.; Xiao, Y.; Liu, Y. Study on heterosis of inter-subspecies between indica and japonica rice (Oryza sativa L.) using chromosome segment substitution lines. Chin. Sci. Bull. 2005, 50, 131–136. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Schultz, M.D.; Urich, M.A.; Nery, J.R.; Pelizzola, M.; Libiger, O.; Alix, A.; McCosh, R.B.; Chen, H.; Schork, N.J.; et al. Patterns of population epigenomic diversity. Nature 2013, 495, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.T.; Spector, T.D. A twin approach to unraveling epigenetics. Trends Genet. 2011, 27, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Johannes, F.; Porcher, E.; Teixeira, F.K.; Saliba-Colombani, V.; Simon, M.; Agier, N.; Bulski, A.; Albuisson, J.; Heredia, F.; Audigier, P.; et al. Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits. PLoS Genet. 2009, 5, e1000530. [Google Scholar] [CrossRef]
- Dapp, M.; Reinders, J.; Bédiée, A.; Balsera, C.; Bucher, E.; Theiler, G.; Granier, C.; Paszkowski, J. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat. Plants 2015, 1, 15092. [Google Scholar] [CrossRef]
- Lauss, K.; Wardenaar, R.; Oka, R.; van Hulten, M.H.A.; Guryev, V.; Keurentjes, J.J.B.; Stam, M.; Johannes, F. Parental DNA Methylation States Are Associated with Heterosis in Epigenetic Hybrids. Plant Physiol. 2018, 176, 1627–1645. [Google Scholar] [CrossRef]
- Li, Q.; Eichten, S.R.; Hermanson, P.J.; Zaunbrecher, V.M.; Song, J.; Wendt, J.; Rosenbaum, H.; Madzima, T.F.; Sloan, A.E.; Huang, J.; et al. Genetic Perturbation of the Maize Methylome. Plant Cell 2015, 26, 4602–4616. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Li, N.; Xu, C.; Zhong, S.; Lin, X.; Yang, J.; Zhou, T.; Yuliang, A.; Wu, Y.; Chen, Y.-R.; et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc. Natl. Acad. Sci. USA 2014, 111, 10642–10647. [Google Scholar] [CrossRef]
- Yamauchi, T.; Johzuka-Hisatomi, Y.; Terada, R.; Nakamura, I.; Iida, S. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Mol. Biol. 2014, 85, 219–232. [Google Scholar] [CrossRef]
- Miller, M.; Zhang, C.; Chen, Z.J. Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in Arabidopsis thaliana Hybrids and Their Parents. G3 Genes Genomes Genet. 2012, 2, 505–513. [Google Scholar] [CrossRef]
- Fort, A.; Ryder, P.; McKeown, P.C.; Wijnen, C.; Aarts, M.G.; Sulpice, R.; Spillane, C. Disaggregating polyploidy, parental genome dosage and hybridity contributions to heterosis in Arabidopsis thaliana. New Phytol. 2016, 209, 590–599. [Google Scholar] [CrossRef]
- Castillo-Bravo, R.; Fort, A.; Cashell, R.; Brychkova, G.; McKeown, P.C.; Spillane, C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 835219. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Gray, A.D.; Auger, D.L.; Birchler, J.A. Genomic dosage effects on heterosis in triploid maize. Proc. Natl. Acad. Sci. USA 2013, 110, 2665–2669. [Google Scholar] [CrossRef] [PubMed]
- Moll, R.H.; Lonnquist, J.H.; Fortuno, J.V.; Johnson, E.C. The Relationship of Heterosis and Genetic Divergence in Maize. Genetics 1965, 52, 139–144. [Google Scholar] [CrossRef]
- Lee, M.; Godshalk, E.B.; Lamkey, K.R.; Woodman, W.W. Association of Restriction Fragment Length Polymorphisms among Maize Inbreds with Agronomic Performance of Their Crosses. Crop Sci. 1989, 29, 1067–1071. [Google Scholar] [CrossRef]
- Smith, O.S.; Smith, J.S.C.; Bowen, S.L.; Tenborg, R.A.; Wall, S.J. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor. Appl. Genet. 1990, 80, 833–840. [Google Scholar] [CrossRef]
- Benchimol, L.L.; de Souza, C.L.; Garcia, A.A.F.; Kono, P.M.S.; Mangolin, C.A.; Barbosa, A.M.M.; Coelho, A.S.G.; de Souza, A.P. Genetic diversity in tropical maize inbred lines: Heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breed. 2000, 119, 491–496. [Google Scholar] [CrossRef]
- Riddle, N.C.; Birchler, J.A. Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theor. Appl. Genet. 2008, 116, 563–576. [Google Scholar] [CrossRef]
- Frisch, M.; Thiemann, A.; Fu, J.; Schrag, T.A.; Scholten, S.; Melchinger, A.E. Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor. Appl. Genet. 2010, 120, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Reif, J.C.; Fischer, S.; Schrag, T.A.; Lamkey, K.R.; Klein, D.; Dhillon, B.S.; Utz, H.F.; Melchinger, A.E. Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2010, 120, 301–310. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Lee, M.; Lamkey, K.R.; Hallauer, A.R.; Woodman, W.L. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genet. 1990, 80, 488–496. [Google Scholar] [CrossRef]
- Geleta, L.F.; Labuschagne, M.T.; Viljoen, C.D. Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breed. 2004, 123, 467–473. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.J.; Maroof, M.A.S.; Yang, S.H.; Li, J.X. Molecular divergence and hybrid performance in rice. Mol. Breed. 1995, 1, 133–142. [Google Scholar] [CrossRef]
- Cerna, F.J.; Cianzio, S.R.; Rafalski, A.; Tingey, S.; Dyer, D. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean. Theor. Appl. Genet. 1997, 95, 460–467. [Google Scholar] [CrossRef]
- Pandey, S.K.; Dasgupta, T.; Rathore, A.; Vemula, A. Relationship of Parental Genetic Distance with Heterosis and Specific Combining Ability in Sesame (Sesamum indicum L.) Based on Phenotypic and Molecular Marker Analysis. Biochem. Genet. 2018, 56, 188–209. [Google Scholar] [CrossRef] [PubMed]
- Joyce, T.A.; Abberton, M.T.; Michaelson-Yeates, T.P.T.; Forster, J.W. Relationships between genetic distance measured by RAPD-PCR and heterosis in inbred lines of white clover (Trifolium repens L.). Euphytica 1999, 107, 159–165. [Google Scholar] [CrossRef]
- Sant, V.J.; Patankar, A.G.; Sarode, N.D.; Mhase, L.B.; Sainani, M.N.; Deshmukh, R.B.; Ranjekar, P.K.; Gupta, V.S. Potential of DNA markers in detecting divergence and in analysing heterosis in Indian elite chickpea cultivars. Theor. Appl. Genet. 1999, 98, 1217–1225. [Google Scholar] [CrossRef]
- Kaushik, P. Genetic Analysis for Fruit Phenolics Content, Flesh Color, and Browning Related Traits in Eggplant (Solanum melongena). Int. J. Mol. Sci. 2019, 20, 2990. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.S.; Gupta, S.K.; Marathi, B.; Danam, S.; Thatikunta, R.; Rathore, A.; Das, R.R.; Dangi, K.S.; Yadav, O.P. African and Asian origin pearl millet populations: Genetic diversity pattern and its association with yield heterosis. Crop Sci. 2020, 60, 3035–3048. [Google Scholar] [CrossRef]
- Zeid, M.; Schön, C.-C.; Link, W. Hybrid performance and AFLP- based genetic similarity in faba bean. Euphytica 2004, 139, 207–216. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusop, M.R.; Ithnin, M.; Saleh, G.; Latif, M.A. Genetic variability of oil palm parental genotypes and performance of its’ progenies as revealed by molecular markers and quantitative traits. C. R. Biol. 2011, 334, 290–299. [Google Scholar] [CrossRef]
- Chandra, D.; Verma, S.; Gaur, A.; Bisht, C.; Gautam, A.; Chauhan, C.; Yadav, H. Heterosis, Combining Ability, Genetic Diversity and their Interrelationship in Pigeonpea [Cajanus cajan (L.) Millspaugh]. LEGUME Res.—Int. J. 2024, 47, 183–189. [Google Scholar] [CrossRef]
- Napolitano, M.; Terzaroli, N.; Kashyap, S.; Russi, L.; Jones-Evans, E.; Albertini, E. Exploring Heterosis in Melon (Cucumis melo L.). Plants 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Teklewold, A.; Becker, H.C. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor. Appl. Genet. 2006, 112, 752–759. [Google Scholar] [CrossRef]
- Meyer, R.C.; Törjék, O.; Becher, M.; Altmann, T. Heterosis of Biomass Production in Arabidopsis. Establishment during Early Development. Plant Physiol. 2004, 134, 1813–1823. [Google Scholar] [CrossRef]
- Stokes, D.; Morgan, C.; O’Neill, C.; Bancroft, I. Evaluating the utility of Arabidopsis thaliana as a model for understanding heterosis in hybrid crops. Euphytica 2007, 156, 157–171. [Google Scholar] [CrossRef]
- Dias, L.A.D.S.; Kageyama, P.Y. Multivariate genetic divergence and hybrid performance of cacao (Theobroma cacao L.). Braz. J. Genet. 1997, 20, 63–70. [Google Scholar] [CrossRef]
- Dias, L.A.D.S.; Marita, J.; Cruz, C.D.; de Barros, E.G.; Salomão, T.M.F. Genetic distance and its association with heterosis in cacao. Braz. Arch. Biol. Technol. 2003, 46, 339–348. [Google Scholar] [CrossRef]
- Akpertey, A.; Padi, F.K.; Meinhardt, L.; Zhang, D. Relationship between genetic distance based on single nucleotide polymorphism markers and hybrid performance in Robusta coffee (Coffea canephora). Plant Breed. 2022, 141, 286–300. [Google Scholar] [CrossRef]
- Jordan, D.; Tao, Y.; Godwin, I.; Henzell, R.; Cooper, M.; McIntyre, C. Prediction of hybrid performance in grain sorghum using RFLP markers. Theor. Appl. Genet. 2003, 106, 559–567. [Google Scholar] [CrossRef]
- Cheres, M.T.; Miller, J.F.; Crane, J.M.; Knapp, S.J. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor. Appl. Genet. 2000, 100, 889–894. [Google Scholar] [CrossRef]
- Usatov, A.V.; Klimenko, A.I.; Azarin, K.V.; Gorbachenko, O.F.; Markin, N.V.; Tikhobaeva, V.E.; Kolosov, Y.A.; Usatova, O.A.; Bakoev, S.; Makarenko, M.; et al. The relationship between heterosis and genetic distances based on ssr markers in Helianthus annuus. Am. J. Agric. Biol. Sci. 2014, 9, 270–276. [Google Scholar] [CrossRef]
- Sheeja, T.E.; Kumar, I.P.V.; Giridhari, A.; Minoo, D.; Rajesh, M.K.; Babu, K.N. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol. Biol. 2021, 2222, 187–218. [Google Scholar] [PubMed]
- Jagosz, B. The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed. 2011, 130, 574–579. [Google Scholar] [CrossRef]
- Karpechenko, G.D. Hybrids of Raphanus sativus L. × ♂Brassica oleracea L. J. Genet. 1924, 14, 375–396. [Google Scholar] [CrossRef]
- Yi, G.; Shin, H.; Park, H.R.; Park, J.E.; Ahn, J.H.; Lim, S.; Lee, J.G.; Lee, E.J.; Huh, J.H. Revealing biomass heterosis in the allodiploid xBrassicoraphanus, a hybrid between Brassica rapa and Raphanus sativus, through integrated transcriptome and metabolites analysis. BMC Plant Biol. 2020, 20, 252. [Google Scholar] [CrossRef]
- Mok, D.W.S.; Peloquin, S.J. Breeding value of 2n pollen (diplandroids) in tetraploid x diploid crosses in potatoes. Theor. Appl. Genet. 1975, 46, 307–314. [Google Scholar] [CrossRef]
- Groose, R.W.; Talbert, L.E.; Kojis, W.P.; Bingham, E.T. Progressive Heterosis in Autotetraploid Alfalfa: Studies Using Two Types of Inbreds. Crop Sci. 1989, 29, 1173–1177. [Google Scholar] [CrossRef]
- Kidwell, K.K.; Bingham, E.T.; Woodfield, D.R.; Osborn, T.C. Relationships among genetic distance, forage yield and heterozygosity in isogenic diploid and tetraploid alfalfa populations. Theor. Appl. Genet. 1994, 89, 323–328. [Google Scholar] [CrossRef]
- Sockness, B.A.; Dudley, J.W. Performance of Single and Double Cross Autotetraploid Maize Hybrids with Different Levels of Inbreeding. Crop Sci. 1989, 29, 875–879. [Google Scholar] [CrossRef]
- Tu, S.; Luan, L.; Liu, Y.; Long, W.; Kong, F.; He, T.; Xu, Q.; Yan, W.; Yu, M. Production and Heterosis Analysis of Rice Autotetraploid Hybrids. Crop Sci. 2007, 47, 2356–2363. [Google Scholar] [CrossRef]
- Wu, J.-W.; Hu, C.-Y.; Shahid, M.Q.; Guo, H.-B.; Zeng, Y.-X.; Liu, X.-D.; Lu, Y.-G. Analysis on genetic diversification and heterosis in autotetraploid rice. SpringerPlus 2013, 2, 439. [Google Scholar] [CrossRef] [PubMed]
- Diers, B.W.; McVetty, P.B.E.; Osborn, T.C. Relationship between Heterosis and Genetic Distance Based on Restriction Fragment Length Polymorphism Markers in Oilseed Rape (Brassica napus L.). Crop Sci. 1996, 36, 467–473. [Google Scholar] [CrossRef]
- Riaz, A.; Li, G.; Quresh, Z.; Swati, M.S.; Quiros, C.F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed. 2001, 120, 411–415. [Google Scholar] [CrossRef]
- Ali, M.; Copeland, L.O.; Elias, S.G.; Kelly, J.D. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor. Appl. Genet. 1995, 91, 118–121. [Google Scholar] [CrossRef]
- Jansky, S. Chapter 2—Breeding, Genetics, and Cultivar Development. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 27–62. [Google Scholar]
- Bonierbale, M.W.; Plaisted, R.L.; Tanksley, S.D. A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor. Appl. Genet. 1993, 86, 481–491. [Google Scholar] [CrossRef]
- Demarly, Y. The concept of linkat. In Proceedings of the Broadening the Genetic Base of Crops, Wageningen, The Netherlands, 3–7 July 1979; pp. 257–265. [Google Scholar]
- Bingham, E.T.; Groose, R.W.; Woodfield, D.R.; Kidwell, K.K. Complementary Gene Interactions in Alfalfa are Greater in Autotetraploids than Diploids. Crop Sci. 1994, 34, 823–829. [Google Scholar] [CrossRef]
- Moody, M.E.; Mueller, L.D.; Soltis, D.E. Genetic variation and random drift in autotetraploid populations. Genetics 1993, 134, 649–657. [Google Scholar] [CrossRef]
- Busbice, T.H.; Wilsie, C.P. Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica 1966, 15, 52–67. [Google Scholar] [CrossRef]
- Levings, C.S.; Dudley, J.W.; Alexander, D.E. Inbreeding and Crossing in Autotetraploid Maize. Crop Sci. 1967, 7, 72–73. [Google Scholar] [CrossRef]
- Hecker, R.J. Inbreeding depression in diploid and autotetraploid sugarbeet, Beta vulgaris L. Euphytica 1972, 21, 106–111. [Google Scholar] [CrossRef]
- Lundqvist, A. Heterosis and Inbreeding Depression in Autotetraploid Rye. Hereditas 1966, 56, 317–366. [Google Scholar] [CrossRef]
- Lundqvist, A. Some Effects of Continued Inbreeding in an Autotetraploid Highbred Strain of Rye. Hereditas 1969, 61, 361–399. [Google Scholar] [CrossRef]
- Riddle, N.C.; Kato, A.; Birchler, J.A. Genetic variation for the response to ploidy change in Zea mays L. Theor. Appl. Genet. 2006, 114, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Birchler, J.A. Interploidy hybridization barrier of endosperm as a dosage interaction. Front. Plant Sci. 2014, 5, 281. [Google Scholar] [CrossRef]
- Bingham, E.T.; Burnham, C.R.; Gates, C.E. Double and Single Backcross Linkage Estimates in Autotetraploid Maize. Genetics 1968, 59, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Fait, A.; Tel-Zur, N. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol. 2013, 13, 173. [Google Scholar] [CrossRef]
- Huang, Q.; Xiang, M.; Ji, B. Cytological observation on double fertilization of autotetraploid ric. J. Xiangtan Norm. Univ. (Nat. Sci. Ed.) 2000, 21, 84–87. [Google Scholar]
- Levin, D.A. Polyploidy and Novelty in Flowering Plants. Am. Nat. 1983, 122, 1–25. [Google Scholar] [CrossRef]
- Gallais, A. Quantitative Genetics and Breeding Methods in Autopolyploid Plants. Editions Quae: Versailles, France, 2003. [Google Scholar]
- Fischer, R.A. Wheat physiology at CIMMYT and raising the yield plateau. In Increasing Yield Potential in Wheat: Breaking the Barriers; CIMMYT: Ciudad Obregón, Mexico, 1996. [Google Scholar]
- Joshi, A.K.; Mishra, B.; Chatrath, R.; Ferrara, G.O.; Singh, R.P. Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica 2007, 157, 431–446. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Dvorak, J. Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef]
- Van De Wouw, M.; Kik, C.; Van Hintum, T.; Van Treuren, R.; Visser, B. Genetic erosion in crops: Concept, research results and challenges. Plant Genet. Resour. 2010, 8, 1–15. [Google Scholar] [CrossRef]
- Hall, A.J.; Richards, R.A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 2013, 143, 18–33. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Gumber, R.K. Overview of Heterosis and Heterotic Groups in Agronomic Crops. In CSSA Special Publications; Larnkey, K.R., Staub, J.E., Eds.; Crop Science Society of America: Madison, WI, USA, 1998; pp. 29–44. [Google Scholar]
- Dewey, D.R. The Genomic System of Classification as a Guide to Intergeneric Hybridization with the Perennial Triticeae. In Gene Manipulation in Plant Improvement; Gustafson, J.P., Ed.; Springer: Boston, MA, USA, 1984; pp. 209–279. [Google Scholar]
- Lu, B.-R.; Von Bothmer, R. Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica 1991, 58, 81–95. [Google Scholar] [CrossRef]
- Friebe, B.; Mukai, Y.; Gill, B.S.; Cauderon, Y. C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat x Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor. Appl. Genet. 1992, 84, 899–905. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Tong, Y. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J. Genet. Genom. 2008, 35, 451–456. [Google Scholar] [CrossRef]
- Jiang, Y.; Schmidt, R.H.; Zhao, Y.; Reif, J.C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 2017, 49, 1741–1746. [Google Scholar] [CrossRef]
- Eudes, F. Triticale; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Goral, H.; Tyrka, M.; Spiss, L. Assessing genetic variation to predict the breeding value of winter triticale cultivars and lines. J. Appl. Genet. 2005, 2, 125–131. [Google Scholar]
- Tanaka, T.; Tamaki, H.; Ashikaga, K.; Fujii, H.; Yamada, T. Use of molecular marker diversity to increase forage yield in timothy (Phleum pratense L.). Plant Breed. 2013, 132, 144–148. [Google Scholar] [CrossRef]
- Hallahan, B.F.; Fernandez-Tendero, E.; Fort, A.; Ryder, P.; Dupouy, G.; Deletre, M.; Curley, E.; Brychkova, G.; Schulz, B.; Spillane, C. Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). BMC Plant Biol. 2018, 18, 120. [Google Scholar] [CrossRef]
- Luthra, S.K.; Gopal, J.; Sharma, P.C. Genetic divergence and its relationship with heterosis in potato. Potato J. 2005, 32, 37–42. [Google Scholar]
- Sanford, J.C.; Hanneman, R.E. A possible heterotic threshold in the potato and its implications for breeding. Theor. Appl. Genet. 1982, 61, 151–159. [Google Scholar] [CrossRef]
- Humphreys, M.O. A genetic approach to the multivariate differentiation of perennial ryegrass (Lolium perenne L.) populations. Heredity 1991, 66, 437–443. [Google Scholar] [CrossRef]
- Marcón, F.; Martínez, E.J.; Rodríguez, G.R.; Zilli, A.L.; Brugnoli, E.A.; Acuña, C.A. Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids. Mol. Breed. 2019, 39, 89. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Gouker, F.E.; Smart, L.B. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol. 2014, 14, 74. [Google Scholar] [CrossRef]
- Arunachalam, V.; Bandyopadhyay, A.; Nigam, S.N.; Gibbons, R.W. Heterosis in relation to genetic divergence and specific combining ability in groundnut (Arachis hypogaea L.). Euphytica 1984, 33, 33–39. [Google Scholar] [CrossRef]
- Mohammed, W. Magnitude of Exploitable Heterosis for Yield and Quality Traits of Coffee (Coffea arabica L.) Hybrids as Affected by Distant Parents in Origin and Morphology in Ethiopia. East Afr. J. Sci. 2011, 5, 22–36. [Google Scholar]
- Geng, X.; Qu, Y.; Jia, Y.; He, S.; Pan, Z.; Wang, L.; Du, X. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genom. 2021, 22, 123. [Google Scholar] [CrossRef]
- Martin, J.M.; Talbert, L.E.; Lanning, S.P.; Blake, N.K. Hybrid Performance in Wheat as Related to Parental Diversity. Crop Sci. 1995, 35, 104–108. [Google Scholar] [CrossRef]
- Barbosa-Neto, J.F.; Sorrells, M.E.; Cisar, G. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 1996, 39, 1142–1149. [Google Scholar] [CrossRef]
- Stupar, R.M.; Gardiner, J.M.; Oldre, A.G.; Haun, W.J.; Chandler, V.L.; Springer, N.M. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol. 2008, 8, 33. [Google Scholar] [CrossRef]
- Thiemann, A.; Fu, J.; Schrag, T.A.; Melchinger, A.E.; Frisch, M.; Scholten, S. Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor. Appl. Genet. 2010, 120, 401–413. [Google Scholar] [CrossRef]
- Bernardo, R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 2008, 48, 1649–1664. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.-L. Genomic Selection for Crop Improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Mangin, B.; Bonnafous, F.; Blanchet, N.; Boniface, M.-C.; Bret-Mestries, E.; Carrère, S.; Cottret, L.; Legrand, L.; Marage, G.; Pegot-Espagnet, P.; et al. Genomic Prediction of Sunflower Hybrids Oil Content. Front. Plant Sci. 2017, 8, 291012. [Google Scholar] [CrossRef]
- Technow, F.; Schrag, T.A.; Schipprack, W.; Bauer, E.; Simianer, H.; Melchinger, A.E. Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize. Genetics 2014, 197, 1343–1355. [Google Scholar] [CrossRef]
- Chester, M.; Leitch, A.R.; Soltis, P.S.; Soltis, D.E. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes 2010, 1, 166–192. [Google Scholar] [CrossRef]
- Gärtner, T.; Steinfath, M.; Andorf, S.; Lisec, J.; Meyer, R.C.; Altmann, T.; Willmitzer, L.; Selbig, J. Improved Heterosis Prediction by Combining Information on DNA- and Metabolic Markers. PLoS ONE 2009, 4, e5220. [Google Scholar] [CrossRef]
- Korn, M.; Gärtner, T.; Erban, A.; Kopka, J.; Selbig, J.; Hincha, D.K. Predicting Arabidopsis Freezing Tolerance and Heterosis in Freezing Tolerance from Metabolite Composition. Mol. Plant 2010, 3, 224–235. [Google Scholar] [CrossRef]
- Steinfath, M.; Gärtner, T.; Lisec, J.; Meyer, R.C.; Altmann, T.; Willmitzer, L.; Selbig, J. Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2010, 120, 239–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallahan, B.F. One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity. Biology 2024, 13, 817. https://doi.org/10.3390/biology13100817
Hallahan BF. One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity. Biology. 2024; 13(10):817. https://doi.org/10.3390/biology13100817
Chicago/Turabian StyleHallahan, Brendan F. 2024. "One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity" Biology 13, no. 10: 817. https://doi.org/10.3390/biology13100817
APA StyleHallahan, B. F. (2024). One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity. Biology, 13(10), 817. https://doi.org/10.3390/biology13100817