The Spatiotemporal Variation and Ecological Evaluation of Macroinvertebrate Functional Feeding Groups in the Upper Yellow River
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Investigation of Macroinvertebrates
2.3. Measurement of Environmental Factors
2.4. Calculation of Dominance Index
2.5. Classification of Macroinvertebrate FFGs and Delineation of Ecosystem Attributes
2.6. Biological Evaluation of Water Quality
2.7. Statistical Analysis
3. Results
3.1. Community Structure of Macroinvertebrate FFGs
3.2. Spatiotemporal Variation Characteristics of Macroinvertebrate FFGs
3.3. Relationships between Macroinvertebrate FFGs and Environmental Factors
3.4. Ecological Assessment of Macroinvertebrate FFGs Ecosystem
3.5. The Biological Evaluation of Water Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntislidou, C.; Lazaridou, M.; Tsiaoussi, V.; Bobori, D.C. A new multimetric macroinvertebrate index for the ecological assessment of Mediterranean lakes. Ecol. Indic. 2018, 93, 1020–1033. [Google Scholar] [CrossRef]
- Beauchene, M.; Becker, M.; Bellucci, C.J.; Hagstrom, N.; Kanno, Y. Summer thermal thresholds of fish community transitions in Connecticut streams. N. Am. J. Fish. Manag. 2014, 34, 119–131. [Google Scholar] [CrossRef]
- Cai, Y.J.; Zhang, Y.; Hu, Z.X.; Deng, J.M.; Qin, B.Q.; Yin, H.B.; Wang, X.L.; Gong, Z.J.; Heino, J. Metacommunity ecology meets bioassessment: Assessing spatio-temporal variation in multiple facets of macroinvertebrate diversity in human–influenced large lakes. Ecol. Indic. 2019, 103, 713–721. [Google Scholar] [CrossRef]
- Dalu, T.; Wasserman, R.J.; Tonkin, J.D.; Alexander, M.E.; Dalu, M.T.B.; Motitsoe, S.N.; Manungo, K.L.; Bepe, O.; Dube, T. Assessing drivers of benthic macroinvertebrate community structure in African highland streams: An exploration using multivariate analysis. Sci. Total Environ. 2017, 601–602, 1340–1348. [Google Scholar] [CrossRef]
- Wang, B.H.; Wu, D.; Zhang, J.; Yin, X.W.; Zhao, C.S.; Dou, T.W. Diversity and temporal-spatial dynamics of macroinvertebrate functional feeding groups in the rivers of the Jinan Region. Acta Ecol. Sin. 2017, 37, 7128–7139, (In Chinese with English Abstract). [Google Scholar]
- Ma, T.W.; Huang, Q.H.; Wang, H.; Wang, Z.J.; Wang, C.X.; Huang, S.B. Selection of benthic macroinvertebrate-based multimetrics and preliminary establishment of biocriteria for the bioassessment of the water quality of Taihu Lake, China. Acta Ecol. Sin. 2008, 28, 1192–1200, (In Chinese with English Abstract). [Google Scholar]
- Poff, N.L.; Olden, J.D.; Vieira, N.K.M.; Finn, D.S.; Simmons, M.P.; Kondratieff, B.C. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 2006, 25, 730–755. [Google Scholar] [CrossRef]
- Fisher, W.L. Stream ecology: Structure and function of running waters. Trans. Am. Fish. Soc. 1996, 125, 154–158. [Google Scholar] [CrossRef]
- Bazzanti, M.; Bella, V.D. Functional feeding and habit organization of macroinvertebrate communities in permant and temporary ponds in central Italy. J. Freshw. Ecol. 2004, 19, 493–497. [Google Scholar] [CrossRef]
- Jiang, X.M.; Xie, Z.C.; Chen, Y.F. Longitudinal patterns of macroinvertebrate communities in relation to environmental factors in a Tibetan-Plateau river system. Quat. Int. 2013, 304, 107–114. [Google Scholar] [CrossRef]
- Winterbottom, J.; Orton, S.; Hildrew, A. Field experiments on the mobility of benthic invertebrates in a southern English stream. Freshwater Biol. 1997, 38, 37–47. [Google Scholar] [CrossRef]
- Bao, S.M.; Zhang, K.; Ding, C.Z.; Tao, J.; Wang, J. Spatio-temporal variation and influencing factors of macroinvertebrate community structure in Buyuan River, a tributary of the lower Lancang River. J. Lake Sci. 2024, 36, 536–547, (In Chinese with English Abstract). [Google Scholar]
- Miao, J.D.; Zhang, X.M.; Zhao, Y.; Wei, T.X.; Yang, Z.; Li, P.; Zhang, Y.G.; Chen, Y.X.; Wang, Y.S. Evolution patterns and spatial sources of water and sediment discharge over the last 70 years in the Yellow River, China: A case study in the Ningxia Reach. Sci. Total Environ. 2022, 838, 155952. [Google Scholar] [CrossRef]
- Jin, W.T. Research on the Multi-Objective Synergetic Operation and Balanced Regulation of Cascade Reservoirs in the Yellow River. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2021. (In Chinese with English Abstract). [Google Scholar]
- Li, P.L.; Liu, J.C.; Liu, Y.B.; Wang, T.; Liu, K.; Wang, J.L. A comparative study on the age, growth, and mortality of Gobio huanghensis (Luo, Le & Chen, 1977) in the Gansu and Ningxia sections of the upper Yellow River, China. BMC Ecol. Evol. 2024, 24, 30. [Google Scholar]
- Zhou, H.; Niu, L.; Li, H.F.; Zhang, N.C. Path of hydropower development and ecological protection in the upper reaches of the Yellow river. Haihe Water Resour. 2023, 6, 12–18, (In Chinese with English Abstract). [Google Scholar]
- Fan, J.J.; Zhao, G.J.; Mu, X.M.; Lu, A.; Tian, P.; Gao, P.; Sun, W.Y. Effects of cascading reservoirs on streamflow and sediment load with machine learning reconstructed time series in the upper Yellow River basin. Catena 2023, 225, 107008. [Google Scholar] [CrossRef]
- Park, Y.S.; Lek, S.; Chon, T.S.; Verdonschot, P.F.M. Evaluation of environmental factors to determine the distribution of functional feeding groups of benthic macroinvertebrates using an artificial neural network. J. Ecol. Environ. 2008, 31, 233–241. [Google Scholar] [CrossRef]
- Frainer, A.; Johansen, K.S.; Siwertsson, A.; Mousavi, S.K.; Brittain, J.E.; Klemetsen, A.; Knudsen, R.; Amundsen, P. Variation in functional trait composition of benthic invertebrates across depths and seasons in a subarctic lake. Fund. Appl. Limnol. 2016, 188, 103–112. [Google Scholar] [CrossRef]
- Zhang, X.T.; Li, W.M.; Zhang, K.; Xiong, W.W.; Chen, S.S.; Liu, Z.J. Spatiotemporal variation of macroinvertebrate functional feeding groups in Qiaobian River, a tributary of Yangtze River in Yichang. Acta Ecol. Sin. 2022, 42, 2559–2570, (In Chinese with English Abstract). [Google Scholar]
- HJ 710.8-2014; Biodiversity Observation Techniques Guidelines for Freshwater Benthic Macroinvertebrates. China Environmental Science Press: Beijing, China, 2014. (In Chinese)
- Morse, J.C.; Yang, L.; Tian, L. Aquatic Insects of China Useful for Monitoring Water Quality; Hohai University Press: Nanjing, China, 1994. [Google Scholar]
- Liu, J.K. Advanced Aquatic Biology; Science Press: Beijing, China, 1999; pp. 241–259. (In Chinese) [Google Scholar]
- Zhou, F.X.; Chen, J.H. Freshwater Microbial and Benthic Animal Atlas, 3rd ed.; Chemical Industry Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of PR China. Water and Wastewater Monitoring and Analysis Methods, 4th ed.; China Environmental Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Zhu, C.X.; Mo, K.L.; Tang, L.; Wu, Y.; Li, T.; Lin, Y.Q.; Chen, Q.W. Spatial-temporal distribution and ecological effects of macroinvertebrate functional feeding groups in the Lijiang River. Acta Ecol. Sin. 2020, 40, 60–69, (In Chinese with English Abstract). [Google Scholar]
- Cummins, K.W.; Klug, M.J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 1979, 10, 147–172. [Google Scholar] [CrossRef]
- Yoshimura, C.; Tockner, K.; Omura, T.; Moog, O. Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers. Limnology 2006, 7, 63–74. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, J.X.; Yu, M.; Gao, Y.N.; Dong, J.; Song, D.Y.; Li, X.J. Temporal-spatial distribution of functional feeding groups of macroinvertebrate and biological evaluation of water quality in Xinyang section of the Huaihe River main stream. Chin. J. Appl. Ecol. 2023, 34, 2820–2826, (In Chinese with English Abstract). [Google Scholar]
- HJ 1295-2023; Technical Guide for Aquatic Ecological Monitoring and Assessment: River Aquatic Biological Monitoring and Evaluation (Trial Implementation). Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2023. (In Chinese)
- Wang, B.X.; Yang, L.F. A study on tolerance values of benthic macroinvertebrate taxa in eastern China. Acta Ecol. Sin. 2004, 24, 2768–2775, (In Chinese with English Abstract). [Google Scholar]
- Huang, D.Q. Nutrient and Grazing Effects on Different Benthic Prey Assemblages. Master’s Thesis, Fudan University, Shanghai, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Li, N.; Yang, C.J.; Sun, Y.Y.; Bai, L.C.; Chen, A.L.; Ma, G.L.; Ma, Q. Community structure of macrobenthos and assessment of ecosystem health in Huangshui River, Qinghai province. Chin. Agr. Sci. Bull. 2017, 33, 141–148, (In Chinese with English Abstract). [Google Scholar]
- Jiang, W.X.; Cai, Q.H.; Tang, T.; Qu, X.D. The functional feeding group ecology of macroinvertebrate in Xiangxi River system. Acta Ecol. Sin. 2009, 29, 5207–5218, (In Chinese with English Abstract). [Google Scholar]
- Mangadze, T.; Wasserman, R.J.; Froneman, P.W.; Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Sci. Total Environ. 2019, 695, 133910. [Google Scholar] [CrossRef]
- Vannote, R.l.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Tomanova, S.; Goitia, E.; Helesic, J. Trophic levels and functional feeding groups of macroinvertebrates in Neotropical Streams. Hydrobiologia 2006, 556, 251–264. [Google Scholar] [CrossRef]
- Kerakova, M.; Varadinova, E. Influence of the river bottom substrate and sediment organic component on the macrozoobenthos functional feeding groups. Comptes Rendus Acad. Bulg. Des Sci. 2020, 73, 66–72. [Google Scholar]
- Li, J.P.; Dong, S.K.; Liu, S.L.; Yang, Z.F.; Peng, M.C.; Zhao, C. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River. Ecol. Eng. 2013, 60, 316–324. [Google Scholar] [CrossRef]
- Cummins, K.W.; Wilzbach, M.A.; Gates, D.M.; Perry, J.B.; Taliaferro, W.B. Shredders and riparian vegetation. Bioscience 1989, 39, 24–30. [Google Scholar] [CrossRef]
- Haapala, A.; Muotka, T.; Laasonen, P. Distribution of benthic macroinvertebrates and leaf litter in relation to streambed retentivity: Implications for headwater stream restoration. Boreal Environ. Res. 2003, 8, 19–30. [Google Scholar]
- Niba, A.S.; Mafereka, S.P. Benthic macroinvertebrate assemblage composition and distribution pattern in the upper Mthatha River, Eastern Cape, South Africa. Afr. J. Aquat. Sci. 2015, 40, 133–142. [Google Scholar] [CrossRef]
- Dalu, T.; Sachikonye, M.T.B.; Alexander, M.E.; Dube, T.; Froneman, P.W. Ecological assessment of two species of potamonautid freshwater Crabs from the Eastern highlands of zimbabwe, with implications for their conservation. PLoS ONE 2016, 11, e0145923. [Google Scholar] [CrossRef]
- Molles, M.C. Trichopteran communities of streams associated with aspen and conifer forests: Long–term structural change. Ecology 1982, 63, 1–6. [Google Scholar] [CrossRef]
- Norris, R.H.; Hawkins, C.P. Monitoring river health. Hydrobiologia 2000, 435, 5–17. [Google Scholar] [CrossRef]
- Shou, L.; Zeng, J.N.; Liao, Y.B.; Zhao, Y.Q.; Jiang, Z.B.; Chen, Q.Z.; Gao, A.G.; Yang, J.X. Seasonal distribution of macrozoobenthos and its relations to environmental factors in Oujiang River estuary sea area. Chin. J. Appl. Ecol. 2009, 20, 1958–1964, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.H.; Peng, W.Q.; Peng, S.; Zhang, M.; Zhang, H.P.; Jie, Y.; Ge, J.J.; Yu, Y.; Qu, X.D. Temporal–spatial distribution and ecological evaluation of macroinvertebrate functional feeding groups in Yongding River Basin. Chin. J. Appl. Ecol. 2022, 33, 3433–3440, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.D.; Xiong, B.X.; Chen, C.B.; Hu, H.S. The effect of environment factors on life activity of zoobenthos. J. Zhejiang Ocean U. 2005, 24, 253–257, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Ding, S.; Zhao, Q.; Gao, X.; Zhao, R.; Meng, W. Exploring the feasibility of establishing conductivity criteria for macroinvertebrate based on the field investigations. Asian J. Ecotoxicol. 2015, 10, 204–214, (In Chinese with English Abstract). [Google Scholar]
- Olson, A.R.; Stewart, T.W.; Thompson, J.R. Direct and indirect effects of human population density and land use on physical features and invertebrates of Iowa (USA) streams. Urban Ecosyst. 2016, 19, 159–180. [Google Scholar] [CrossRef]
- Erős, T.; Olden, J.D.; Schick, R.S.; Schmera, D.; Fortin, M.J. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 2012, 27, 303–317. [Google Scholar] [CrossRef]
- Wang, J.; Ding, C.Z.; Tao, J.; Jiang, X.M.; Heino, J.; Ding, L.Y.; Su, W.; Chen, M.L.; Zhang, K.; He, D.M. Damming affects riverine macroinvertebrate metacommunity dynamics: Insights from taxonomic and functional beta diversity. Sci. Total Environ. 2021, 763, 142945. [Google Scholar] [CrossRef]
- Brady, J.P.; Kinaev, I.; Goonetilleke, A.; Ayoko, G.A. Comparison of partial extraction reagents for assessing potential bioavailability of heavy metals in sediments. Mar. Pollut. Bull. 2016, 106, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.; Beisner, B.E.; Gunn, J.M.; Prairie, Y.T.; Winter, J.G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 2011, 68, 260–276. [Google Scholar] [CrossRef]
- Moya, N.; Hughes, R.M.; Domínguez, E.; Gibon, F.M.; Goitia, E.; Oberdorff, T. Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecol. Indic. 2011, 11, 840–847. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.P.; Guan, L.H.; Du, Y.Y.; Lou, Z.Y.; Jiao, W.L. Current freshwater fish resources and the application of DNA barcoding in species identification in Gansu Province. Biodivers. Sci. 2015, 23, 306–313, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hou, Y.M.; Pan, B.Z.; Jiang, X.M.; Jiang, W.X.; Zhu, P.H.; Zhang, L.; Yang, H.Q. Benthic macroinvertebrate community characteristics and bioassessment of water quality in the mainstem of upper Hanjiang River and its typical tributaries in the southern slope of the Qinling Mountains. J. Lake Sci. 2020, 32, 1140–1153, (In Chinese with English Abstract). [Google Scholar]
Item | Attributes Code | Ecosystem Attribute | Metrics Based on FFGs |
---|---|---|---|
Material cycling | F1 | Primary production | Density of SCs |
F2 | Secondary production | Biomass | |
F3 | Autotrophy/heterotrophy | Ratio of SCs to CFs and CGs | |
F4 | Decomposition | Density of SHs and CGs | |
Longitudinal transport | F5 | Longitudinal transport | Density of CFs |
F6 | Relative longitudinal transport | Ratio of CFs to SHs and CGs | |
Lateral input | F7 | Lateral input | Density of SHs |
F8 | Relative lateral input | Ratio of SHs to total density | |
Others | F9 | CPOM input/FPOM input | Ratio of SHs to CFs and CGs |
F10 | Top-down predator control | Ratio of PRs to total density | |
F11 | Habitat stability | Ratio of SCs and CFs to total SHs and CGs |
Groups | df | Sum of Squares | R-Squared | F Statistics | p-Value |
---|---|---|---|---|---|
River section | 1 | 3.726 | 0.126 | 20.623 | 0.001 |
Month | 3 | 2.546 | 0.086 | 4.697 | 0.001 |
River section × Month | 3 | 0.914 | 0.031 | 1.687 | 0.064 |
Residual | 124 | 22.406 | 0.757 | ||
Total | 131 | 29.593 | 1.000 |
Dominant Species | FFGs | Gorge Area | Plain Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
March | May | July | October | Total | March | May | July | October | Total | ||
Palaemon modestus | SHs | 0.073 | |||||||||
Palaemonetes sinensis | SHs | 0.039 | |||||||||
Ecdyonurus sp. | SCs | 0.034 | 0.028 | 0.088 | 0.113 | 0.104 | 0.091 | ||||
Cryptochironomus sp. | PRs | 0.058 | |||||||||
Baetis sp. | CGs | 0.046 | |||||||||
Chironomus sp. | CGs | 0.030 | 0.052 | 0.027 | 0.101 | 0.021 | |||||
Polypedilum sp. | CGs | 0.245 | 0.064 | 0.081 | |||||||
Limnodrilus sp. | CGs | 0.210 | |||||||||
Limnodrilus hoffmeisteri | CGs | 0.010 | 0.222 | 0.095 | 0.052 | 0.032 | 0.081 | 0.042 | |||
Tubifex sinicus | CGs | 0.078 | |||||||||
Gammarus sp. | CGs | 0.262 | 0.169 | 0.329 | 0.102 | 0.225 | 0.024 | 0.193 | 0.029 | 0.048 | |
Hydropsyche sp. | CFs | 0.139 | 0.026 | 0.098 | 0.103 | 0.087 |
Items | Parameters | Gorge Area | Plain Area | March | May | July | October |
---|---|---|---|---|---|---|---|
Material cycling | F1 | 14.63 | 45.49 | 9.06 | 25.86 | 42.49 | 37.22 |
F2 | 2.89 | 4.51 | 1.6 | 3.29 | 4.76 | 4.85 | |
F3 | 0.08 | 1.25 | 0.09 | 0.52 | 0.36 | 1.49 | |
F4 | 277.67 | 89.86 | 115.39 | 125.99 | 407.61 | 120.20 | |
Longitudinal transport | F5 | 9.32 | 33.44 | 15.81 | 12.53 | 19.63 | 33.18 |
F6 | 0.07 | 2.08 | 0.42 | 0.24 | 2.68 | 0.60 | |
Lateral input | F7 | 4.01 | 15.38 | 0.51 | 12.22 | 3.08 | 20.91 |
F8 | 0.03 | 0.09 | 0.01 | 0.08 | 0.02 | 0.12 | |
Others | F9 | 0.03 | 0.50 | 0.01 | 0.14 | 0.04 | 0.78 |
F10 | 0.04 | 0.10 | 0.04 | 0.13 | 0.03 | 0.06 | |
F11 | 0.25 | 3.39 | 0.54 | 0.86 | 4.12 | 1.18 |
Sampling Points | HBI | H′ | |||||||
---|---|---|---|---|---|---|---|---|---|
March | May | July | October | March | May | July | October | ||
Gorge areas | G1 | 3.03 | 4.40 | 2.50 | 3.20 | 1.0694 | 1.5825 | 0 | 1.0017 |
G2 | 2.50 | 3.38 | 2.51 | 2.50 | 0 | 1.3656 | 0.0526 | 0 | |
G3 | 7.74 | 8.26 | 2.50 | 8.54 | 1.7297 | 1.4095 | 0 | 1.8375 | |
G4 | 2.82 | 5.60 | 6.35 | 5.70 | 0.9052 | 1.9449 | 1.7210 | 1.9322 | |
G5 | 3.25 | 4.40 | 3.66 | 2.55 | 1.0409 | 1.3639 | 1.1817 | 0.4912 | |
G6 | 8.45 | 3.47 | 2.50 | 3.50 | 1.8710 | 1.6627 | 0 | 1.2935 | |
G7 | 8.44 | 9.44 | 9.39 | 6.00 | 1.0699 | 0.7753 | 0.7993 | 1.5440 | |
G8 | 5.75 | 8.11 | 8.76 | 4.63 | 1.2826 | 2.0560 | 1.2128 | 1.5774 | |
G9 | 9.79 | 9.22 | 3.30 | 4.63 | 1.2155 | 1.0934 | 1.0548 | 2.2732 | |
G10 | 3.98 | 3.66 | 2.99 | 5.97 | 1.7843 | 1.7415 | 0.8390 | 1.3049 | |
G11 | 4.72 | 8.65 | 4.44 | 9.01 | 0.9757 | 0.9913 | 1.8955 | 0.8343 | |
G12 | 4.77 | 4.81 | 6.63 | 8.79 | 1.7238 | 1.6669 | 1.8446 | 1.5579 | |
G13 | 5.46 | 9.25 | 6.02 | 8.77 | 1.6088 | 2.0205 | 2.2824 | 0.9939 | |
G14 | 5.54 | 5.55 | 4.94 | 5.62 | 1.7500 | 2.0121 | 1.8250 | 1.1596 | |
G15 | 2.65 | 6.09 | 2.86 | 3.08 | 0.2762 | 1.5810 | 0.4983 | 0.9427 | |
G16 | 4.47 | 8.40 | 4.04 | 6.38 | 1.9742 | 1.6821 | 2.0169 | 0.8443 | |
G17 | 4.55 | 5.99 | 5.21 | 9.45 | 2.1051 | 2.0040 | 0.9013 | 0.8315 | |
G18 | 5.33 | 4.89 | 2.91 | 5.99 | 0.7475 | 2.0223 | 0.7622 | 1.8464 | |
Average value | 5.18 | 6.30 | 4.53 | 5.80 | 1.2849 | 1.6098 | 1.0493 | 1.2370 | |
Plain areas | P1 | 2.60 | 7.14 | 3.43 | 4.59 | 0.7026 | 2.1147 | 1.1795 | 1.3303 |
P2 | 4.49 | 7.95 | 3.79 | 6.93 | 1.4098 | 2.4468 | 2.4194 | 2.2859 | |
P3 | 7.77 | 5.07 | 6.34 | 4.63 | 1.8619 | 2.1299 | 2.5318 | 0.6508 | |
P4 | 8.35 | 7.59 | 8.87 | 5.19 | 1.9356 | 1.4924 | 1.3481 | 2.2788 | |
P5 | 8.65 | 4.78 | 9.37 | 7.87 | 1.0958 | 2.7962 | 0.8698 | 1.9306 | |
P6 | 5.09 | 6.30 | 2.56 | 6.91 | 0.8998 | 1.7152 | 0.2996 | 1.2210 | |
P7 | 3.69 | 7.29 | 5.02 | 8.03 | 1.4210 | 2.2356 | 1.7527 | 1.5016 | |
P8 | 7.96 | 7.63 | 4.80 | 5.65 | 2.1473 | 1.8724 | 1.6930 | 1.7161 | |
P9 | 5.04 | 6.80 | 5.41 | 6.34 | 1.9593 | 1.8341 | 1.3965 | 1.5991 | |
P10 | 6.96 | 7.63 | 5.02 | 4.09 | 1.3796 | 1.2988 | 1.2509 | 1.3101 | |
P11 | 6.58 | 4.44 | 5.00 | 5.78 | 1.8911 | 1.4098 | 1.9610 | 1.4565 | |
P12 | 9.29 | 3.84 | 7.78 | 4.71 | 0.8841 | 2.4235 | 2.6426 | 2.5771 | |
P13 | 4.62 | 5.57 | 5.08 | 5.37 | 1.0995 | 1.7971 | 1.9046 | 2.4911 | |
P14 | 5.07 | 5.63 | 4.13 | 4.56 | 1.1596 | 2.0230 | 0.9226 | 2.3938 | |
P15 | 4.09 | 4.58 | 4.47 | 3.92 | 0.2762 | 2.4695 | 1.4864 | 1.3998 | |
Average value | 6.02 | 6.15 | 5.40 | 5.64 | 1.3415 | 2.0039 | 1.5772 | 1.7428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Xiong, S.; Liu, J.; Wang, T.; Liu, Y.; Liu, K.; Wang, Y.; Wang, J. The Spatiotemporal Variation and Ecological Evaluation of Macroinvertebrate Functional Feeding Groups in the Upper Yellow River. Biology 2024, 13, 791. https://doi.org/10.3390/biology13100791
Li P, Xiong S, Liu J, Wang T, Liu Y, Liu K, Wang Y, Wang J. The Spatiotemporal Variation and Ecological Evaluation of Macroinvertebrate Functional Feeding Groups in the Upper Yellow River. Biology. 2024; 13(10):791. https://doi.org/10.3390/biology13100791
Chicago/Turabian StyleLi, Peilun, Shuhan Xiong, Jiacheng Liu, Tai Wang, Yanbin Liu, Kai Liu, Yongjie Wang, and Jilong Wang. 2024. "The Spatiotemporal Variation and Ecological Evaluation of Macroinvertebrate Functional Feeding Groups in the Upper Yellow River" Biology 13, no. 10: 791. https://doi.org/10.3390/biology13100791
APA StyleLi, P., Xiong, S., Liu, J., Wang, T., Liu, Y., Liu, K., Wang, Y., & Wang, J. (2024). The Spatiotemporal Variation and Ecological Evaluation of Macroinvertebrate Functional Feeding Groups in the Upper Yellow River. Biology, 13(10), 791. https://doi.org/10.3390/biology13100791