Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Stomach Contents Analysis
2.3. Stable Isotope Analysis
2.4. Data Analysis
3. Results
3.1. Stomach Contents
3.2. Stable Isotope Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bax, N.; Williamson, A.; Aguero, M.; Gonzalez, E.; Geeves, W. Marine invasive alien species: A threat to global biodiversity. Mar. Policy 2003, 27, 313–323. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Wallentinus, I.; Zenetos, A.; Leppäkoski, E.; Çinar, M.E.; Oztürk, B.; Grabowski, M.; Golani, D.; Cardoso, A.C. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 2014, 9, 391–423. [Google Scholar] [CrossRef]
- Lee, I.H.; Reusser, D.A.; Olden, J.D.; Smith, S.S.; Graham, J.; Burkett, V.; Dukes, J.S.; Piorkowski, R.J.; Mcphedran, J. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate. Conserv. Biol. 2008, 22, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.; Olenin, S.; Roques, A.; Roy, D.; et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef]
- Georgian, S.; Hameed, S.; Morgan, L.; Amon, D.J.; Sumaila, U.R.; Johns, D.; Ripple, W.J. Scientists’ warning of an imperiled ocean. Biol. Conserv. 2022, 272, 109595. [Google Scholar] [CrossRef]
- Whitney, K.D.; Gabler, C.A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: Challenges for predicting invasive potential. Divers. Distrib. 2008, 14, 569–580. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The Population Biology of Invasive Species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Simberloff, D.; Gibbons, L. Now you See them, Now you don’t!—Population Crashes of Established Introduced Species. Biol. Invasions 2004, 6, 161–172. [Google Scholar] [CrossRef]
- Soto, I.; Ahmed, D.A.; Balzani, P.; Cuthbert, R.N.; Haubrock, P.J. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Sci. Total Environ. 2023, 872, 161818. [Google Scholar] [CrossRef]
- Bøhn, T.; Sandlund, O.T.; Amundsen, P.-A.; Primicerio, R. Rapidly changing life history during invasion. Oikos 2004, 106, 138–150. [Google Scholar] [CrossRef]
- Kurita, Y.; Onikura, N. Phenotypic shift of an alien piscivorous chub following translocation from a large lake to small irrigation ditches. Ecol. Res. 2016, 31, 731–738. [Google Scholar] [CrossRef]
- Jaspers, C.; Marty, L.; Kiørboe, T. Selection for life-history traits to maximize population growth in an invasive marine species. Glob. Chang. Biol. 2018, 24, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Lepikhina, P.P.; Basin, A.B.; Kondar, D.V.; Udalov, A.A.; Chikina, M.V.; Mokievsky, V.O. Changes in the quantitative characteristics of macro- and meiobenthos in the Blagopoluchiya Bay from 2013 to 2020 (Novaya Zemlya, the Kara Sea). Oceanology 2022, 62, 198–206. [Google Scholar] [CrossRef]
- Rudneva, E.V.; Udalov, A.A.; Zalota, A.K.; Chikina, M.V. Changes in benthic communities of the central part of the Kara Sea as a result of the introduction of the snow crab Chionoecetes opilio. In Proceedings of the XI International Scientific and Practical Conference “Marine Research and Education” (MARESEDU), Moscow, Russia, 20–24 October 2022; OOO PoliPRESS: Tver, Russia, 2022; Volume 3, pp. 320–324. [Google Scholar]
- Udalov, A.A.; Anisimov, I.M.; Basin, A.B.; Borisenko, G.V.; Galkin, S.V.; Syomin, V.L.; Shchuka, S.A.; Simakov, M.I.; Zalota, A.K.; Chikina, M.V. Changes in benthic communities in Blagopoluchiya Bay (Novaya Zemlya, Kara Sea): The influence of the snow crab. Biol. Invasions 2024, 26, 3455–3473. [Google Scholar] [CrossRef]
- Ogata, T. Studies on the population biology of the edible crab, Chionoecetes opilio O. Fabricius in the Japan Sea region. Kaiyo Kagaku Mar. Sci. Mon. 1973, 5, 27–33. [Google Scholar]
- Squires, H.J. Decapod Crustacea of the Atlantic coast of Canada. Can. Bull. Fish. Aquat. Sci. 1990, 221, 1–532. [Google Scholar]
- Kuzmin, S.; Akhtarin, S.; Meni, D. The first findings of the snow crab Chionoecetes opilio (Decapoda, Majiidae) in the Barents Sea. Can. Trans. Fish Aquat. Sci. 1999, 5667, 1–5. [Google Scholar]
- Zimina, O.L. Finding the snow crab Chionoecetes opilio (O. Fabricius, 1788) (Decapoda: Majidae) in the Kara Sea. Russ. J. Mar. Biol. 2014, 40, 490–492. [Google Scholar] [CrossRef]
- Lipukhin, E.V.; Zalota, A.K.; Mishin, A.V.; Simakova, U.V. The origin of the snow crab Chionoecetes opilio in the Kara Sea. Oceanology 2024, 64, 278–287. [Google Scholar] [CrossRef]
- Filatova, Z.; Zenkevich, L. Quantitative distribution of the bottom fauna of the Kara Sea. Tr. Vsesoyuznogo Gidrobiol. Obs. 1957, 8, 3–67. [Google Scholar]
- Antipova, T.; Semenov, V. Composition and distribution of benthos in the southwestern areas of the typical marine water of the Kara Sea. In Ecology Bioresources of the Kara Sea; Kolskij Nauchnyj Tsentr Rossijskoj Akademii Nauk: Apatity, Russia, 1989; pp. 127–137. [Google Scholar]
- Kozlovskiy, V.V.; Chikina, M.V.; Kucheruk, N.V.; Basin, A.B. Structure of the macrozoobenthic communities in the Southwestern Kara Sea. Oceanology 2011, 51, 1012–1020. [Google Scholar] [CrossRef]
- Azovsky, A.I.; Kokarev, V.N. Stable but fragile: Long-term dynamics of arctic benthic macrofauna in Baydaratskaya Bay (the Kara Sea). Polar Biol. 2019, 42, 1307–1322. [Google Scholar] [CrossRef]
- Gerasimova, A.V.; Filippova, N.A.; Lisitsyna, K.N.; Nikishina, D.V.; Shunatova, N.N.; Kiyko, O.A.; Denisenko, S.G.; Maximovich, N.V. Current state of macrobenthos in the southwestern Kara Sea. Cont. Shelf Res. 2021, 224, 104452. [Google Scholar] [CrossRef]
- Ashik, I.M.; Karklin, V.P.; Kirillov, S.A.; Radionov, V.F.; Timokhov, L.A. Impact of climate change on marine natural systems. Arctic Seas of Russia. In The Second Assessment Report on Climatic Changes and Their Consequences in the Territory of Russian Federation; State Hydrometeorological Service: Moscow, Russia, 2014; pp. 578–615. Available online: http://voeikovmgo.ru/index.php?option=com_content&view=article&id=649&Itemid=24&lang=ru (accessed on 17 August 2024).
- Udalov, A.A.; Vedenin, A.A.; Simakov, M.I. Benthic fauna of Blagopoluchiya Bay (Novaya Zemlya Archipelago, Kara Sea). Oceanology 2016, 56, 655–665. [Google Scholar] [CrossRef]
- Wallentinus, I.; Nyberg, C.D. Introduced marine organisms as habitat modifiers. Mar. Pollut. Bull. 2007, 55, 323–332. [Google Scholar] [CrossRef]
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Dunne, J.A.; Williams, R.J.; Martinez, N.D. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 2004, 273, 291–302. [Google Scholar] [CrossRef]
- Hughes, T.P.; Bellwood, D.R.; Folke, C.; Steneck, R.S.; Wilson, J. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol. Evol. 2005, 20, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Palumbi, S.R.; McLeod, K.L.; Grünbaum, D. Ecosystems in Action: Lessons from Marine Ecology about Recovery, Resistance, and Reversibility. BioScience 2008, 58, 33–42. [Google Scholar] [CrossRef]
- Zenkevich, L.A. Biology of USSR Seas; Press ASci USSR: Moscow, Russia, 1963. [Google Scholar]
- Vinogradov, M.E.; Vedernikov, V.I.; Romankevich, E.A.; Vetrov, A.A. Components of the carbon cycle in the Russian Arctic seas: Primary production and flux of Corg from the photic layer. Oceanology 2000, 40, 204–215. [Google Scholar]
- Demidov, A.B.; Mosharov, S.A. Vertical distribution of primary production and chlorophyll a in the Kara Sea. Oceanology 2015, 55, 521–534. [Google Scholar] [CrossRef]
- Wlodarska-Kowalczuk, M.; Renaud, P.E.; Weslawski, J.M.; Cochrane, S.K.J.; Denisenko, S.G. Species diversity, functional complexity and rarity in Arctic fjordic versus open shelf benthic systems. Mar. Ecol. Prog. Ser. 2012, 463, 73–87. [Google Scholar] [CrossRef]
- Zalota, A.K.; Dgebuadz, P.Y.; Kiselev, A.D.; Chikina, M.V.; Udalov, A.A.; Kondar, D.V.; Mishin, A.V.; Tsurikov, S.M. Trophic position stability of benthic organisms in a changing food web of an Arctic fjord under the pressure of an invasive predatory snow crab, Unpublished Work. Chionoecetes opilio. Biology 2024, submitted.
- David, P.; Thébault, E.; Anneville, O.; Duyck, P.F.; Chapuis, E.; Loeuille, N. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar]
- Tarverdieva, M.I. Diet of the red king crab Paralithodes camtschaticus (Tilesius), Chionocetes bairdi Rathbun, and C. opilio (Fabricius) in the southeastern part of the Bering Sea. Biol. Morya 1976, 1, 41–48. [Google Scholar]
- Lovrich, G.A.; Sainte-Marie, B. Cannibalism in the snow crab, Chionoecetes opilio (O. Fabricius) (Brachyura: Majidae), and its potential importance to recruitment. J. Exp. Mar. Biol. Ecol. 1997, 211, 225–245. [Google Scholar] [CrossRef]
- Nadtochiy, V.A.; Chuchukalo, V.I.; Koblikov, V.N. Nutrition of the snow crab Chionoecetes opilio in the Gulf of Anadyr of the Bering Sea in autumn. Izv. TINRO Pac. Res. Fish. Cent. 2001, 128, 432–435. [Google Scholar]
- Squires, H.J.; Dawe, E.G. Stomach contents of snow crab (Chionoecetes opilio, Decapoda, Brachyura) from the Northeast Newfoundland Shelf. J. Northwest Atl. Fish. Sci. 2003, 32, 27–38. [Google Scholar] [CrossRef]
- Chuchukalo, V.I.; Nadtochiy, V.A.; Fedotov, P.A.; Bezrukov, R.G. Feeding habits and some aspects of biology of snow crab opilio (Chionoecetes opilio) in Chukchi Sea. Izv. TINRO 2011, 167, 197–206. [Google Scholar]
- Divine, L.M.; Bluhm, B.A.; Mueter, F.J.; Iken, K. Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 135, 124–136. [Google Scholar] [CrossRef]
- Pavlov, V.A. Feeding of snow crab Chionoecetes opilio (Fabricius, 1788) in the Barents Sea. Tr. VNIRO 2007, 147, 99–107. [Google Scholar]
- Agnalt, A.-L.; Pavlov, V.; Jørstad, K.E.; Farestveit, E.; Sundet, J. The Snow Crab, Chionoecetes opilio (Decapoda, Majoidea, Oregoniidae) in the Barents Sea. Springer Ser. Invasion Ecol. 2011, 6, 283–300. [Google Scholar]
- Hansen, H.S.B. Snow Crab (Chionoecetes opilio) in the Barents Sea. Diet, Biology and Management. Ph.D. Thesis, The Arctic University of Norway, Tromso, Norway, 2015. [Google Scholar]
- Nosova, T.B. Feeding of the snow crab Chionoecetes opilio in the Kara Sea in the summer of 2014. Mar. Biol. Res. Achiev. Prospect. 2016, 1, 227–230. [Google Scholar]
- Nosova, T.B. Comparative analysis of snow crab Chionoecetes opilio diet in the Barents and Kara Seas. In Influence of Ecosystem Changes on Harvestable Resources at High Latitudes, the Proceedings of the 18th Russian-Norwegian Symposium, Murmansk, Russia, 5–7 June 2018; Shamray, E., Huse, G., Trofimov, A., Sundby, S., Dolgov, A., Skjoldal, H.R., Sokolov, K., Jørgensen, J.L., Filin, A., Haug, T., et al., Eds.; IMR/PINRO Joint Report Series; IMR: Bergen, Tromso; Nowraw/PINRO: Murmansk, Russia, 2019; Volume 1, pp. 129–133. [Google Scholar]
- Sokolov, K.M.; Strelkova, N.A.; Manushin, I.E.; Sennikov, A.V. Snow Crab Chionoecetes opilio in the Barents and Kara Seas; PINRO: Murmansk, Russia, 2016; ISBN 978-5-86349-221-6. [Google Scholar]
- Zakharov, D.V.; Manushin, I.E.; Strelkova, N.A.; Pavlov, V.A.; Nosova, T.B. Characteristics of the food supply and nutrition of the snow crab opilio in the Barents Sea. Proc. VNIRO 2018, 172, 70–90. [Google Scholar] [CrossRef]
- Zakharov, D.V.; Manushin, I.E.; Nosova, T.B.; Strelkova, N.A.; Pavlov, V.A. Diet of snow crab in the Barents Sea and macrozoobenthic communities in its area of distribution. ICES J. Mar. Sci. 2021, 78, 545–556. [Google Scholar] [CrossRef]
- Burukovsky, R.N.; Syomin, V.L.; Zalota, A.K.; Simakov, M.I.; Spiridonov, V.A. The Food Spectra of Snow Crabs (Chionoecetes opilio O. Fabricius, 1788) (Decapoda, Oregonidae), Non-Indigenous Species of the Kara Sea. Oceanology 2021, 61, 964–975. [Google Scholar] [CrossRef]
- Gebruk, A.; Zalota, A.K.; Dgebuadze, P.; Ermilova, Y.; Spiridonov, V.A.; Shabalin, N.; Henry, L.-A.; Henley, S.F.; Mokievsky, V.O. Trophic niches of benthic crustaceans in the Pechora Sea suggest that the invasive snow crab Chionoecetes opilio could be an important competitor. Polar Biol. 2021, 44, 57–71. [Google Scholar] [CrossRef]
- Lockwood, A.P.M. Aspects of the Physiology of Crustacea. Univ. Rev. Biol. 1968, 8, 328. [Google Scholar]
- Watling, L. Feeding and Digestive System. In Functional Morphology and Diversity; Watling, L., Thiel, M., Eds.; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Tarverdieva, M.I. On the feeding habits of snow crabs Chionoecetes opilio and Ch. bairdi in the Bering Sea. Zool. J. 1981, 60, 287–293. [Google Scholar]
- Rzhavsky, A.V.; Pereladov, M.V. Nutrition of the Kamchatka crab (Paralithodes camtschaticus) in the shallow waters of the Varanger Fjord (Barents Sea): Study of the contents of the digestive tract and visual observations. Proc. VNIRO 2003, 142, 120–131. [Google Scholar]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Burukovsky, R.N. Shrimp: Food Composition and Food Relationships; Prospect Nauki: St. Petersburg, Russia, 2022; 568p. [Google Scholar]
- Zheltenkova, M.V. Feeding of roach (Rutilus rutilus caspicus Jak.) in the northern part of the Caspian Sea. Trudy Vses. In-Tarybn. Khoz. i Okeanogr. 1939, 10, 129–142. [Google Scholar]
- Burukovsky, R.N.; Fromerman, Y.M. An approach to studying hunting methods in predatory marine invertebrates. Oceanology 1974, 14, 167–172. [Google Scholar]
- Hobson, K.A.; Welch, H.E. Determination of trophic relationships within a high arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 1992, 84, 9–18. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Linnebjerg, J.F.; Hobson, K.A.; Fort, J.; Nielsen, T.G.; Møller, P.; Wieland, K.; Born, E.W.; Rigét, F.F.; Mosbech, A. Deciphering the structure of the West Greenland marine food web using stable isotopes (δ13C, δ15N). Mar. Biol. 2016, 163, 230. [Google Scholar] [CrossRef]
- Odintsov, V.S.; Kiyashko, S.I. Variations in the carbon and nitrogen isotope composition of the crabs Chionoecetes opilio (Fabricius, 1788) and Hyas coarctatus Leach, 1816 (Crustacea: Decapoda) from the Chukchi Sea. Russ. J. Mar. Biol. 2018, 44, 68–74. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341–351. [Google Scholar] [CrossRef]
- Minagawa, M.; Wada, E. Stepwise enrichment of 15N along foodchains–further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Newsome, S.D.; Martinez del Rio, C.; Bearhop, S.; Phillips, D.L. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429–436. [Google Scholar] [CrossRef]
- Flaherty, E.A.; Ben-David, M. Overlap and partitioning of the ecological and isotopic niches. Oikos 2010, 119, 1409–1416. [Google Scholar] [CrossRef]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, M.M.; Pedersen, T.; Nilssen, E.M. Trophic niche of the invasive red king crab Paralithodes camtschaticus in a benthic food web. Mar. Ecol. Prog. Ser. 2017, 565, 113–129. [Google Scholar] [CrossRef]
- Zalota, A.K.; Spiridonov, V.A.; Antokhina, T.I.; Deart, Y.V. Differences in trophic structure of semi-enclosed and open coastal communities under the influence of an alien top predator (Red King crab in the Barents Sea). Mar. Ecol. 2022, 43, e12708. [Google Scholar] [CrossRef]
- Gaevskaya, N.S. Identifier of the Fauna and Flora of the Northern Seas of the USSR; State Publishing House “Soviet Science”: Moscow, Russia, 1948. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; Rstudio Inc.: Boston, MA, USA, 2016; Available online: http://www.rstudio.com/ (accessed on 9 May 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 9 May 2024).
- Comeau, M.; Conan, G.Y.; Maynou, F.; Robichaud, G.; Therriault, J.-C.; Starr, M. Growth, spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes opilio) in Bonne Bay, Newfoundland, Canada. Can. J. Fish. Aquat. Sci. 1998, 55, 262–279. [Google Scholar] [CrossRef]
- Divine, L.M.; Mueter, F.J.; Kruse, G.H.; Bluhm, B.A.; Jewett, S.C.; Iken, K. New estimates of weight-at-size, maturity-at-size, fecundity, and biomass of snow crab, Chionoecetes opilio, in the Arctic Ocean off Alaska. Fish. Res. 2019, 218, 246–258. [Google Scholar] [CrossRef]
- Zalota, A.K. Size structure of mature snow crabs Chionoecetes opilio (O. Fabricius, 1788) (Decapoda, Oregoniidae) in the Kara Sea. Oceanology 2022, 62, 814–822. [Google Scholar] [CrossRef]
- Orensanz, J.M.; Ernst, B.; Armstrong, D.A. Variation of female size and stage at maturity in snow crab (Chionoecetes opilio) (Brachyura: Majidae) from the eastern Bering Sea. J. Crustac. Biol. 2007, 27, 576–591. [Google Scholar] [CrossRef]
- Burmeister, A.D.; Sainte-Marie, B. Pattern and causes of a temperature-dependent gradient of size at terminal moult in snow crab (Chionoecetes opilio) along West Greenland. Polar Biol. 2010, 33, 775–788. [Google Scholar] [CrossRef]
- Gorbatenko, K.M.; Kiyashko, S.I.; Morozov, T.B.; Glubokov, A.I. Distribution and General Biological Features of Snow Crab (Chionoecetes opilio) in the Chukchi and East Siberian Seas. Oceanology 2023, 63, 54–62. [Google Scholar] [CrossRef]
- Kun, M.S.; Mikulich, L.V. Food composition of Far Eastern commercial crabs in summer. Izv. TINRO 1954, 41, 319–332. [Google Scholar]
- Lefebvre, L.; Brêthes, J.C.F. Influence de la croissance et de facteurs du milieu sur l’alimentation du crabe des neiges, Chionoecetes opilio (O. Fabricius), dans le sud-ouest du golfe du Saint-Laurent. Can. J. Zool. 1991, 69, 489–494. [Google Scholar] [CrossRef]
- Wieczorek, S.K.; Hooper, R.G. Relationship between diet and food availability in the snow crab Chionoecetes opilio (O. Fabricius) in Bonne Bay, Newfoundland. J. Crustac. Biol. 1995, 15, 236–247. [Google Scholar] [CrossRef]
- Kolts, J.M.; Lovvorn, J.R.; North, C.A.; Grebmeier, J.M.; Cooper, L.W. Effects of body size, gender, and prey availability on diets of snow crabs in the northern Bering Sea. Mar. Ecol. Prog. Ser. 2013, 483, 209–220. [Google Scholar] [CrossRef]
- Kershaw, P.J.; Turra, A.; Galgani, F. ; GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; Report; GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection: London, UK, 2019. [Google Scholar] [CrossRef]
- Fang, C.; Zheng, R.; Hong, F.; Jiang, Y.; Chen, J.; Lin, H.; Lin, L.; Lei, R.; Bailey, C.; Bo, J. Microplastics in three typical benthic species from the Arctic: Occurrence, characteristics, sources, and environmental implications. Environ. Res. 2021, 192, 110326. [Google Scholar] [CrossRef] [PubMed]
- Kolts, J.M.; Lovvorn, J.R.; North, C.A.; Grebmeier, J.M.; Cooper, L.W. Relative value of stomach contents, stable isotopes, and fatty acids as diet indicators for a dominant invertebrate predator (Chionoecetes opilio) in the northern Bering Sea. J. Exp. Mar. Biol. Ecol. 2013, 449, 274–283. [Google Scholar] [CrossRef]
Sex | Station | Year | n | Mode | Mean ± SD | Range |
---|---|---|---|---|---|---|
Females | Inner Basin | 2018 | 12 | 31 | 38.7 ± 12.1 | 23 to 59 |
Sill | 2018 | 63 | 30 | 30.6 ± 8.2 | 14 to 72.8 | |
Inner Basin | 2020 | 6 | 38.5 | 42 ± 2.2 | 38.5 to 44.5 | |
(Including Fov) | (1) | (44.5) | ||||
Sill | 2020 | 15 | 35 | 35.6 ± 5.4 | 28 to 45.5 | |
(Including Fov) | (7) | (36) | (40.5 ± 3.8) | (36 to 46) | ||
Sill | 2022 | 3 | 43.3 | 41.3 ± 3.5 | 37.2 to 43.3 | |
(Including Fov) | (1) | (43.3) | ||||
Sill | 2023 | 91 | 38.3 | 41.2 ± 3.4 | 34.4 to 53.3 | |
(Including Fov) | (89) | (38.3) | (41.2 ± 3.4) | (34.4 to 53.3) | ||
Males | Inner Basin | 2018 | 8 | 27 | 45.4 ± 13.9 | 27 to 66 |
Sill | 2018 | 64 | 28 | 29.4 ± 6.8 | 16 to 56 | |
Inner Basin | 2020 | 5 | 32.5 | 48.1 ± 9.9 | 32.5 to 59.5 | |
Sill | 2020 | 10 | 33 | 33.1 ± 3.7 | 28.5 to 41 | |
Inner Basin | 2022 | 5 | 44.1 | 49.4 ± 6 | 44.1 to 59.2 | |
Sill | 2022 | 1 | 40.1 | |||
Sill | 2023 | 29 | 43.8 | 50.1 ± 6.3 | 40.1 to 66.9 |
2018 | 2020 | 2022 | 2023 | |
---|---|---|---|---|
Total number of sampled C. opilio | 132 | 35 | 9 | 120 |
Total number of analyzed stomachs | 97 | 34 | 9 | 120 |
Number of analyzed stomachs from the Sill st. | 97 | 24 | 4 | 120 |
Number of analyzed stomachs from the Inner Basin st. | 0 | 10 | 5 | 0 |
Total number of full stomachs | 53 | 9 | 4 | 21 |
Proportion of full stomachs, % | 40.2 | 25.7 | 44.4 | 17.5 |
Stomach Content Objects | Taxa | Group |
---|---|---|
Annelida gen. sp. | Annelida | Animal components |
Spiochaetopterus sp. | Annelida | Animal components |
Nephtyidae gen. sp. | Annelida | Animal components |
Bivalvia gen. sp. | Bivalvia | Animal components |
Nuculanida gen. sp. | Bivalvia | Animal components |
Nuculana sp. | Bivalvia | Animal components |
Nuculida gen. sp. | Bivalvia | Animal components |
Ennucula sp. | Bivalvia | Animal components |
Yoldiella sp. | Bivalvia | Animal components |
Portlandia sp. | Bivalvia | Animal components |
Ciliatocardium sp. | Bivalvia | Animal components |
Gastropoda gen. sp. | Gastropoda | Animal components |
Crustacea gen. sp. | Crustacea | Animal components |
Mysida gen. sp. | Crustacea | Animal components |
Caridea gen. sp. | Crustacea | Animal components |
Eualus sp. | Crustacea | Animal components |
Pandalus sp. | Crustacea | Animal components |
Chionoecetes opilio | Crustacea | Animal components |
Ophiuroidea gen. sp. | Ophiuroidea | Animal components |
Bryozoa gen. sp. | Bryozoa | Animal components |
Alcyonidium sp. | Bryozoa | Animal components |
Nematoda gen. sp. | Nematoda | Animal components |
Foraminifera gen. sp. | Foraminifera | Animal components |
Haplophragmoides sp. | Foraminifera | Animal components |
Dentalina sp. | Foraminifera | Animal components |
Lenticulina sp. | Foraminifera | Animal components |
Elphidium sp. | Foraminifera | Animal components |
Triloculina sp. | Foraminifera | Animal components |
Cornuspira sp. | Foraminifera | Animal components |
Cibicides sp. | Foraminifera | Animal components |
Fish | - | Animal components |
Unidentified items | - | Animal components |
Algae debris | - | Algae debris |
Chordaria sp. | Ochrophyta | Algae debris |
Desmarestia sp. | Ochrophyta | Algae debris |
Ptilota sp. | Rhodophyta | Algae debris |
Ectocarpus sp. | Ochrophyta | Algae debris |
Dictyosiphon sp. | Ochrophyta | Algae debris |
Diatoms | Ochrophyta | Algae debris |
Detritus | - | Detritus |
Sand particles | - | Mineral components |
Stones | - | Mineral components |
Silt | - | Mineral components |
Fat globules | - | - |
Microplastic | - | Microplastic |
Station | Year | n | δ13C ‰ | δ15N ‰ | SEAc ‰2 | Mean SEAB ‰2 | Mode SEAB ‰2 | |
---|---|---|---|---|---|---|---|---|
Females | Inner Basin | 2018 | 12 | −20.9 ± 0.4 | 12.7 ± 0.6 | 0.5 | 0.5 | 0.5 |
Sill | 2018 | 17 | −20.4 ± 0.6 | 12.3 ± 0.7 | 1.3 | 1.3 | 1.1 | |
Inner Basin | 2020 | 6 | −21.4 ± 0.2 | 12.5 ± 1.5 | 1.3 | 1.3 | 0.9 | |
Sill | 2020 | 15 | −21.4 ± 0.2 | 13.1 ± 1.2 | 0.9 | 0.9 | 0.8 | |
Sill | 2022 | 2 | −21.1 ± 0.3 | 12.3 ± 0.1 | ||||
Males | Inner Basin | 2018 | 8 | −20.4 ± 0.5 | 13.1 ± 0.9 | 1.1 | 1.3 | 1 |
Sill | 2018 | 13 | −20.6 ± 0.6 | 12.4 ± 0.5 | 0.6 | 0.6 | 0.5 | |
Inner Basin | 2020 | 3 | −20.8 ± 0.3 | 12.2 ± 0.6 | ||||
Sill | 2020 | 11 | −21.1 ± 0.3 | 12.8 ± 1.0 | 1 | 1 | 0.9 | |
Inner Basin | 2022 | 3 | −20.6 ± 0.3 | 11.7 ± 0.2 | ||||
Sill | 2022 | 1 | −21.4 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiselev, A.D.; Zalota, A.K. Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord. Biology 2024, 13, 781. https://doi.org/10.3390/biology13100781
Kiselev AD, Zalota AK. Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord. Biology. 2024; 13(10):781. https://doi.org/10.3390/biology13100781
Chicago/Turabian StyleKiselev, Alexander D., and Anna K. Zalota. 2024. "Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord" Biology 13, no. 10: 781. https://doi.org/10.3390/biology13100781
APA StyleKiselev, A. D., & Zalota, A. K. (2024). Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord. Biology, 13(10), 781. https://doi.org/10.3390/biology13100781