Investigating the Interplay between Cardiovascular and Neurodegenerative Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Human Studies
2.1. Neurodegenerative Diseases
2.1.1. Alzheimer’s Disease
2.1.2. Parkinson’s Disease
2.1.3. Multiple Sclerosis
2.1.4. Amyotrophic Lateral Sclerosis
2.1.5. Huntington’s Disease
2.1.6. Summary
2.2. Cardiovascular Diseases
2.2.1. Hypertension and Atherosclerosis
2.2.2. Myocardial Infarction
2.2.3. Atrial Fibrillation
2.2.4. Cardiomyopathies
2.2.5. Heart Failure
2.2.6. Summary
3. Animal Studies
3.1. Neurodegenerative Diseases
3.1.1. Alzheimer’s Disease
3.1.2. Parkinson’s Disease
Autonomic Dysfunction in Toxin Models of PD
Autonomic Dysfunction in Transgenic Models of PD
Cell Autonomous Disruption of Cardiomyocytes
Blood–Brain Barrier and RAS Changes
3.1.3. Multiple Sclerosis
Autonomic Dysfunction in Rodent Models of MS
Cell Autonomous Disruption of Cardiomyocytes
Blood–Brain Barrier and RAS Changes
3.1.4. Amyotrophic Lateral Sclerosis
Autonomic Dysfunction in Rodent Models of ALS
Blood–Brain Barrier/Blood–Spinal Cord Barrier and RAS Changes
3.1.5. Huntington’s Disease
Cell Autonomous Disruption of Cardiomyocytes by mHTT in the Heart
Autonomic Dysfunction
Blood–Brain Barrier and RAS Changes
3.1.6. Summary
3.2. Cardiovascular Disease
3.2.1. Hypertension and Atherosclerosis
Surgical Models
Genetic Models
Dietary Models
Neurological Effects
3.2.2. Metabolic Disease, Coronary Artery Disease and Atherosclerosis
Dietary Models
Genetic Models
Neurological Effects
3.2.3. Myocardial Infarction and Heart Failure
3.2.4. Atrial Fibrillation
3.2.5. Cardiomyopathies
3.2.6. Summary
3.3. Combinatorial Models
3.3.1. Myocardial Infarction
3.3.2. Transverse Aortic Constriction
3.3.3. Angiotensin II Osmotic Pump
3.3.4. Kidney Clip
3.3.5. High-Salt Diet
3.3.6. High-Fat Diet
3.3.7. High-Sugar Diet
3.3.8. Western Diet (High-Fat High-Sugar)
3.3.9. Atherogenic Diet
3.3.10. Leptin Deficiency (Lep ob/ob; LepR db/db)
3.3.11. Low-Density Lipoprotein Receptor (LdlR−/−)
3.3.12. Apolipoprotein E (ApoE−/−)
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDD | Neurodegenerative Disease |
CVD | Cardiovascular Disease |
AD | Alzheimer’s Disease |
HF | Heart Failure |
AS | Atherosclerosis |
AF | Atrial Fibrillation |
GFAP | Glial Fibrillary Protein |
CAA | Cerebral amyloid Angiopathy |
APOE (4) | Apolipoprotein E |
PSEN (1/2) | Presenilin Gene |
CM | Cardiomyopathy |
MI | Myocardial Infarction |
RAS | Renin Angiotensin System |
PD | Parkinson’s Disease |
MS | Multiple Sclerosis |
ALS | Amyotrophic Lateral Sclerosis |
HD | Huntington’s Disease |
EF | Ejection Fraction |
RAAS | Renin–Angiotensin–Aldosterone System |
APP | Amyloid Precursor Protein |
EAE | Experimental Autoimmune Encephalomyelitis |
ACE | Angiotensin-Converting Enzyme |
TAC | Transverse Aortic Constriction |
#K#C | Kidney Clip Procedure |
Ang II | Angiotensin II |
SHR | Spontaneously Hypertensive Rat |
BPH/BPN | Blood Pressure High/Normal Mouse |
HSD | High-Salt Diet |
MetS | Metabolic Syndrome |
CAD | Coronary Artery Disease |
HFD | High-Fat Diet |
HFHS | High-Fat High-Sugar Diet |
References
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The Global Burden of Neurological Disorders: Translating Evidence into Policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 US Neurological Disorders Collaborators. Burden of Neurological Disorders Across the US From 1990–2017: A Global Burden of Disease Study. JAMA Neurol. 2021, 78, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, K.E.; Thomas, J.; Levey, A.I. U.S. Burden of Neurodegenerative Disease. Lit. Rev. Summ. 2021. Available online: https://www.fightchronicdisease.org (accessed on 19 August 2024).
- de Toledo Ferraz Alves, T.C.; Ferreira, L.K.; Wajngarten, M.; Busatto, G.F. Cardiac Disorders as Risk Factors for Alzheimer’s Disease. J. Alzheimer’s Dis. 2010, 20, 749–763. [Google Scholar] [CrossRef]
- Noyce, A.J.; Bestwick, J.P.; Silveira-Moriyama, L.; Hawkes, C.H.; Giovannoni, G.; Lees, A.J.; Schrag, A. Meta-Analysis of Early Nonmotor Features and Risk Factors for Parkinson Disease. Ann. Neurol. 2012, 72, 893–901. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, G.; Kivipelto, M.; Laatikainen, T.; Antikainen, R.; Fratiglioni, L.; Jousilahti, P.; Tuomilehto, J. Association of Blood Pressure and Hypertension with the Risk of Parkinson Disease: The National FINRISK Study. Hypertension 2011, 57, 1094–1100. [Google Scholar] [CrossRef]
- Waubant, E.; Lucas, R.; Mowry, E.; Graves, J.; Olsson, T.; Alfredsson, L.; Langer-Gould, A. Environmental and Genetic Risk Factors for MS: An Integrated Review. Ann. Clin. Transl. Neurol. 2019, 6, 1905–1922. [Google Scholar] [CrossRef]
- Andrew, A.S.; Bradley, W.G.; Peipert, D.; Butt, T.; Amoako, K.; Pioro, E.P.; Tandan, R.; Novak, J.; Quick, A.; Pugar, K.D.; et al. Risk Factors for Amyotrophic Lateral Sclerosis: A Regional United States Case-Control Study. Muscle Nerve 2021, 63, 52–59. [Google Scholar] [CrossRef]
- Martin, S.; Al Khleifat, A.; Al-Chalabi, A. What Causes Amyotrophic Lateral Sclerosis? F1000Res 2017, 6, 371. [Google Scholar] [CrossRef]
- Korovairseva, G.I.; Sherbatich, T.V.; Selezneva, N.V.; Gavrilova, S.I.; Golimbet, V.; Voskresenskaya, N.I.; Rogaev, E.I. Genetic Association between the Apolipoprotein E (APOE) Gene and Different Forms of Alzheimer’s Disease. Russ. J. Genet. 2001, 37, 422–427. [Google Scholar] [CrossRef]
- McGrath, E.R.; Beiser, A.S.; DeCarli, C.; Plourde, K.L.; Vasan, R.S.; Greenberg, S.M.; Seshadri, S. Blood Pressure from Mid- to Late Life and Risk of Incident Dementia. Neurology 2017, 89, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Q.; He, C.; Fan, D.; Zhu, Y.; Zang, F.; Tan, C.; Zhang, S.; Shu, H.; Zhang, Z.; et al. Altered Regional Cerebral Blood Flow and Brain Function Across the Alzheimer’s Disease Spectrum: A Potential Biomarker. Front. Aging Neurosci. 2021, 13, 630382. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kanekiyo, T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1965. [Google Scholar] [CrossRef]
- Bjerkan, J.; Kobal, J.; Lancaster, G.; Šešok, S.; Meglič, B.; McClintock, P.V.E.; Budohoski, K.P.; Kirkpatrick, P.J.; Stefanovska, A. The Phase Coherence of the Neurovascular Unit Is Reduced in Huntington’s Disease. Brain Commun. 2024, 6, fcae166. [Google Scholar] [CrossRef]
- Drouin-Ouellet, J.; Sawiak, S.J.; Cisbani, G.; Lagacé, M.; Kuan, W.-L.; Saint-Pierre, M.; Dury, R.J.; Alata, W.; St-Amour, I.; Mason, S.L.; et al. Cerebrovascular and Blood–Brain Barrier Impairments in Huntington’s Disease: Potential Implications for Its Pathophysiology. Ann. Neurol. 2015, 78, 160–177. [Google Scholar] [CrossRef]
- Aye, W.W.T.; Stark, M.R.; Horne, K.-L.; Livingston, L.; Grenfell, S.; Myall, D.J.; Pitcher, T.L.; Almuqbel, M.M.; Keenan, R.J.; Meissner, W.G.; et al. Early-Phase Amyloid PET Reproduces Metabolic Signatures of Cognitive Decline in Parkinson’s Disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2024, 16, e12601. [Google Scholar] [CrossRef]
- Guan, J.; Pavlovic, D.; Dalkie, N.; Waldvogel, H.J.; O’Carroll, S.J.; Green, C.R.; Nicholson, L.F.B. Vascular Degeneration in Parkinson’s Disease. Brain Pathol. 2013, 23, 154–164. [Google Scholar] [CrossRef]
- Steen, C.; D’haeseleer, M.; Hoogduin, J.M.; Fierens, Y.; Cambron, M.; Mostert, J.P.; Heersema, D.J.; Koch, M.W.; De Keyser, J. Cerebral White Matter Blood Flow and Energy Metabolism in Multiple Sclerosis. Mult. Scler. 2013, 19, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, R.; Esiri, M.M.; Perera, R.; Yee, S.A.; Jenkins, D.; Palace, J.; DeLuca, G.C. Vascular Disease and Multiple Sclerosis: A Post-Mortem Study Exploring Their Relationships. Brain 2020, 143, 2998–3012. [Google Scholar] [CrossRef]
- Waldemar, G.; Vorstrup, S.; Jensen, T.S.; Johnsen, A.; Boysen, G. Focal Reductions of Cerebral Blood Flow in Amyotrophic Lateral Sclerosis: A SPECT Study. J. Neurol. Sci. 1992, 107, 19–28. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Hernandez-Ontiveros, D.G.; Rodrigues, M.C.O.; Haller, E.; Frisina-Deyo, A.; Mirtyl, S.; Sallot, S.; Saporta, S.; Borlongan, C.V.; Sanberg, P.R. Impaired Blood–Brain/Spinal Cord Barrier in ALS Patients. Brain Res. 2012, 1469, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Tan, C.-C.; Xu, W.; Hu, H.; Cao, X.-P.; Dong, Q.; Tan, L.; Yu, J.-T. The Prevalence of Dementia: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2020, 73, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Bateman Randall, J.; Xiong, C.; Benzinger Tammie, L.S.; Fagan Anne, M.; Goate, A.; Fox Nick, C.; Marcus Daniel, S.; Cairns Nigel, J.; Xie, X.; Blazey Tyler, M.; et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef]
- Ravikumar, S.; Denning, A.E.; Lim, S.; Chung, E.; Sadeghpour, N.; Ittyerah, R.; Wisse, L.E.M.; Das, S.R.; Xie, L.; Robinson, J.L.; et al. Postmortem Imaging Reveals Patterns of Medial Temporal Lobe Vulnerability to Tau Pathology in Alzheimer’s Disease. Nat. Commun. 2024, 15, 4803. [Google Scholar] [CrossRef]
- Asllani, I.; Habeck, C.; Scarmeas, N.; Borogovac, A.; Brown, T.R.; Stern, Y. Multivariate and Univariate Analysis of Continuous Arterial Spin Labeling Perfusion MRI in Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2008, 28, 725–736. [Google Scholar] [CrossRef]
- Ribeiro, V.T.; Cordeiro, T.M.E.; Filha, R.d.S.; Perez, L.G.; Caramelli, P.; Teixeira, A.L.; de Souza, L.C.; Simões E Silva, A.C. Circulating Angiotensin-(1-7) Is Reduced in Alzheimer’s Disease Patients and Correlates with White Matter Abnormalities: Results From a Pilot Study. Front. Neurosci. 2021, 15, 636754. [Google Scholar] [CrossRef]
- Gordon, B.A.; Blazey, T.M.; Su, Y.; Hari-Raj, A.; Dincer, A.; Flores, S.; Christensen, J.; McDade, E.; Wang, G.; Xiong, C.; et al. Spatial Patterns of Neuroimaging Biomarker Change in Individuals from Families with Autosomal Dominant Alzheimer’s Disease: A Longitudinal Study. Lancet Neurol. 2018, 17, 241–250. [Google Scholar] [CrossRef]
- Joas, E.; Bäckman, K.; Gustafson, D.; Östling, S.; Waern, M.; Guo, X.; Skoog, I. Blood Pressure Trajectories From Midlife to Late Life in Relation to Dementia in Women Followed for 37 Years. Hypertension 2012, 59, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Moonga, I.; Niccolini, F.; Wilson, H.; Pagano, G.; Politis, M.; The Alzheimer’s Disease Neuroimaging Initiative. Hypertension Is Associated with Worse Cognitive Function and Hippocampal Hypometabolism in Alzheimer’s Disease. Eur. J. Neurol. 2017, 24, 1173–1182. [Google Scholar] [CrossRef]
- Shang, S.; Li, P.; Deng, M.; Jiang, Y.; Chen, C.; Qu, Q. The Age-Dependent Relationship between Blood Pressure and Cognitive Impairment: A Cross-Sectional Study in a Rural Area of Xi’an, China. PLoS ONE 2016, 11, e0159485. [Google Scholar] [CrossRef]
- Proitsi, P. Disentangling the Complex Relationship Between Hypertension and Dementia. Biol. Psychiatry 2021, 89, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.; Gard, P.; Tabet, N. Hypertension and Inflammation in Alzheimer’s Disease: Close Partners in Disease Development and Progression! J. Alzheimer’s Dis. 2014, 41, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Himali, J.; Jacob, M.; Gonzales, M.; Beiser, A.; Ganapathy, V.; Saadatpour, L.; Donnelly, J.; Vasan, R.; Seshadri, S. Association of Diastolic Dysfunction and Cognitive Impairment in the Framingham Heart Study (P1-3.001). Neurology 2022, 98, 3325. [Google Scholar] [CrossRef]
- Wolters, F.J.; Segufa, R.A.; Darweesh, S.K.L.; Bos, D.; Ikram, M.A.; Sabayan, B.; Hofman, A.; Sedaghat, S. Coronary Heart Disease, Heart Failure, and the Risk of Dementia: A Systematic Review and Meta-Analysis. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Washida, K. Linking Atrial Fibrillation with Alzheimer’s Disease: Epidemiological, Pathological, and Mechanistic Evidence. J. Alzheimer’s Dis. 2018, 62, 61–72. [Google Scholar] [CrossRef]
- Qiu, C.; Winblad, B.; Marengoni, A.; Klarin, I.; Fastbom, J.; Fratiglioni, L. Heart Failure and Risk of Dementia and Alzheimer Disease: A Population-Based Cohort Study. Arch. Intern. Med. 2006, 166, 1003–1008. [Google Scholar] [CrossRef]
- Trieu, C.; van Harten, A.C.; Leeuwis, A.E.; Exalto, L.G.; Hooghiemstra, A.M.; Verberk, I.M.W.; Allaart, C.P.; Brunner-La Rocca, H.-P.; Kappelle, L.J.; van Oostenbrugge, R.J.; et al. Alzheimer’s Disease and Cognitive Decline in Patients with Cardiovascular Diseases Along the Heart-Brain Axis. J. Alzheimer’s Dis. 2024, 98, 987–1000. [Google Scholar] [CrossRef]
- Wurm, R.; Prausmüller, S.; Ponleitner, M.; Spinka, G.; Weidenhammer, A.; Arfsten, H.; Heitzinger, G.; Panagiotides, N.G.; Strunk, G.; Bartko, P.; et al. Serum Markers of Neurodegeneration Are Strongly Linked to Heart Failure Severity and Outcome. JACC Heart Fail. 2024, 12, 1073–1085. [Google Scholar] [CrossRef]
- Vecchio, F.; Valeriani, L.; Buffo, P.; Scarpellini, M.G.; Frisoni, G.B.; Mecarelli, O.; Babiloni, C.; Rossini, P.M. Cortical Sources of EEG Rhythms in Congestive Heart Failure and Alzheimer’s Disease. Int. J. Psychophysiol. 2012, 86, 98–107. [Google Scholar] [CrossRef]
- Beeri, M.S.; Rapp, M.; Silverman, J.M.; Schmeidler, J.; Grossman, H.T.; Fallon, J.T.; Purohit, D.P.; Perl, D.P.; Siddiqui, A.; Lesser, G.; et al. Coronary Artery Disease Is Associated with Alzheimer Disease Neuropathology in APOE4 Carriers. Neurology 2006, 66, 1399–1404. [Google Scholar] [CrossRef]
- Singh, P.P.; Singh, M.; Bhatnagar, D.P.; Kaur, T.P.; Gaur, S.K. Apolipoprotein E Polymorphism and Its Relation to Plasma Lipids in Coronary Heart Disease. Indian J. Med. Sci. 2008, 62, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Roher, A.E.; Tyas, S.L.; Maarouf, C.L.; Daugs, I.D.; Kokjohn, T.A.; Emmerling, M.R.; Garami, Z.; Belohlavek, M.; Sabbagh, M.N.; Sue, L.I.; et al. Intracranial Atherosclerosis as a Contributing Factor to Alzheimer’s Disease Dementia. Alzheimer’s Dement. 2011, 7, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.A.; Yu, L.; Nag, S.; Leurgans, S.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral Amyloid Angiopathy and Cognitive Outcomes in Community-Based Older Persons. Neurology 2015, 85, 1930–1936. [Google Scholar] [CrossRef]
- Ellis, R.J.; Olichney, J.M.; Thal, L.J.; Mirra, S.S.; Morris, J.C.; Beekly, D.; Heyman, A. Cerebral Amyloid Angiopathy in the Brains of Patients with Alzheimer’s Disease. Neurology 1996, 46, 1592–1596. [Google Scholar] [CrossRef]
- Bunch, T.J.; Weiss, J.P.; Crandall, B.G.; May, H.T.; Bair, T.L.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L.; et al. Atrial Fibrillation Is Independently Associated with Senile, Vascular, and Alzheimer’s Dementia. Heart Rhythm. 2010, 7, 433–437. [Google Scholar] [CrossRef]
- Li, D.; Parks, S.B.; Kushner, J.D.; Nauman, D.; Burgess, D.; Ludwigsen, S.; Partain, J.; Nixon, R.R.; Allen, C.N.; Irwin, R.P.; et al. Mutations of Presenilin Genes in Dilated Cardiomyopathy and Heart Failure. Am. J. Hum. Genet. 2006, 79, 1030–1039. [Google Scholar] [CrossRef]
- Lumsden, A.L.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Apolipoprotein E (APOE) Genotype-Associated Disease Risks: A Phenome-Wide, Registry-Based, Case-Control Study Utilising the UK Biobank. eBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.-Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; Del Monte, F. Aβ Amyloid Pathology Affects the Hearts of Patients with Alzheimer’s Disease: Mind the Heart. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef] [PubMed]
- Gianni, D.; Li, A.; Tesco, G.; McKay, K.M.; Moore, J.; Raygor, K.; Rota, M.; Gwathmey, J.K.; Dec, G.W.; Aretz, T.; et al. Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy. Circulation 2010, 121, 1216–1226. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, S.-H.; Kam, T.-I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 2019, 103, 627–641.e7. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal Trends in the Prevalence of Parkinson’s Disease from 1980 to 2023: A Systematic Review and Meta-Analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pearson, J.F.; Rüeger, S.; Pitcher, T.L.; Livingston, L.; Graham, C.; Keenan, R.; Shankaranarayanan, A.; et al. Arterial Spin Labelling Reveals an Abnormal Cerebral Perfusion Pattern in Parkinson’s Disease. Brain 2011, 134, 845–855. [Google Scholar] [CrossRef]
- Le Heron, C.J.; Wright, S.L.; Melzer, T.R.; Myall, D.J.; MacAskill, M.R.; Livingston, L.; Keenan, R.J.; Watts, R.; Dalrymple-Alford, J.C.; Anderson, T.J. Comparing Cerebral Perfusion in Alzheimer’s Disease and Parkinson’s Disease Dementia: An ASL-MRI Study. J. Cereb. Blood Flow Metab. 2014, 34, 964–970. [Google Scholar] [CrossRef]
- de Rus Jacquet, A.; Alpaugh, M.; Denis, H.L.; Tancredi, J.L.; Boutin, M.; Decaestecker, J.; Beauparlant, C.; Herrmann, L.; Saint-Pierre, M.; Parent, M.; et al. The Contribution of Inflammatory Astrocytes to BBB Impairments in a Brain-Chip Model of Parkinson’s Disease. Nat. Commun. 2023, 14, 3651. [Google Scholar] [CrossRef]
- Rocha, N.P.; Scalzo, P.L.; Barbosa, I.G.; de Campos-Carli, S.M.; Tavares, L.D.; de Souza, M.S.; Christo, P.P.; Reis, H.J.; Simões E Silva, A.C.; Teixeira, A.L. Peripheral Levels of Angiotensins Are Associated with Depressive Symptoms in Parkinson’s Disease. J. Neurol. Sci. 2016, 368, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Allcock, L.; Ullyart, K.; Kenny, R.; Burn, D. Frequency of Orthostatic Hypotension in a Community Based Cohort of Patients with Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1470–1471. [Google Scholar] [CrossRef]
- Goldstein, D.S. Orthostatic Hypotension as an Early Finding in Parkinson’s Disease. Clin. Auton. Res. 2006, 16, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Pechnik, S.; Holmes, C.; Eldadah, B.; Sharabi, Y. Association Between Supine Hypertension and Orthostatic Hypotension in Autonomic Failure. Hypertension 2003, 42, 136–142. [Google Scholar] [CrossRef]
- Fanciulli, A.; Göbel, G.; Ndayisaba, J.P.; Granata, R.; Duerr, S.; Strano, S.; Colosimo, C.; Poewe, W.; Pontieri, F.E.; Wenning, G.K. Supine Hypertension in Parkinson’s Disease and Multiple System Atrophy. Clin. Auton. Res. 2016, 26, 97–105. [Google Scholar] [CrossRef]
- Espay, A.J.; LeWitt, P.A.; Hauser, R.A.; Merola, A.; Masellis, M.; Lang, A.E. Neurogenic Orthostatic Hypotension and Supine Hypertension in Parkinson’s Disease and Related Synucleinopathies: Prioritisation of Treatment Targets. Lancet Neurol. 2016, 15, 954–966. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.-Y.; Park, Y.W.; Yoo, S.-W.; Yoo, J.-Y.; Choi, Y.; Jang, J.; Ahn, K.-J.; Kim, B.; Kim, J.-S. Adverse Effects of Hypertension, Supine Hypertension, and Perivascular Space on Cognition and Motor Function in PD. npj Park. Dis. 2021, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Kroumova, M.; Bordet, R.; Vodougnon, H.; Guieu, J.D.; Libersa, C.; Destee, A. Heart Rate Variability and Parkinson’s Disease Severity. J. Neural Transm. 2003, 110, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Palma, J.-A.; Carmona-Abellan, M.-M.; Barriobero, N.; Trevino-Peinado, C.; Garcia-Lopez, M.; Fernandez-Jarne, E.; Luquin, M.R. Is Cardiac Function Impaired in Premotor Parkinson’s Disease? A Retrospective Cohort Study. Mov. Disord. 2013, 28, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Valente, H.B.; Gervazoni, N.d.L.; Laurino, M.J.L.; Stoco-Oliveira, M.C.; Ribeiro, F.; de Carvalho, A.C.; Vanderlei, L.C.M.; Garner, D.M. Monitoring Autonomic Responses in Parkinson’s Disease Individuals: Non-Linear and Chaotic Global Metrics of Heart Rate Variability. Int. J. Neurosci. 2024, 134, 1–11. [Google Scholar] [CrossRef]
- Babiloni, C.; De Pandis, M.F.; Vecchio, F.; Buffo, P.; Sorpresi, F.; Frisoni, G.B.; Rossini, P.M. Cortical Sources of Resting State Electroencephalographic Rhythms in Parkinson’s Disease Related Dementia and Alzheimer’s Disease. Clin. Neurophysiol. 2011, 122, 2355–2364. [Google Scholar] [CrossRef]
- Deguchi, K.; Sasaki, I.; Tsukaguchi, M.; Kamoda, M.; Touge, T.; Takeuchi, H.; Kuriyama, S. Abnormalities of Rate-Corrected QT Intervals in Parkinson’s Disease-a Comparison with Multiple System Atrophy and Progressive Supranuclear Palsy. J. Neurol. Sci. 2002, 199, 31–37. [Google Scholar] [CrossRef]
- Hong, C.-T.; Chan, L.; Wu, D.; Chen, W.-T.; Chien, L.-N. Association Between Parkinson’s Disease and Atrial Fibrillation: A Population-Based Study. Front. Neurol. 2019, 10, 22. [Google Scholar] [CrossRef]
- Liang, H.-W.; Huang, Y.-P.; Pan, S.-L. Parkinson Disease and Risk of Acute Myocardial Infarction: A Population-Based, Propensity Score-Matched, Longitudinal Follow-up Study. Am. Heart J. 2015, 169, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Hirayama, M.; Hara, T.; Mizutani, Y.; Suzuki, J.; Watanabe, H.; Sobue, G. Role of Cardiac Sympathetic Nerves in Preventing Orthostatic Hypotension in Parkinson’s Disease. Park. Relat. Disord. 2014, 20, 409–414. [Google Scholar] [CrossRef]
- Shibata, M.; Morita, Y.; Shimizu, T.; Takahashi, K.; Suzuki, N. Cardiac Parasympathetic Dysfunction Concurrent with Cardiac Sympathetic Denervation in Parkinson’s Disease. J. Neurol. Sci. 2009, 276, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Ravo, M.; Lanza, G.; Schillaci, F.A.; Ventola, G.M.; Marchese, G.; Salluzzo, M.G.; Cappelletti, G.; Ferri, R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson’s Disease Patients and Healthy Controls. Int. J. Mol. Sci. 2024, 25, 707. [Google Scholar] [CrossRef] [PubMed]
- Behjati, M.; Sabri, M.R.; Etemadi Far, M.; Nejati, M. Cardiac Complications in Inherited Mitochondrial Diseases. Heart Fail. Rev. 2021, 26, 391–403. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Lubetzki, C.; Stankoff, B. Demyelination in Multiple Sclerosis. Handb. Clin. Neurol. 2014, 122, 89–99. [Google Scholar] [CrossRef]
- Bild, W.; Vasincu, A.; Rusu, R.-N.; Ababei, D.-C.; Stana, A.B.; Stanciu, G.D.; Savu, B.; Bild, V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules 2022, 12, 1429. [Google Scholar] [CrossRef]
- Kermode, A.G.; Thompson, A.J.; Tofts, P.; MacManus, D.G.; Kendall, B.E.; Kingsley, D.P.; Moseley, I.F.; Rudge, P.; McDonald, W.I. Breakdown of the Blood-Brain Barrier Precedes Symptoms and Other MRI Signs of New Lesions in Multiple Sclerosis. Pathogenetic and Clinical Implications. Brain 1990, 113 Pt 5, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Enzinger, C.; Barkhof, F.; Ciccarelli, O.; Filippi, M.; Kappos, L.; Rocca, M.A.; Ropele, S.; Rovira, À.; Schneider, T.; de Stefano, N.; et al. Nonconventional MRI and Microstructural Cerebral Changes in Multiple Sclerosis. Nat. Rev. Neurol. 2015, 11, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Damian, A.; Conway, D.; Mowry, E.M. Vascular Comorbidity Is Associated with Lower Brain Volumes and Lower Neuroperformance in a Large Multiple Sclerosis Cohort. Mult. Scler. 2021, 27, 1914–1923. [Google Scholar] [CrossRef]
- Palladino, R.; Marrie, R.A.; Majeed, A.; Chataway, J. Evaluating the Risk of Macrovascular Events and Mortality Among People with Multiple Sclerosis in England. JAMA Neurol. 2020, 77, 820–828. [Google Scholar] [CrossRef]
- Peng, H.; Wu, X.; Wen, Y.; Lin, J.; Guan, W. Myocardial Infarction and Stroke Risks in Multiple Sclerosis Patients: A Two-Sample Mendelian Randomization Study. Mult. Scler. Relat. Disord. 2022, 58, 103501. [Google Scholar] [CrossRef]
- Stefanou, M.-I.; Giannopapas, V.; Kitsos, D.K.; Chondrogianni, M.; Theodorou, A.; Kosmidou, M.; Vlotinou, P.; Bakirtzis, C.; Andreadou, E.; Tzartos, J.S.; et al. Prevalence and Epidemiology of Stroke in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Neurol. 2024, 271, 4075–4085. [Google Scholar] [CrossRef]
- Jadidi, E.; Mohammadi, M.; Moradi, T. High Risk of Cardiovascular Diseases after Diagnosis of Multiple Sclerosis. Mult. Scler. 2013, 19, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hu, T.; He, K.; Ying, J.; Cui, H. Multiple Sclerosis and the Risk of Cardiovascular Diseases: A Mendelian Randomization Study. Front. Immunol. 2022, 13, 861885. [Google Scholar] [CrossRef]
- Wang, Y.; Bos, S.D.; Harbo, H.F.; Thompson, W.K.; Schork, A.J.; Bettella, F.; Witoelar, A.; Lie, B.A.; Li, W.; McEvoy, L.K.; et al. Genetic Overlap between Multiple Sclerosis and Several Cardiovascular Disease Risk Factors. Mult. Scler. 2016, 22, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Allen, D.R.; Keller, D.M.; Fadel, P.J.; Frohman, E.M.; Davis, S.L. Impaired Carotid Baroreflex Control of Arterial Blood Pressure in Multiple Sclerosis. J. Neurophysiol. 2016, 116, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Sanya, E.O.; Tutaj, M.; Brown, C.M.; Goel, N.; Neundörfer, B.; Hilz, M.J. Abnormal Heart Rate and Blood Pressure Responses to Baroreflex Stimulation in Multiple Sclerosis Patients. Clin. Auton. Res. 2005, 15, 213–218. [Google Scholar] [CrossRef]
- Damla, O.; Altug, C.; Pinar, K.K.; Alper, K.; Dilek, I.G.; Kadriye, A. Heart Rate Variability Analysis in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2018, 24, 64–68. [Google Scholar] [CrossRef]
- Studer, V.; Rocchi, C.; Motta, C.; Lauretti, B.; Perugini, J.; Brambilla, L.; Pareja-Gutierrez, L.; Camera, G.; Barbieri, F.R.; Marfia, G.A.; et al. Heart Rate Variability Is Differentially Altered in Multiple Sclerosis: Implications for Acute, Worsening and Progressive Disability. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317701317. [Google Scholar] [CrossRef]
- Briggs, F.B.S.; Hill, E.; Abboud, H. The Prevalence of Hypertension in Multiple Sclerosis Based on 37 Million Electronic Health Records from the United States. Eur. J. Neurol. 2021, 28, 558–566. [Google Scholar] [CrossRef]
- Marrie, R.A.; Patten, S.B.; Tremlett, H.; Wolfson, C.; Warren, S.; Svenson, L.W.; Jette, N.; Fisk, J.; For the CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Sex Differences in Comorbidity at Diagnosis of Multiple Sclerosis. Neurology 2016, 86, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Kappus, N.; Weinstock-Guttman, B.; Hagemeier, J.; Kennedy, C.; Melia, R.; Carl, E.; Ramasamy, D.P.; Cherneva, M.; Durfee, J.; Bergsland, N.; et al. Cardiovascular Risk Factors Are Associated with Increased Lesion Burden and Brain Atrophy in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Jeng, B.; Huynh, T.L.T.; Motl, R.W. Comorbid Conditions and Physical Function in Adults with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2024, 105, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Dossi, D.E.; Chaves, H.; Heck, E.S.; Rodriguez Murúa, S.; Ventrice, F.; Bakshi, R.; Quintana, F.J.; Correale, J.; Farez, M.F. Effects of Systolic Blood Pressure on Brain Integrity in Multiple Sclerosis. Front. Neurol. 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Gandhi, S.; Paunkoski, I.; Bergsland, N.; Hagemeier, J.; Ramasamy, D.P.; Hojnacki, D.; Kolb, C.; Benedict, R.H.B.; Weinstock-Guttman, B.; et al. Hypertension and Heart Disease Are Associated with Development of Brain Atrophy in Multiple Sclerosis: A 5-Year Longitudinal Study. Eur. J. Neurol. 2019, 26, 87.e8. [Google Scholar] [CrossRef]
- Conway, D.S.; Thompson, N.R.; Cohen, J.A. Influence of Hypertension, Diabetes, Hyperlipidemia, and Obstructive Lung Disease on Multiple Sclerosis Disease Course. Mult. Scler. 2017, 23, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Pichler, A.; Khalil, M.; Langkammer, C.; Pinter, D.; Ropele, S.; Fuchs, S.; Bachmaier, G.; Enzinger, C.; Fazekas, F. The Impact of Vascular Risk Factors on Brain Volume and Lesion Load in Patients with Early Multiple Sclerosis. Mult. Scler. 2019, 25, 48–54. [Google Scholar] [CrossRef]
- Lorefice, L.; Frau, J.; Coghe, G.; Pitzalis, R.; Gessa, I.; Contu, F.; Barracciu, M.A.; Marrosu, M.G.; Cocco, E.; Fenu, G. Assessing the Burden of Vascular Risk Factors on Brain Atrophy in Multiple Sclerosis: A Case-Control MRI Study. Mult. Scler. Relat. Disord. 2019, 27, 74–78. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic Lateral Sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef]
- Steinruecke, M.; Lonergan, R.M.; Selvaraj, B.T.; Chandran, S.; Diaz-Castro, B.; Stavrou, M. Blood-CNS Barrier Dysfunction in Amyotrophic Lateral Sclerosis: Proposed Mechanisms and Clinical Implications. J. Cereb. Blood Flow Metab. 2023, 43, 642–654. [Google Scholar] [CrossRef]
- Rodrigues, M.C.O.; Hernandez-Ontiveros, D.G.; Louis, M.K.; Willing, A.E.; Borlongan, C.V.; Sanberg, P.R.; Voltarelli, J.C.; Garbuzova-Davis, S. Neurovascular Aspects of Amyotrophic Lateral Sclerosis. Int. Rev. Neurobiol. 2012, 102, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Seelen, M.; van Doormaal, P.T.C.; Visser, A.E.; Huisman, M.H.B.; Roozekrans, M.H.J.; de Jong, S.W.; van der Kooi, A.J.; de Visser, M.; Voermans, N.C.; Veldink, J.H.; et al. Prior Medical Conditions and the Risk of Amyotrophic Lateral Sclerosis. J. Neurol. 2014, 261, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R.; Wotton, C.; Talbot, K.; Goldacre, M.J. Cardiovascular Fitness as a Risk Factor for Amyotrophic Lateral Sclerosis: Indirect Evidence from Record Linkage Study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ji, H.; Hu, N. Cardiovascular Comorbidities in Amyotrophic Lateral Sclerosis: A Systematic Review. J. Clin. Neurosci. 2022, 96, 43–49. [Google Scholar] [CrossRef]
- Mandrioli, J.; Ferri, L.; Fasano, A.; Zucchi, E.; Fini, N.; Moglia, C.; Lunetta, C.; Marinou, K.; Ticozzi, N.; Drago Ferrante, G.; et al. Cardiovascular Diseases May Play a Negative Role in the Prognosis of Amyotrophic Lateral Sclerosis. Eur. J. Neurol. 2018, 25, 861–868. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.-A.; Seals, R.M.; Gredal, O.; Mittleman, M.A.; Hansen, J.; Weisskopf, M.G. Cardiovascular Disease and Diagnosis of Amyotrophic Lateral Sclerosis: A Population-Based Study. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 548–554. [Google Scholar] [CrossRef]
- Weise, D.; Menze, I.; Metelmann, M.C.F.; Woost, T.B.; Classen, J.; Otto Pelz, J. Multimodal Assessment of Autonomic Dysfunction in Amyotrophic Lateral Sclerosis. Eur. J. Neurol. 2022, 29, 715–723. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Bakola, E.; Papapostolou, A.; Stefanou, M.I.; Moschovos, C.; Salakou, S.; Zis, P.; Zouvelou, V.; Kimiskidis, V.K.; Chroni, E.; et al. Autonomic Dysfunction in Amyotrophic Lateral Sclerosis: A Neurophysiological and Neurosonology Study. J. Neuroimaging 2022, 32, 710–719. [Google Scholar] [CrossRef]
- Dubbioso, R.; Provitera, V.; Pacella, D.; Santoro, L.; Manganelli, F.; Nolano, M. Autonomic Dysfunction Is Associated with Disease Progression and Survival in Amyotrophic Lateral Sclerosis: A Prospective Longitudinal Cohort Study. J. Neurol. 2023, 270, 4968–4977. [Google Scholar] [CrossRef]
- Ozturk, R.; Karlsson, P.; Hu, X.; Akdeniz, E.; Surucu, S.; Isak, B. Stereological and Electrophysiological Evaluation of Autonomic Involvement in Amyotrophic Lateral Sclerosis. Neurophysiol. Clin. 2022, 52, 446–458. [Google Scholar] [CrossRef]
- Finsterer, J.; Wahbi, K. CNS Disease Triggering Takotsubo Stress Cardiomyopathy. Int. J. Cardiol. 2014, 177, 322–329. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington’s Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.J.U.; Tabrizi, S.J. Huntington’s Disease. BMJ 2010, 340, c3109. [Google Scholar] [CrossRef] [PubMed]
- Scherzinger, E.; Sittler, A.; Schweiger, K.; Heiser, V.; Lurz, R.; Hasenbank, R.; Bates, G.P.; Lehrach, H.; Wanker, E.E. Self-Assembly of Polyglutamine-Containing Huntingtin Fragments into Amyloid-like Fibrils: Implications for Huntington’s Disease Pathology. Proc. Natl. Acad. Sci. USA 1999, 96, 4604–4609. [Google Scholar] [CrossRef] [PubMed]
- Langbehn, D.R.; Hayden, M.; Paulsen, J.S. CAG-Repeat Length and the Age of Onset in Huntington Disease (HD): A Review and Validation Study of Statistical Approaches. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 397–408. [Google Scholar] [CrossRef]
- Aziz, N.A.; Anguelova, G.V.; Marinus, J.; Van Dijk, J.G.; Roos, R.A.C. Autonomic Symptoms in Patients and Pre-Manifest Mutation Carriers of Huntington’s Disease: Autonomic Symptoms in Huntington’s Disease. Eur. J. Neurol. 2010, 17, 1068–1074. [Google Scholar] [CrossRef]
- Kobal, J.; Meglic, B.; Mesec, A.; Peterlin, B. Early Sympathetic Hyperactivity in Huntington’s Disease. Eur. J. Neurol. 2004, 11, 842–848. [Google Scholar] [CrossRef]
- Andrich, J.; Schmitz, T.; Saft, C.; Postert, T.; Kraus, P.; Epplen, J.; Przuntek, H.; Agelink, M. Autonomic Nervous System Function in Huntington’s Disease. J. Neurol. Neurosurg. Psychiatry 2002, 72, 726–731. [Google Scholar] [CrossRef]
- Schultz, J.L.; Harshman, L.A.; Kamholz, J.A.; Nopoulos, P.C. Autonomic Dysregulation as an Early Pathologic Feature of Huntington Disease. Auton. Neurosci. 2021, 231, 102775. [Google Scholar] [CrossRef]
- Marotta, J.; Piano, C.; Brunetti, V.; Genovese, D.; Bentivoglio, A.R.; Calabresi, P.; Cortelli, P.; Della Marca, G. Heart Rate Variability during Wake and Sleep in Huntington’s Disease Patients: An Observational, Cross-Sectional, Cohort Study. Neurodegener. Dis. 2021, 21, 79–86. [Google Scholar] [CrossRef]
- van Wamelen, D.J.; Aziz, N.A.; Roos, R.A.C.; Swaab, D.F. Hypothalamic Alterations in Huntington’s Disease Patients: Comparison with Genetic Rodent Models. J. Neuroendocr. 2014, 26, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Melkani, G.C. Huntington’s Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. React. Oxyg. Species 2016, 2, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Ro, J.; Jung, H.; Kim, M.; Jeon, B.; Lee, J.-Y. Increased 10-Year Prevalence of Huntington’s Disease in South Korea: An Analysis of Medical Expenditure Through the National Healthcare System. J. Clin. Neurol. 2023, 19, 147. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Y.; Shang, H. The Updated Development of Blood-Based Biomarkers for Huntington’s Disease. J. Neurol. 2023, 270, 2483–2503. [Google Scholar] [CrossRef]
- Steventon, J.J.; Rosser, A.E.; Hart, E.; Murphy, K. Hypertension, Antihypertensive Use and the Delayed-Onset of Huntington’s Disease. Mov. Disord. 2020, 35, 937–946. [Google Scholar] [CrossRef]
- Kangussu, L.M.; Rocha, N.P.; Valadão, P.A.C.; Machado, T.C.G.; Soares, K.B.; Joviano-Santos, J.V.; Latham, L.B.; Colpo, G.D.; Almeida-Santos, A.F.; Furr Stimming, E.; et al. Renin-Angiotensin System in Huntington’s Disease: Evidence from Animal Models and Human Patients. Int. J. Mol. Sci. 2022, 23, 7686. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, A.S.; Teixeira, A.L. Renin-Angiotensin System in the Central Nervous System: Focus on Huntington’s Disease. Neural Regen. Res. 2023, 18, 2206–2207. [Google Scholar] [CrossRef]
- Chang, K.-H.; Cheng, M.-L.; Lo, C.-J.; Fan, C.-M.; Wu, Y.-R.; Chen, C.-M. Alternations of Lipoprotein Profiles in the Plasma as Biomarkers of Huntington’s Disease. Cells 2023, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Terroba-Chambi, C.; Bruno, V.; Vigo, D.E.; Merello, M. Heart Rate Variability and Falls in Huntington’s Disease. Clin. Auton. Res. 2021, 31, 281–292. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Bai, J.; Wang, H.; Huang, X. Hypertension, Antihypertensive Drugs, and Age at Onset of Huntington’s Disease. Orphanet. J. Rare Dis. 2023, 18, 125. [Google Scholar] [CrossRef]
- Schultz, J.L.; Harshman, L.A.; Langbehn, D.R.; Nopoulos, P.C. Hypertension Is Associated with an Earlier Age of Onset of Huntington’s Disease. Mov. Disord. 2020, 35, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel-Ocete, L.; Fullaondo, A.; Alkorta-Aranburu, G.; García-Barcina, M.; Roos, R.A.C.; Hjermind, L.E.; Saft, C.; Frontali, M.; Reilmann, R.; Rickards, H.; et al. Does Arterial Hypertension Influence the Onset of Huntington’s Disease? PLoS ONE 2018, 13, e0197975. [Google Scholar] [CrossRef] [PubMed]
- Giorelli, M. Posterior Reversible Encephalopathy Syndrome Due to Arterial Hypertension May Mark the Onset of the Symptomatic Phase in Huntington’s Disease. Intractable Rare Dis. Res. 2022, 11, 40–42. [Google Scholar] [CrossRef]
- Harris, G.J.; Aylward, E.H.; Peyser, C.E.; Pearlson, G.D.; Brandt, J.; Roberts-Twillie, J.V.; Barta, P.E.; Folstein, S.E. Single Photon Emission Computed Tomographic Blood Flow and Magnetic Resonance Volume Imaging of Basal Ganglia in Huntington’s Disease. Arch. Neurol. 1996, 53, 316–324. [Google Scholar] [CrossRef]
- Harris, G.J.; Codori, A.M.; Lewis, R.F.; Schmidt, E.; Bedi, A.; Brandt, J. Reduced Basal Ganglia Blood Flow and Volume in Pre-Symptomatic, Gene-Tested Persons at-Risk for Huntington’s Disease. Brain 1999, 122, 1667–1678. [Google Scholar] [CrossRef]
- Hasselbalch, S.G.; Oberg, G.; Sørensen, S.A.; Andersen, A.R.; Waldemar, G.; Schmidt, J.F.; Fenger, K.; Paulson, O.B. Reduced Regional Cerebral Blood Flow in Huntington’s Disease Studied by SPECT. J. Neurol. Neurosurg. Psychiatry 1992, 55, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Kobal, J.; Cankar, K.; Pretnar, J.; Zaletel, M.; Kobal, L.; Teran, N.; Melik, Z. Functional Impairment of Precerebral Arteries in Huntington Disease. J. Neurol. Sci. 2017, 372, 363–368. [Google Scholar] [CrossRef]
- Chen, J.J.; Salat, D.H.; Rosas, H.D. Complex Relationships between Cerebral Blood Flow and Brain Atrophy in Early Huntington’s Disease. NeuroImage 2012, 59, 1043–1051. [Google Scholar] [CrossRef]
- Wolf, R.C.; Grön, G.; Sambataro, F.; Vasic, N.; Wolf, N.D.; Thomann, P.A.; Saft, C.; Landwehrmeyer, G.B.; Orth, M. Magnetic Resonance Perfusion Imaging of Resting-State Cerebral Blood Flow in Preclinical Huntington’s Disease. J. Cereb. Blood Flow Metab. 2011, 31, 1908–1918. [Google Scholar] [CrossRef]
- Rocha, N.P.; Charron, O.; Colpo, G.D.; Latham, L.B.; Patino, J.E.; Stimming, E.F.; Freeman, L.; Teixeira, A.L. Cerebral Blood Flow Is Associated with Markers of Neurodegeneration in Huntington’s Disease. Park. Relat. Disord. 2022, 102, 79–85. [Google Scholar] [CrossRef]
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of Hypertension: A Review. JAMA 2022, 328, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
- van den Kerkhof, M.; de Jong, J.J.A.; Voorter, P.H.M.; Postma, A.; Kroon, A.A.; van Oostenbrugge, R.J.; Jansen, J.F.A.; Backes, W.H. Blood-Brain Barrier Integrity Decreases with Higher Blood Pressure: A 7T DCE-MRI Study. Available online: https://www.ahajournals.org/doi/epdf/10.1161/HYPERTENSIONAHA.123.22617 (accessed on 19 August 2024).
- Sasaki, R.; Yamano, S.; Yamamoto, Y.; Minami, S.; Yamamoto, J.; Nakashima, T.; Takaoka, M.; Hashimoto, T. Vascular Remodeling of the Carotid Artery in Patients with Untreated Essential Hypertension Increases with Age. Hypertens. Res. 2002, 25, 373–379. [Google Scholar] [CrossRef]
- Kitagawa, K.; Oku, N.; Kimura, Y.; Yagita, Y.; Sakaguchi, M.; Hatazawa, J.; Sakoda, S. Relationship between Cerebral Blood Flow and Later Cognitive Decline in Hypertensive Patients with Cerebral Small Vessel Disease. Hypertens. Res. 2009, 32, 816–820. [Google Scholar] [CrossRef]
- Kitagawa, K. Cerebral Blood Flow Measurement by PET in Hypertensive Subjects as a Marker of Cognitive Decline. J. Alzheimer’s Dis. 2010, 20, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Ruitenberg, A.; den Heijer, T.; Bakker, S.L.M.; van Swieten, J.C.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M.B. Cerebral Hypoperfusion and Clinical Onset of Dementia: The Rotterdam Study. Ann. Neurol. 2005, 57, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Roman, D.D.; Kubo, S.H.; Ormaza, S.; Francis, G.S.; Bank, A.J.; Shumway, S.J. Memory Improvement Following Cardiac Transplantation. J. Clin. Exp. Neuropsychol. 1997, 19, 692–697. [Google Scholar] [CrossRef]
- Zuccalà, G.; Onder, G.; Marzetti, E.; Monaco, M.R.L.; Cesari, M.; Cocchi, A.; Carbonin, P.; Bernabei, R.; GIFA Study Group. Use of Angiotensin-Converting Enzyme Inhibitors and Variations in Cognitive Performance among Patients with Heart Failure. Eur. Heart J. 2005, 26, 226–233. [Google Scholar] [CrossRef]
- Alosco, M.L.; Gunstad, J.; Xu, X.; Clark, U.S.; Labbe, D.R.; Riskin-Jones, H.H.; Terrero, G.; Schwarz, N.F.; Walsh, E.G.; Poppas, A.; et al. The Impact of Hypertension on Cerebral Perfusion and Cortical Thickness in Older Adults. J. Am. Soc. Hypertens. 2014, 8, 561–570. [Google Scholar] [CrossRef]
- Waldstein, S.R.; Lefkowitz, D.M.; Siegel, E.L.; Rosenberger, W.F.; Spencer, R.J.; Tankard, C.F.; Manukyan, Z.; Gerber, E.J.; Katzel, L.I. Reduced Cerebral Blood Flow in Older Men with Higher Levels of Blood Pressure. J. Hypertens. 2010, 28, 993–998. [Google Scholar] [CrossRef]
- Querbes, O.; Aubry, F.; Pariente, J.; Lotterie, J.-A.; Démonet, J.-F.; Duret, V.; Puel, M.; Berry, I.; Fort, J.-C.; Celsis, P. Early Diagnosis of Alzheimer’s Disease Using Cortical Thickness: Impact of Cognitive Reserve. Brain 2009, 132, 2036–2047. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Wolk, D.A. MRI Cortical Thickness Biomarker Predicts AD-like CSF and Cognitive Decline in Normal Adults. Neurology 2012, 78, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Jovin, D.G.; Sumpio, B.E.; Greif, D.M. Manifestations of Human Atherosclerosis across Vascular Beds. JVS Vasc. Insights Open Access Publ. Soc. Vasc. Surg. 2024, 2, 100089. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of 10 Societies and by Invited Experts)Developed with the Special Contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Anazodo, U.C.; Shoemaker, J.K.; Suskin, N.; Ssali, T.; Wang, D.J.J.; St. Lawrence, K.S. Impaired Cerebrovascular Function in Coronary Artery Disease Patients and Recovery Following Cardiac Rehabilitation. Front. Aging Neurosci. 2016, 7, 224. [Google Scholar] [CrossRef] [PubMed]
- Anazodo, U.C.; Shoemaker, J.K.; Suskin, N.; St. Lawrence, K.S. An Investigation of Changes in Regional Gray Matter Volume in Cardiovascular Disease Patients, Pre and Post Cardiovascular Rehabilitation. Neuroimage Clin. 2013, 3, 388–395. [Google Scholar] [CrossRef]
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Rasoulpoor, S.; Khaleghi, A.A.; Hezarkhani, L.A.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of Myocardial Infarction: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute Myocardial Infarction. Lancet 2017, 389, 197–210. [Google Scholar] [CrossRef]
- Di Bella, G.; Aquaro, G.D.; Bogaert, J.; Piaggi, P.; Micari, A.; Pizzino, F.; Camastra, G.; Carerj, S.; Campisi, M.; Bracco, A.; et al. Non-Transmural Myocardial Infarction Associated with Regional Contractile Function Is an Independent Predictor of Positive Outcome: An Integrated Approach to Myocardial Viability. J. Cardiovasc. Magn. Reson. 2021, 23, 121. [Google Scholar] [CrossRef] [PubMed]
- Marving, J.; Høilund-Carlsen, P.F.; Chraemmer-Jørgensen, B.; Gadsbøll, N. Are Right and Left Ventricular Ejection Fractions Equal? Ejection Fractions in Normal Subjects and in Patients with First Acute Myocardial Infarction. Circulation 1985, 72, 502–514. [Google Scholar] [CrossRef]
- Menon, V.; Slater, J.N.; White, H.D.; Sleeper, L.A.; Cocke, T.; Hochman, J.S. Acute Myocardial Infarction Complicated by Systemic Hypoperfusion without Hypotension: Report of the SHOCK Trial Registry. Am. J. Med. 2000, 108, 374–380. [Google Scholar] [CrossRef]
- Gharacholou, S.M.; Reid, K.J.; Arnold, S.V.; Spertus, J.; Rich, M.W.; Pellikka, P.A.; Singh, M.; Holsinger, T.; Krumholz, H.M.; Peterson, E.D.; et al. Cognitive Impairment and Outcomes in Older Adult Survivors of Acute Myocardial Infarction: Findings from the Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients’ Health Status Registry. Am. Heart J. 2011, 162, 860–869.e1. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.; Lutski, M.; Goldbourt, U.; Tanne, D. C-Reactive Protein Is Related to Future Cognitive Impairment and Decline in Elderly Individuals with Cardiovascular Disease. Arch. Gerontol. Geriatr. 2017, 69, 31–37. [Google Scholar] [CrossRef]
- Tarkowski, E.; Tullberg, M.; Fredman, P.; Wikkelsö, C. Correlation between Intrathecal Sulfatide and TNF-Alpha Levels in Patients with Vascular Dementia. Dement. Geriatr. Cogn. Disord. 2003, 15, 207–211. [Google Scholar] [CrossRef]
- Brundel, B.J.J.M.; Ai, X.; Hills, M.T.; Kuipers, M.F.; Lip, G.Y.H.; de Groot, N.M.S. Atrial Fibrillation. Nat. Rev. Dis. Primers 2022, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhu, J.; Zheng, P.; Zhang, J.; Xia, X.; Zhao, Y.; Cheng, Q.; Zhang, N. Global Burden of Atrial Fibrillation/Flutter: Trends from 1990 to 2019 and Projections until 2044. Heliyon 2024, 10, e24052. [Google Scholar] [CrossRef]
- Anjum, M.; Ariansen, I.; Hjellvik, V.; Selmer, R.; Kjerpeseth, L.J.; Skovlund, E.; Myrstad, M.; Ellekjær, H.; Christophersen, I.E.; Tveit, A.; et al. Stroke and Bleeding Risk in Atrial Fibrillation with CHA2DS2-VASC Risk Score of One: The Norwegian AFNOR Study. Eur. Heart J. 2024, 45, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.A.; Dawber, T.R.; Thomas, H.E.; Kannel, W.B. Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Framingham Study. Neurology 1978, 28, 973–977. [Google Scholar] [CrossRef]
- Hannon, N.; Daly, L.; Murphy, S.; Smith, S.; Hayden, D.; Ní Chróinín, D.; Callaly, E.; Horgan, G.; Sheehan, Ó.; Honari, B.; et al. Acute Hospital, Community, and Indirect Costs of Stroke Associated with Atrial Fibrillation. Stroke 2014, 45, 3670–3674. [Google Scholar] [CrossRef]
- Gardarsdottir, M.; Sigurdsson, S.; Aspelund, T.; Rokita, H.; Launer, L.J.; Gudnason, V.; Arnar, D.O. Atrial Fibrillation Is Associated with Decreased Total Cerebral Blood Flow and Brain Perfusion. Europace 2018, 20, 1252–1258. [Google Scholar] [CrossRef]
- Stefansdottir, H.; Arnar, D.O.; Aspelund, T.; Sigurdsson, S.; Jonsdottir, M.K.; Hjaltason, H.; Launer, L.J.; Gudnason, V. Atrial Fibrillation Is Associated with Reduced Brain Volume and Cognitive Function Independent of Cerebral Infarcts. Stroke 2013, 44, 1020–1025. [Google Scholar] [CrossRef]
- Conen, D.; Rodondi, N.; Müller, A.; Beer, J.H.; Ammann, P.; Moschovitis, G.; Auricchio, A.; Hayoz, D.; Kobza, R.; Shah, D.; et al. Relationships of Overt and Silent Brain Lesions with Cognitive Function in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 73, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, C.A.; Theochari, C.A.; Zareifopoulos, N.; Arfaras-Melainis, A.; Giannakoulas, G.; Karamitsos, T.D.; Palaiodimos, L.; Ntaios, G.; Avgerinos, K.I.; Kapogiannis, D.; et al. Atrial Fibrillation Is Associated with Cognitive Impairment, All-Cause Dementia, Vascular Dementia, and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2021, 36, 3122–3135. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Yang, P.-S.; Yu, H.T.; Kim, T.-H.; Jang, E.; Sung, J.-H.; Pak, H.-N.; Lee, M.-Y.; Lee, M.-H.; Lip, G.Y.H.; et al. Risk of Dementia in Stroke-Free Patients Diagnosed with Atrial Fibrillation: Data from a Population-Based Cohort. Eur. Heart J. 2019, 40, 2313–2323. [Google Scholar] [CrossRef]
- Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B.; American Heart Association; et al. Contemporary Definitions and Classification of the Cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006, 113, 1807–1816. [Google Scholar] [CrossRef]
- Ciarambino, T.; Menna, G.; Sansone, G.; Giordano, M. Cardiomyopathies: An Overview. Int. J. Mol. Sci. 2021, 22, 7722. [Google Scholar] [CrossRef]
- Maron, B.J.; Gardin, J.M.; Flack, J.M.; Gidding, S.S.; Kurosaki, T.T.; Bild, D.E. Prevalence of Hypertrophic Cardiomyopathy in a General Population of Young Adults. Circulation 1995, 92, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Denfield, S.W.; Webber, S.A. Restrictive Cardiomyopathy in Childhood. Heart Fail. Clin. 2010, 6, 445–452, viii. [Google Scholar] [CrossRef]
- Peters, S.; Trümmel, M.; Meyners, W. Prevalence of Right Ventricular Dysplasia-Cardiomyopathy in a Non-Referral Hospital. Int. J. Cardiol. 2004, 97, 499–501. [Google Scholar] [CrossRef]
- Bomma, C.; Rutberg, J.; Tandri, H.; Nasir, K.; Roguin, A.; Tichnell, C.; Rodriguez, R.; James, C.; Kasper, E.; Spevak, P.; et al. Misdiagnosis of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. J. Cardiovasc. Electrophysiol. 2004, 15, 300–306. [Google Scholar] [CrossRef]
- Ono, R.; Falcão, L.M. Takotsubo Cardiomyopathy Systematic Review: Pathophysiologic Process, Clinical Presentation and Diagnostic Approach to Takotsubo Cardiomyopathy. Int. J. Cardiol. 2016, 209, 196–205. [Google Scholar] [CrossRef]
- Sayegh, A.L.C.; Dos Santos, M.R.; Sarmento, A.O.; de Souza, F.R.; Salemi, V.M.C.; Hotta, V.T.; Marques, A.C.D.B.; Krämer, H.H.; Trombetta, I.C.; Mady, C.; et al. Cardiac and Peripheral Autonomic Control in Restrictive Cardiomyopathy. ESC Heart Fail. 2017, 4, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G.; Nava, A.; Corrado, D.; Rossi, L.; Pennelli, N. Right Ventricular Cardiomyopathy and Sudden Death in Young People. N. Engl. J. Med. 1988, 318, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, Y.L.; Debonnaire, P.; van Zwet, E.W.; Bootsma, M.; Schalij, M.J.; Bax, J.J.; Delgado, V.; Marsan, N.A. Development of and Progression of Overt Heart Failure in Nonobstructive Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2018, 122, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Matsumoto, Y.; Kaneta, T.; Sugimura, K.; Takahashi, J.; Fukumoto, Y.; Takahashi, S.; Shimokawa, H. Evidence for Brain Activation in Patients with Takotsubo Cardiomyopathy. Circ. J. 2014, 78, 256–258. [Google Scholar] [CrossRef]
- Choi, B.-R.; Kim, J.S.; Yang, Y.J.; Park, K.-M.; Lee, C.W.; Kim, Y.-H.; Hong, M.-K.; Song, J.-K.; Park, S.-W.; Park, S.-J.; et al. Factors Associated with Decreased Cerebral Blood Flow in Congestive Heart Failure Secondary to Idiopathic Dilated Cardiomyopathy. Am. J. Cardiol. 2006, 97, 1365–1369. [Google Scholar] [CrossRef]
- Merlo, M.; Cannatà, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving Concepts in Dilated Cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 228–239. [Google Scholar] [CrossRef]
- Ito, M.; Fukui, K.; Miyamoto, N.; Kato, H.; Miki, K.; Shiobara, K.; Nagai, T. Takotsubo Cardiomyopathy in a Bedridden Patient with Dementia and Communication Difficulties Due to Alzheimer’s Disease. J. Rural. Med. 2022, 17, 89–93. [Google Scholar] [CrossRef]
- Schmidt, R.; Fazekas, F.; Offenbacher, H.; Dusleag, J.; Lechner, H. Brain Magnetic Resonance Imaging and Neuropsychologic Evaluation of Patients with Idiopathic Dilated Cardiomyopathy. Stroke 1991, 22, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [CrossRef]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal Trends and Patterns in Heart Failure Incidence: A Population-Based Study of 4 Million Individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of Adult Transthoracic Echocardiography Reporting in Agreement with Recent Chamber Quantification, Diastolic Function, and Heart Valve Disease Recommendations: An Expert Consensus Document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Hartupee, J.; Mann, D.L. Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef]
- Faulkner, K.M.; Dickson, V.V.; Fletcher, J.; Katz, S.D.; Chang, P.P.; Gottesman, R.F.; Witt, L.S.; Shah, A.M.; D’Eramo Melkus, G. Factors Associated with Cognitive Impairment in Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Nurs. 2022, 37, 17–30. [Google Scholar] [CrossRef]
- Warraich, H.J.; Kitzman, D.W.; Whellan, D.J.; Duncan, P.W.; Mentz, R.J.; Pastva, A.M.; Nelson, M.B.; Upadhya, B.; Reeves, G.R. Physical Function, Frailty, Cognition, Depression, and Quality of Life in Hospitalized Adults ≥60 Years with Acute Decompensated Heart Failure with Preserved Versus Reduced Ejection Fraction. Circ. Heart Fail. 2018, 11, e005254. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.; Sullivan, A.; Burke, R.; Hales, S.; Gillies, G.; Cameron, J.; Saliba, B.; Tofler, G. Mild Cognitive Impairment, Screening, and Patient Perceptions in Heart Failure Patients. J. Card. Fail. 2013, 19, 641–646. [Google Scholar] [CrossRef]
- Connors, E.J.; Hauson, A.O.; Barlet, B.D.; Sarkissians, S.; Stelmach, N.P.; Walker, A.D.; Nemanim, N.M.; Greenwood, K.L.; Chesher, N.J.; Wollman, S.C.; et al. Neuropsychological Assessment and Screening in Heart Failure: A Meta-Analysis and Systematic Review. Neuropsychol. Rev. 2021, 31, 312–330. [Google Scholar] [CrossRef]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Vernooij, M.W.; Ikram, M.A.; On Behalf of the Heart-Brain Connection Collaborative Research Group. Cerebral Perfusion and the Risk of Dementia. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef]
- Traub, J.; Otto, M.; Sell, R.; Homola, G.A.; Steinacker, P.; Oeckl, P.; Morbach, C.; Frantz, S.; Pham, M.; Störk, S.; et al. Serum Glial Fibrillary Acidic Protein Indicates Memory Impairment in Patients with Chronic Heart Failure. ESC Heart Fail. 2022, 9, 2626–2634. [Google Scholar] [CrossRef]
- Cacciotti, A.; Pappalettera, C.; Miraglia, F.; Valeriani, L.; Judica, E.; Rossini, P.M.; Vecchio, F. Complexity Analysis from EEG Data in Congestive Heart Failure: A Study via Approximate Entropy. Acta Physiol. 2023, 238, e13979. [Google Scholar] [CrossRef]
- Szu, J.I.; Obenaus, A. Cerebrovascular Phenotypes in Mouse Models of Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2021, 41, 1821–1841. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.; Parodi-Rullan, R.; Vazquez-Torres, R.; Carey, A.; Javadov, S.; Fossati, S. Amyloid β Induces Cardiac Dysfunction and Neuro-Signaling Impairment in the Heart of an Alzheimer’s Disease Model. bioRxiv 2023. [Google Scholar] [CrossRef]
- Murphy, J.; Le, T.N.V.; Fedorova, J.; Yang, Y.; Krause-Hauch, M.; Davitt, K.; Zoungrana, L.I.; Fatmi, M.K.; Lesnefsky, E.J.; Li, J.; et al. The Cardiac Dysfunction Caused by Metabolic Alterations in Alzheimer’s Disease. Front. Cardiovasc. Med. 2022, 9, 850538. [Google Scholar] [CrossRef]
- Aishwarya, R.; Abdullah, C.S.; Remex, N.S.; Bhuiyan, M.A.N.; Lu, X.-H.; Dhanesha, N.; Stokes, K.Y.; Orr, A.W.; Kevil, C.G.; Bhuiyan, M.S. Diastolic Dysfunction in Alzheimer’s Disease Model Mice Is Associated with Aβ-Amyloid Aggregate Formation and Mitochondrial Dysfunction. Sci. Rep. 2024, 14, 16715. [Google Scholar] [CrossRef]
- Turdi, S.; Guo, R.; Huff, A.F.; Wolf, E.M.; Culver, B.; Ren, J. Cardiomyocyte Contractile Dysfunction in the APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. PLoS ONE 2009, 4, e6033. [Google Scholar] [CrossRef]
- Esfandiarei, M.; Hoxha, B.; Talley, N.A.; Anderson, M.R.; Alkhouli, M.F.; Squire, M.A.; Eckman, D.M.; Babu, J.R.; Lopaschuk, G.D.; Broderick, T.L. Beneficial Effects of Resveratrol and Exercise Training on Cardiac and Aortic Function and Structure in the 3xTg Mouse Model of Alzheimer’s Disease. Drug Des. Dev. Ther. 2019, 13, 1197–1211. [Google Scholar] [CrossRef]
- Slack, K.; Billing, R.; Matthews, S.; Allbutt, H.N.; Einstein, R.; Henderson, J.M. Subtle Cardiovascular Dysfunction in the Unilateral 6-Hydroxydopamine-Lesioned Rat. Park. Dis. 2010, 2010, 427810. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.C.; Cuenca-Bermejo, L.; Fernandez-Villalba, E.; Martin-Balbuena, S.; da Silva Fernandes, M.J.; Scorza, C.A.; Herrero, M.-T. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson’s Disease. Neuroscientist 2022, 28, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Du, X.; Xu, H.; Xie, J.; Jiang, H. Lesion of Medullary Catecholaminergic Neurons Is Associated with Cardiovascular Dysfunction in Rotenone-Induced Parkinson’s Disease Rats. Eur. J. Neurosci. 2015, 42, 2346–2355. [Google Scholar] [CrossRef]
- de Jager, L.; Vidigal, C.B.; de Campos, B.H.; Reginato, G.S.; Fernandes, L.M.; Ariza, D.; Higashi-Mckeown, C.M.; Bertozzi, M.M.; Rasquel de Oliveira, F.S.; Verri, W.A.; et al. Role of the iNOS Isoform in the Cardiovascular Dysfunctions of Male Rats with 6-OHDA-Induced Parkinsonism. Nitric Oxide 2023, 134–135, 49–60. [Google Scholar] [CrossRef]
- Turossi Amorim, E.D.; de Jager, L.; Martins, A.B.; Rodrigues, A.T.; Cruz Lucchetti, B.F.; Ariza, D.; Pinge-Filho, P.; Crestani, C.C.; Uchoa, E.T.; Martins-Pinge, M.C. Glutamate and GABA Neurotransmission Are Increased in Paraventricular Nucleus of Hypothalamus in Rats Induced to 6-OHDA Parkinsonism: Involvement of nNOS. Acta Physiol. 2019, 226, e13264. [Google Scholar] [CrossRef] [PubMed]
- Ariza, D.; Lopes, F.N.C.; Crestani, C.C.; Martins-Pinge, M.C. Chemoreflex and Baroreflex Alterations in Parkinsonism Induced by 6-OHDA in Unanesthetized Rats. Neurosci. Lett. 2015, 607, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Cabral, L.M.; Moreira, T.S.; Takakura, A.C.; Falquetto, B. Attenuated Baroreflex in a Parkinson’s Disease Animal Model Coincides with Impaired Activation of Non-C1 Neurons. Auton. Neurosci. 2020, 225, 102655. [Google Scholar] [CrossRef]
- de Campos, B.H.; de Jager, L.; Reginato, G.S.; Pereira, R.S.; Crestani, C.C.; Pinge-Filho, P.; Martins-Pinge, M.C. Cardiovascular Evaluation of Female Rats with 6-OHDA-Induced Parkinsonism: Possible Protection by Ovarian Hormones and Participation of Nitric Oxide. Life Sci. 2020, 259, 118259. [Google Scholar] [CrossRef]
- de la Rosa, T.; Calvo, V.S.; Gonçalves, V.C.; Scerni, D.A.; Scorza, F.A. 6-Hydroxydopamine and Ovariectomy Has No Effect on Heart Rate Variability Parameters of Females. Clinics 2021, 76, e3175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, Q.; Wang, Y.; Cheng, Y.; Geng, Y.; Tian, T.; Yuan, Y.; Fan, Y.; Lu, M.; Zhang, K. Phosphorylated α-Synuclein Deposited in Schwann Cells Interacting with TLR2 Mediates Cell Damage and Induces Parkinson’s Disease Autonomic Dysfunction. Cell Death Discov. 2024, 10, 52. [Google Scholar] [CrossRef]
- Yang, N.; Tan, T.; Wei, J.; Gao, X.; Wang, M.; Li, R.; Wang, C.; Lei, M.; Hu, H.; Wang, M.; et al. Combining Blood Pressure Variability and Heart Rate Variability to Analyze the Autonomic Nervous Function of Rotenone Induced Parkinson’s Rat Model. J. Neurosci. Methods 2024, 409, 110217. [Google Scholar] [CrossRef]
- Turgut, M. Asymmetry of Sympathetic Activity in a Rat Model of Parkinson’s Disease Induced by 6-Hydroxydopamine: Haemodynamic, Electrocardiographic and Biochemical Changes. Res. Exp. Med. 1998, 197, 281–292. [Google Scholar] [CrossRef]
- Griffioen, K.J.; Wan, R.; Brown, T.R.; Okun, E.; Camandola, S.; Mughal, M.R.; Phillips, T.M.; Mattson, M.P. Aberrant Heart Rate and Brainstem Brain-Derived Neurotrophic Factor (BDNF) Signaling in a Mouse Model of Huntington’s Disease. Neurobiol. Aging 2012, 33, 1481.e1–e5. [Google Scholar] [CrossRef]
- Fleming, S.M.; Jordan, M.C.; Mulligan, C.K.; Masliah, E.; Holden, J.G.; Millard, R.W.; Chesselet, M.-F.; Roos, K.P. Impaired Baroreflex Function in Mice Overexpressing Alpha-Synuclein. Front. Neurol. 2013, 4, 103. [Google Scholar] [CrossRef]
- Hallett, P.J.; McLean, J.R.; Kartunen, A.; Langston, J.W.; Isacson, O. α-Synuclein Overexpressing Transgenic Mice Show Internal Organ Pathology and Autonomic Deficits. Neurobiol. Dis. 2012, 47, 258–267. [Google Scholar] [CrossRef]
- Kuo, Y.-M.; Li, Z.; Jiao, Y.; Gaborit, N.; Pani, A.K.; Orrison, B.M.; Bruneau, B.G.; Giasson, B.I.; Smeyne, R.J.; Gershon, M.D.; et al. Extensive Enteric Nervous System Abnormalities in Mice Transgenic for Artificial Chromosomes Containing Parkinson Disease-Associated α-Synuclein Gene Mutations Precede Central Nervous System Changes. Hum. Mol. Genet. 2010, 19, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Takatsu, H.; Wada, H.; Maekawa, N.; Takemura, M.; Saito, K.; Fujiwara, H. Significant Reduction of 125 I-Meta-Iodobenzylguanidine Accumulation Directly Caused by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydroxypyridine, a Toxic Agent for Inducing Experimental Parkinson’s Disease. Nucl. Med. Commun. 2002, 23, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Fukumitsu, N.; Suzuki, M.; Fukuda, T.; Kiyono, Y.; Kajiyama, S.; Saji, H. Reduced 125I-Meta-Iodobenzylguanidine Uptake and Norepinephrine Transporter Density in the Hearts of Mice with MPTP-Induced Parkinsonism. Nucl. Med. Biol. 2006, 33, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Amino, T.; Uchihara, T.; Tsunekawa, H.; Takahata, K.; Shimazu, S.; Mizusawa, H.; Orimo, S. Myocardial Nerve Fibers Are Preserved in MPTP-Treated Mice, despite Cardiac Sympathetic Dysfunction. Neurosci. Res. 2008, 60, 314–318. [Google Scholar] [CrossRef]
- Silva da Fonsêca, V.; Goncalves, V.d.C.; Augusto Izidoro, M.; Guimarães de Almeida, A.-C.; Luiz Affonso Fonseca, F.; Alexandre Scorza, F.; Finsterer, J.; Scorza, C.A. Parkinson’s Disease and the Heart: Studying Cardiac Metabolism in the 6-Hydroxydopamine Model. Int. J. Mol. Sci. 2023, 24, 12202. [Google Scholar] [CrossRef]
- Mita, Y.; Kataoka, Y.; Saito, Y.; Kashi, T.; Hayashi, K.; Iwasaki, A.; Imanishi, T.; Miyasaka, T.; Noguchi, N. Distribution of Oxidized DJ-1 in Parkinson’s Disease-Related Sites in the Brain and in the Peripheral Tissues: Effects of Aging and a Neurotoxin. Sci. Rep. 2018, 8, 12056. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Lee, H.J.; Kim, N.; Li, Y.; Rah, J.-C.; Oh, W.-J. Impaired Neuronal Activity as a Potential Factor Contributing to the Underdeveloped Cerebrovasculature in a Young Parkinson’s Disease Mouse Model. Sci. Rep. 2023, 13, 22613. [Google Scholar] [CrossRef]
- Carvey, P.M.; Zhao, C.H.; Hendey, B.; Lum, H.; Trachtenberg, J.; Desai, B.S.; Snyder, J.; Zhu, Y.G.; Ling, Z.D. 6-Hydroxydopamine-Induced Alterations in Blood-Brain Barrier Permeability. Eur. J. Neurosci. 2005, 22, 1158–1168. [Google Scholar] [CrossRef]
- Westin, J.E.; Lindgren, H.S.; Gardi, J.; Nyengaard, J.R.; Brundin, P.; Mohapel, P.; Cenci, M.A. Endothelial Proliferation and Increased Blood–Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydroxyphenyl-l-Alanine-Induced Dyskinesia. J. Neurosci. 2006, 26, 9448–9461. [Google Scholar] [CrossRef]
- Elabi, O.; Gaceb, A.; Carlsson, R.; Padel, T.; Soylu-Kucharz, R.; Cortijo, I.; Li, W.; Li, J.-Y.; Paul, G. Human α-Synuclein Overexpression in a Mouse Model of Parkinson’s Disease Leads to Vascular Pathology, Blood Brain Barrier Leakage and Pericyte Activation. Sci. Rep. 2021, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- San Miguel, M.; Martin, K.L.; Stone, J.; Johnstone, D.M. Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019, 9, 564. [Google Scholar] [CrossRef]
- Drouin, E.; Nataf, S.; Lande, G.; Louboutin, J.P. Abnormalities of Cardiac Repolarization in Multiple Sclerosis: Relationship with a Model of Allergic Encephalomyelitis in Rat. Muscle Nerve 1998, 21, 940–942. [Google Scholar] [CrossRef]
- Vejar, S.; Pizarro, I.S.; Pulgar-Sepúlveda, R.; Vicencio, S.C.; Polit, A.; Amador, C.A.; Del Rio, R.; Varas, R.; Orellana, J.A.; Ortiz, F.C. A Preclinical Mice Model of Multiple Sclerosis Based on the Toxin-Induced Double-Site Demyelination of Callosal and Cerebellar Fibers. Biol. Res. 2024, 57, 48. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, E.; Villa, C. A Novel Role of Cardiac Inwardly Rectifying Potassium Channels Explaining Autonomic Cardiovascular Dysfunctions in a Cuprizone-Induced Mouse Model of Multiple Sclerosis. Auton. Neurosci. 2020, 225, 102647. [Google Scholar] [CrossRef]
- Wu, R.; Su, Y.; Yuan, Q.; Li, L.; Wuri, J.; Liu, X.; Yan, T. Sex Effect on Cardiac Damage in Mice with Experimental Autoimmune Encephalomyelitis. ASN Neuro 2021, 13, 1759091421991771. [Google Scholar] [CrossRef]
- Akyuz, E.; Doğanyiğit, Z.; Okan, A.; Yılmaz, S.; Uçar, S.; Akin, A.T. Immunoreactivity of Kir3.1, Muscarinic Receptors 2 and 3 on the Brainstem, Vagus Nerve and Heart Tissue under Experimental Demyelination. Brain Res. Bull. 2023, 197, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Fouad, G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc. Toxicol. 2023, 23, 46–60. [Google Scholar] [CrossRef]
- Platten, M.; Youssef, S.; Hur, E.M.; Ho, P.P.; Han, M.H.; Lanz, T.V.; Phillips, L.K.; Goldstein, M.J.; Bhat, R.; Raine, C.S.; et al. Blocking Angiotensin-Converting Enzyme Induces Potent Regulatory T Cells and Modulates TH1- and TH17-Mediated Autoimmunity. Proc. Natl. Acad. Sci. USA 2009, 106, 14948–14953. [Google Scholar] [CrossRef]
- Stegbauer, J.; Lee, D.-H.; Seubert, S.; Ellrichmann, G.; Manzel, A.; Kvakan, H.; Muller, D.N.; Gaupp, S.; Rump, L.C.; Gold, R.; et al. Role of the Renin-Angiotensin System in Autoimmune Inflammation of the Central Nervous System. Proc. Natl. Acad. Sci. USA 2009, 106, 14942–14947. [Google Scholar] [CrossRef]
- Manzel, A.; Domenig, O.; Ambrosius, B.; Kovacs, A.; Stegbauer, J.; Poglitsch, M.; Mueller, D.N.; Gold, R.; Linker, R.A. Angiotensin IV Is Induced in Experimental Autoimmune Encephalomyelitis but Fails to Influence the Disease. J. Neuroimmune Pharmacol. 2014, 9, 533–543. [Google Scholar] [CrossRef]
- Bennett, J.; Basivireddy, J.; Kollar, A.; Biron, K.E.; Reickmann, P.; Jefferies, W.A.; McQuaid, S. Blood-Brain Barrier Disruption and Enhanced Vascular Permeability in the Multiple Sclerosis Model EAE. J. Neuroimmunol. 2010, 229, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Kandinov, B.; Drory, V.E.; Tordjman, K.; Korczyn, A.D. Blood Pressure Measurements in a Transgenic SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. 2012, 13, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Kandinov, B.; Korczyn, A.D.; Rabinowitz, R.; Nefussy, B.; Drory, V.E. Autonomic Impairment in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Auton. Neurosci. 2011, 159, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Kandinov, B.; Grigoriadis, N.C.; Touloumi, O.; Drory, V.E.; Offen, D.; Korczyn, A.D. Immunohistochemical Analysis of Sympathetic Involvement in the SOD1-G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 424–433. [Google Scholar] [CrossRef]
- Pan, Y.; Kagawa, Y.; Sun, J.; Turner, B.J.; Huang, C.; Shah, A.D.; Schittenhelm, R.B.; Nicolazzo, J.A. Altered Blood–Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics 2022, 14, 2803. [Google Scholar] [CrossRef]
- Milane, A.; Fernandez, C.; Dupuis, L.; Buyse, M.; Loeffler, J.-P.; Farinotti, R.; Meininger, V.; Bensimon, G. P-Glycoprotein Expression and Function Are Increased in an Animal Model of Amyotrophic Lateral Sclerosis. Neurosci. Lett. 2010, 472, 166–170. [Google Scholar] [CrossRef]
- Qosa, H.; Lichter, J.; Sarlo, M.; Markandaiah, S.S.; McAvoy, K.; Richard, J.-P.; Jablonski, M.R.; Maragakis, N.J.; Pasinelli, P.; Trotti, D. Astrocytes Drive Upregulation of the Multidrug Resistance Transporter ABCB1 (P-Glycoprotein) in Endothelial Cells of the Blood-Brain Barrier in Mutant Superoxide Dismutase 1-Linked Amyotrophic Lateral Sclerosis. Glia 2016, 64, 1298–1313. [Google Scholar] [CrossRef]
- Tang, J.; Kang, Y.; Zhou, Y.; Li, X.; Lan, J.; Wu, L.; Feng, X.; Peng, Y. ALS-Causing SOD1 Mutants Regulate Occludin Phosphorylation/Ubiquitination and Endocytic Trafficking via the ITCH/Eps15/Rab5 Axis. Neurobiol. Dis. 2021, 153, 105315. [Google Scholar] [CrossRef]
- Jablonski, M.R.; Jacob, D.A.; Campos, C.; Miller, D.S.; Maragakis, N.J.; Pasinelli, P.; Trotti, D. Selective Increase of Two ABC Drug Efflux Transporters at the Blood-Spinal Cord Barrier Suggests Induced Pharmacoresistance in ALS. Neurobiol. Dis. 2012, 47, 194–200. [Google Scholar] [CrossRef]
- Boswell, C.A.; Mundo, E.E.; Johnstone, B.; Ulufatu, S.; Schweiger, M.G.; Bumbaca, D.; Fielder, P.J.; Prabhu, S.; Khawli, L.A. Vascular Physiology and Protein Disposition in a Preclinical Model of Neurodegeneration. Mol. Pharm. 2013, 10, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Garbuzova-Davis, S.; Haller, E.; Saporta, S.; Kolomey, I.; Nicosia, S.V.; Sanberg, P.R. Ultrastructure of Blood–Brain Barrier and Blood–Spinal Cord Barrier in SOD1 Mice Modeling ALS. Brain Res. 2007, 1157, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Jaramillo, L.; Cano-Cano, F.; González-Montelongo, M.D.C.; Campos-Caro, A.; Aguilar-Diosdado, M.; Arroba, A.I. A New Perspective on Huntington’s Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int. J. Mol. Sci. 2022, 23, 6089. [Google Scholar] [CrossRef]
- Coffey, S.R.; Bragg, R.M.; Minnig, S.; Ament, S.A.; Cantle, J.P.; Glickenhaus, A.; Shelnut, D.; Carrillo, J.M.; Shuttleworth, D.D.; Rodier, J.-A.; et al. Peripheral Huntingtin Silencing Does Not Ameliorate Central Signs of Disease in the B6.HttQ111/+ Mouse Model of Huntington’s Disease. PLoS ONE 2017, 12, e0175968. [Google Scholar] [CrossRef] [PubMed]
- Cutler, T.S.; Park, S.; Loh, D.H.; Jordan, M.C.; Yokota, T.; Roos, K.P.; Ghiani, C.A.; Colwell, C.S. Neurocardiovascular Deficits in the Q175 Mouse Model of Huntington’s Disease. Physiol. Rep. 2017, 5, e13289. [Google Scholar] [CrossRef] [PubMed]
- Kiriazis, H.; Jennings, N.L.; Davern, P.; Lambert, G.; Su, Y.; Pang, T.; Du, X.; La Greca, L.; Head, G.A.; Hannan, A.J.; et al. Neurocardiac Dysregulation and Neurogenic Arrhythmias in a Transgenic Mouse Model of Huntington’s Disease. J. Physiol. 2012, 590, 5845–5860. [Google Scholar] [CrossRef]
- Schroeder, A.M.; Loh, D.H.; Jordan, M.C.; Roos, K.P.; Colwell, C.S. Baroreceptor Reflex Dysfunction in the BACHD Mouse Model of Huntington’s Disease. PLoS Curr. 2011, 3, RRN1266. [Google Scholar] [CrossRef]
- Mielcarek, M.; Inuabasi, L.; Bondulich, M.K.; Muller, T.; Osborne, G.F.; Franklin, S.A.; Smith, D.L.; Neueder, A.; Rosinski, J.; Rattray, I.; et al. Dysfunction of the CNS-Heart Axis in Mouse Models of Huntington’s Disease. PLoS Genet. 2014, 10, e1004550. [Google Scholar] [CrossRef]
- Smarr, B.; Cutler, T.; Loh, D.H.; Kudo, T.; Kuljis, D.; Kriegsfeld, L.; Ghiani, C.A.; Colwell, C.S. Circadian Dysfunction in the Q175 Model of Huntington’s Disease: Network Analysis. J. Neurosci. Res. 2019, 97, 1606–1623. [Google Scholar] [CrossRef]
- Lin, C.-L.; Wang, S.-E.; Hsu, C.-H.; Sheu, S.-J.; Wu, C.-H. Oral Treatment with Herbal Formula B307 Alleviates Cardiac Failure in Aging R6/2 Mice with Huntington’s Disease via Suppressing Oxidative Stress, Inflammation, and Apoptosis. Clin. Interv. Aging 2015, 10, 1173–1187. [Google Scholar] [CrossRef]
- Mihm, M.J.; Amann, D.M.; Schanbacher, B.L.; Altschuld, R.A.; Bauer, J.A.; Hoyt, K.R. Cardiac Dysfunction in the R6/2 Mouse Model of Huntington’s Disease. Neurobiol. Dis. 2007, 25, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Luk, S.H.C.; Bains, R.S.; Whittaker, D.S.; Chiem, E.; Jordan, M.C.; Roos, K.P.; Ghiani, C.A.; Colwell, C.S. Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington’s Disease. Front. Cardiovasc. Med. 2021, 8, 810810. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.M.; Wang, H.B.; Park, S.; Jordan, M.C.; Gao, F.; Coppola, G.; Fishbein, M.C.; Roos, K.P.; Ghiani, C.A.; Colwell, C.S. Cardiac Dysfunction in the BACHD Mouse Model of Huntington’s Disease. PLoS ONE 2016, 11, e0147269. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Braczko, A.; Mierzejewska, P.; Podlacha, M.; Krol, O.; Jablonska, P.; Jedrzejewska, A.; Pierzynowska, K.; Wegrzyn, G.; Slominska, E.M.; et al. Rosiglitazone Ameliorates Cardiac and Skeletal Muscle Dysfunction by Correction of Energetics in Huntington’s Disease. Cells 2022, 11, 2662. [Google Scholar] [CrossRef]
- Wood, N.I.; Sawiak, S.J.; Buonincontri, G.; Niu, Y.; Kane, A.D.; Carpenter, T.A.; Giussani, D.A.; Morton, A.J. Direct Evidence of Progressive Cardiac Dysfunction in a Transgenic Mouse Model of Huntington’s Disease. J. Huntingt. Dis. 2012, 1, 57–64. [Google Scholar] [CrossRef]
- Buonincontri, G.; Wood, N.I.; Puttick, S.G.; Ward, A.O.; Carpenter, T.A.; Sawiak, S.J.; Morton, A.J. Right Ventricular Dysfunction in the R6/2 Transgenic Mouse Model of Huntington’s Disease Is Unmasked by Dobutamine. J. Huntingt. Dis. 2014, 3, 25–32. [Google Scholar] [CrossRef]
- Zhu, Y.; Shamblin, I.; Rodriguez, E.; Salzer, G.E.; Araysi, L.; Margolies, K.A.; Halade, G.V.; Litovsky, S.H.; Pogwizd, S.; Gray, M.; et al. Progressive Cardiac Arrhythmias and ECG Abnormalities in the Huntington’s Disease BACHD Mouse Model. Hum. Mol. Genet. 2020, 29, 369–381. [Google Scholar] [CrossRef]
- Rieux, M.; Alpaugh, M.; Sciacca, G.; Saint-Pierre, M.; Masnata, M.; Denis, H.L.; Lévesque, S.A.; Herrmann, F.; Bazenet, C.; Garneau, A.P.; et al. Shedding a New Light on Huntington’s Disease: How Blood Can Both Propagate and Ameliorate Disease Pathology. Mol. Psychiatry 2021, 26, 5441–5463. [Google Scholar] [CrossRef]
- Di Pardo, A.; Amico, E.; Scalabrì, F.; Pepe, G.; Castaldo, S.; Elifani, F.; Capocci, L.; De Sanctis, C.; Comerci, L.; Pompeo, F.; et al. Impairment of Blood-Brain Barrier Is an Early Event in R6/2 Mouse Model of Huntington Disease. Sci. Rep. 2017, 7, 41316. [Google Scholar] [CrossRef]
- Di Pardo, A.; Castaldo, S.; Capocci, L.; Amico, E.; Vittorio, M. Assessment of Blood-Brain Barrier Permeability by Intravenous Infusion of FITC-Labeled Albumin in a Mouse Model of Neurodegenerative Disease. J. Vis. Exp. 2017, 129, 56389. [Google Scholar] [CrossRef]
- Pattison, J.S.; Sanbe, A.; Maloyan, A.; Osinska, H.; Klevitsky, R.; Robbins, J. Cardiomyocyte Expression of a Polyglutamine Preamyloid Oligomer Causes Heart Failure. Circulation 2008, 117, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Kojer, K.; Hering, T.; Bazenet, C.; Weiss, A.; Herrmann, F.; Taanman, J.-W.; Orth, M. Huntingtin Aggregates and Mitochondrial Pathology in Skeletal Muscle but Not Heart of Late-Stage R6/2 Mice. J. Huntingt. Dis. 2019, 8, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Her, L.-S.; Lin, J.-Y.; Fu, M.-H.; Chang, Y.-F.; Li, C.-L.; Tang, T.-Y.; Jhang, Y.-L.; Chang, C.-Y.; Shih, M.-C.; Cheng, P.-H.; et al. The Differential Profiling of Ubiquitin-Proteasome and Autophagy Systems in Different Tissues before the Onset of Huntington’s Disease Models. Brain Pathol. 2015, 25, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-T.; Chiang, M.-C.; Tasi, C.-Y.; Kuo, C.-H.; Shyu, W.-C.; Kao, C.-L.; Huang, C.-Y.; Lee, S.-D. Cardiac Fas-Dependent and Mitochondria-Dependent Apoptotic Pathways in a Transgenic Mouse Model of Huntington’s Disease. Cardiovasc. Toxicol. 2016, 16, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Joviano-Santos, J.V.; Santos-Miranda, A.; Botelho, A.F.M.; de Jesus, I.C.G.; Andrade, J.N.; de Oliveira Barreto, T.; Magalhães-Gomes, M.P.S.; Valadão, P.A.C.; Cruz, J.D.S.; Melo, M.M.; et al. Increased Oxidative Stress and CaMKII Activity Contribute to Electro-Mechanical Defects in Cardiomyocytes from a Murine Model of Huntington’s Disease. FEBS J. 2019, 286, 110–123. [Google Scholar] [CrossRef]
- Dridi, H.; Liu, X.; Yuan, Q.; Reiken, S.; Yehia, M.; Sittenfeld, L.; Apostolou, P.; Buron, J.; Sicard, P.; Matecki, S.; et al. Role of Defective Calcium Regulation in Cardiorespiratory Dysfunction in Huntington’s Disease. JCI Insight 2020, 5, e140614. [Google Scholar] [CrossRef]
- Chen, H.C.; Cao, J.-X.; Zhang, Y.-S.; Ma, Y.-Z.; Zhang, L.; Su, X.-M.; Gao, L.-P.; Jing, Y.-H. High Salt Diet Exacerbates Cognitive Deficits and Neurovascular Abnormalities in APP/PS1 Mice and Induces AD-like Changes in Wild-Type Mice. J. Nutr. Biochem. 2024, 125, 109570. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Wsol, A.; Cudnoch-Jedrzejewska, A.; Czarzasta, K.; Żera, T. Multiple Aspects of Inappropriate Action of Renin–Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J. Clin. Med. 2022, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Labandeira-Garcia, J.L.; Labandeira, C.M.; Guerra, M.J.; Rodriguez-Perez, A.I. The Role of the Brain Renin-Angiotensin System in Parkinson’s Disease. Transl. Neurodegener. 2024, 13, 22. [Google Scholar] [CrossRef]
- Patel, V.; Edison, P. Cardiometabolic Risk Factors and Neurodegeneration: A Review of the Mechanisms Underlying Diabetes, Obesity and Hypertension in Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2024, 95, 581–589. [Google Scholar] [CrossRef]
- Drenjančević-Perić, I.; Jelaković, B.; Lombard, J.H.; Kunert, M.P.; Kibel, A.; Gros, M. High-Salt Diet and Hypertension: Focus on the Renin-Angiotensin System. Kidney Blood Press. Res. 2010, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, F.; Yagami, K.; Paigen, B. Mouse Models of Blood Pressure Regulation and Hypertension. Curr. Hypertens. Rep. 2001, 3, 41–48. [Google Scholar] [CrossRef]
- Bosch, L.; de Haan, J.J.; Bastemeijer, M.; van der Burg, J.; van der Worp, E.; Wesseling, M.; Viola, M.; Odille, C.; el Azzouzi, H.; Pasterkamp, G.; et al. The Transverse Aortic Constriction Heart Failure Animal Model: A Systematic Review and Meta-Analysis. Heart Fail. Rev. 2021, 26, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, M.; Mulder, E.; Brans, M.A.D.; Kapteijn, D.M.C.; Bulthuis, M.; Pasterkamp, G.; Verhaar, M.C.; Danser, A.H.J.; van Goor, H.; Joles, J.A.; et al. Mildly Increased Renin Expression in the Absence of Kidney Injury in the Murine Transverse Aortic Constriction Model. Front. Pharmacol. 2021, 12, 614656. [Google Scholar] [CrossRef] [PubMed]
- Krebs, C.; Hamming, I.; Sadaghiani, S.; Steinmetz, O.M.; Meyer-Schwesinger, C.; Fehr, S.; Stahl, R.A.K.; Garrelds, I.M.; Danser, A.H.J.; van Goor, H.; et al. Antihypertensive Therapy Upregulates Renin and (pro)Renin Receptor in the Clipped Kidney of Goldblatt Hypertensive Rats. Kidney Int. 2007, 72, 725–730. [Google Scholar] [CrossRef]
- Wiesel, P.; Mazzolai, L.; Nussberger, J.; Pedrazzini, T. Two-Kidney, One Clip and One-Kidney, One Clip Hypertension in Mice. Hypertension 1997, 29, 1025–1030. [Google Scholar] [CrossRef]
- Amenta, F.; Di Tullio, M.A.; Tomassoni, D. Arterial Hypertension and Brain Damage—Evidence from Animal Models (Review). Clin. Exp. Hypertens. 2003, 25, 359–380. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Y.; Mo, J.; Su, Z.; Huang, R. Two-Kidney, Two Clip Renovascular Hypertensive Rats Can Be Used as Stroke-Prone Rats. Stroke 1998, 29, 1708–1713; discussion 1713–1714. [Google Scholar] [CrossRef]
- Lu, H.; Howatt, D.A.; Balakrishnan, A.; Moorleghen, J.J.; Rateri, D.L.; Cassis, L.A.; Daugherty, A. Subcutaneous Angiotensin II Infusion Using Osmotic Pumps Induces Aortic Aneurysms in Mice. J. Vis. Exp. 2015, 53191. [Google Scholar] [CrossRef]
- Amenta, F.; Tomassoni, D. Spontaneously Hypertensive Rat (SHR): An Animal Model of Vascular Brain Disorder. In Animal Models of Dementia; De Deyn, P.P., Van Dam, D., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 577–611. ISBN 978-1-60761-898-0. [Google Scholar]
- Reckelhoff, J.F.; Zhang, H.; Srivastava, K. Gender Differences in Development of Hypertension in Spontaneously Hypertensive Rats. Hypertension 2000, 35, 480–483. [Google Scholar] [CrossRef]
- Ely, D.L.; Daneshvar, H.; Turner, M.E.; Johnson, M.L.; Salisbury, R.L. The Hypertensive Y Chromosome Elevates Blood Pressure in F11 Normotensive Rats. Hypertension 1993, 21, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Kobori, H.; Ozawa, Y.; Suzaki, Y.; Nishiyama, A. Enhanced Intrarenal Angiotensinogen Contributes to Early Renal Injury in Spontaneously Hypertensive Rats. J. Am. Soc. Nephrol. 2005, 16, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, D.; Helgers, R.; Hermes, D.; Steinbusch, H.P.J.; Van Essen, H.; Leenders, P.; Prickaerts, J.; Staals, J.; Biessen, E.A.; Van Oostenbrugge, R.J.; et al. Amlodipine Limits Microglia Activation and Cognitive Dysfunction in Aged Hypertensive Mice. J. Hypertens. 2023, 41, 1159–1167. [Google Scholar] [CrossRef]
- Jackson, K.L.; Head, G.A.; Gueguen, C.; Stevenson, E.R.; Lim, K.; Marques, F.Z. Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Front. Physiol. 2019, 10, 1311. [Google Scholar] [CrossRef]
- Bailey, A.P.; Tan, W.; Shparago, M.; Gu, J.-W. Long-Term High Salt Diet Causes Hypertension and Impairs Renal VEGF Signaling System in Sprague-Dawley Rats. FASEB J. 2006, 20, A307. [Google Scholar] [CrossRef]
- Yu, Q.; Larson, D.F.; Slayback, D.; Lundeen, T.F.; Baxter, J.H.; Watson, R.R. Characterization of High-Salt and High-Fat Diets on Cardiac and Vascular Function in Mice. Cardiovasc. Toxicol. 2004, 4, 37–46. [Google Scholar] [CrossRef]
- Carnevale, L.; Perrotta, M.; Mastroiacovo, F.; Perrotta, S.; Migliaccio, A.; Fardella, V.; Pacella, J.; Fardella, S.; Pallante, F.; Carnevale, R.; et al. Advanced Magnetic Resonance Imaging to Define the Microvascular Injury Driven by Neuroinflammation in the Brain of a Mouse Model of Hypertension. Hypertension 2024, 81, 636–647. [Google Scholar] [CrossRef] [PubMed]
- de Montgolfier, O.; Pinçon, A.; Pouliot, P.; Gillis, M.-A.; Bishop, J.; Sled, J.G.; Villeneuve, L.; Ferland, G.; Lévy, B.I.; Lesage, F.; et al. High Systolic Blood Pressure Induces Cerebral Microvascular Endothelial Dysfunction, Neurovascular Unit Damage, and Cognitive Decline in Mice. Hypertension 2019, 73, 217–228. [Google Scholar] [CrossRef]
- Carnevale, D.; Mascio, G.; D’Andrea, I.; Fardella, V.; Bell, R.D.; Branchi, I.; Pallante, F.; Zlokovic, B.; Yan, S.S.; Lembo, G. Hypertension Induces Brain β-Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature. Hypertension 2012, 60, 188–197. [Google Scholar] [CrossRef]
- Ménard, B.; Chazalviel, L.; Roussel, S.; Bernaudin, M.; Touzani, O. Two-Kidney One-Clip Is a Pertinent Approach to Integrate Arterial Hypertension in Animal Models of Stroke: Serial Magnetic Resonance Imaging Studies of Brain Lesions before and during Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2018, 38, 1769–1780. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, C.; Yi, M.; Yang, J.; Liao, M.; Zhou, K.; Hu, L.; Ouyang, F.; Lan, L.; Fan, Y. Cerebral Perfusion Characteristics and Dynamic Brain Structural Changes in Stroke-Prone Renovascular Hypertensive Rats: A Preclinical Model for Cerebral Small Vessel Disease. Transl. Stroke Res. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Lin, C.-L.; Lee, C.-W.; Lin, H.-C.; Wu, Y.-T.; Shih, Y.-H. Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int. J. Mol. Sci. 2022, 23, 5531. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gaur, N.; Jayant, S.; Sharma, B.M.; Singh, B.; Kharkwal, H.; Sharma, B. Salubrious Effects of Ulinastatin and Quercetin Alone or in Combination in Endothelial Dysfunction and Vascular Dementia. Pharmacol. Rep. 2022, 74, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, M.T.; Fink, G.D.; Osborn, J.W. Comparison of Arterial Pressure and Plasma ANG II Responses to Three Methods of Subcutaneous ANG II Administration. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H670–H679. [Google Scholar] [CrossRef]
- Meissner, A.; Minnerup, J.; Soria, G.; Planas, A.M. Structural and Functional Brain Alterations in a Murine Model of Angiotensin II-Induced Hypertension. J. Neurochem. 2017, 140, 509–521. [Google Scholar] [CrossRef]
- Vital, S.A.; Terao, S.; Nagai, M.; Granger, D.N. Mechanisms Underlying the Cerebral Microvascular Responses to Angiotensin II-Induced Hypertension. Microcirculation 2010, 17, 641–649. [Google Scholar] [CrossRef]
- Zhang, M.; Mao, Y.; Ramirez, S.H.; Tuma, R.F.; Chabrashvili, T. Angiotensin II Induced Cerebral Microvascular Inflammation and Increased Blood-Brain Barrier Permeability via Oxidative Stress. Neuroscience 2010, 171, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; You, M.-J.; Yang, B.; Jang, K.B.; Yoo, J.; Choi, H.J.; Lee, S.-H.; Bang, M.; Kwon, M.-S. Chronically Infused Angiotensin II Induces Depressive-like Behavior via Microglia Activation. Sci. Rep. 2020, 10, 22082. [Google Scholar] [CrossRef]
- Levit, A.; Cheng, S.; Hough, O.; Liu, Q.; Agca, Y.; Agca, C.; Hachinski, V.; Whitehead, S.N. Hypertension and Pathogenic hAPP Independently Induce White Matter Astrocytosis and Cognitive Impairment in the Rat. Front. Aging Neurosci. 2020, 12, 82. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yang, T.; Oliveira, A.C.; Lobaton, G.O.; Aquino, V.; Kim, S.; Richards, E.M.; Pepine, C.J.; Sumners, C.; Raizada, M.K. Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension. Circ. Res. 2019, 124, 727–736. [Google Scholar] [CrossRef]
- Duchemin, S.; Belanger, E.; Wu, R.; Ferland, G.; Girouard, H. Chronic Perfusion of Angiotensin II Causes Cognitive Dysfunctions and Anxiety in Mice. Physiol. Behav. 2013, 109, 63–68. [Google Scholar] [CrossRef]
- Ritter, S.; Dinh, T.T. Progressive Postnatal Dilation of Brain Ventricles in Spontaneously Hypertensive Rats. Brain Res. 1986, 370, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, M.; Tomassoni, D.; Amenta, F. Hypertensive Brain Damage: Comparative Evaluation of Protective Effect of Treatment with Dihydropyridine Derivatives in Spontaneously Hypertensive Rats. Mech. Ageing Dev. 2001, 122, 2085–2105. [Google Scholar] [CrossRef]
- Naessens, D.M.P.; de Vos, J.; VanBavel, E.; Bakker, E.N.T.P. Blood-Brain and Blood-Cerebrospinal Fluid Barrier Permeability in Spontaneously Hypertensive Rats. Fluids Barriers CNS 2018, 15, 26. [Google Scholar] [CrossRef]
- Zubcevic, J.; Watkins, J.; Perez, P.D.; Colon-Perez, L.M.; Long, M.T.; Febo, M.; Hayward, L. MEMRI Reveals Altered Activity in Brain Regions Associated with Anxiety, Locomotion, and Cardiovascular Reactivity on the Elevated plus Maze in the WKY vs SHR Rats. Brain Imaging Behav. 2018, 12, 1318–1331. [Google Scholar] [CrossRef]
- Zheng, X.; Berg Sen, J.; Li, Z.; Sabouri, M.; Samarah, L.; Deacon, C.S.; Bernardo, J.; Machin, D.R. High-Salt Diet Augments Systolic Blood Pressure and Induces Arterial Dysfunction in Outbred, Genetically Diverse Mice. Am. J. Physiol.-Heart Circ. Physiol. 2023, 324, H473–H483. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Yu, J.; Zhu, H.; Kindy, M.S. High-sodium diet has opposing effects on mean arterial blood pressure and cerebral perfusion in a transgenic mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. 2016, 54, 1061–1072. [Google Scholar] [CrossRef]
- Meissner, A.; Garcia-Serrano, A.M.; Vanherle, L.; Rafiee, Z.; Don-Doncow, N.; Skoug, C.; Larsson, S.; Gottschalk, M.; Magnusson, M.; Duarte, J.M.N. Alterations to Cerebral Perfusion, Metabolite Profiles, and Neuronal Morphology in the Hippocampus and Cortex of Male and Female Mice during Chronic Exposure to a High-Salt Diet. Int. J. Mol. Sci. 2023, 24, 300. [Google Scholar] [CrossRef]
- Allen, L.A.; Schmidt, J.R.; Thompson, C.T.; Carlson, B.E.; Beard, D.A.; Lombard, J.H. High Salt Diet Impairs Cerebral Blood Flow Regulation via Salt-Induced Angiotensin II Suppression. Microcirculation 2019, 26, e12518. [Google Scholar] [CrossRef]
- Ge, Q.; Wang, Z.; Wu, Y.; Huo, Q.; Qian, Z.; Tian, Z.; Ren, W.; Zhang, X.; Han, J. High Salt Diet Impairs Memory-Related Synaptic Plasticity via Increased Oxidative Stress and Suppressed Synaptic Protein Expression. Mol. Nutr. Food Res. 2017, 61, 1700134. [Google Scholar] [CrossRef]
- Chugh, G.; Asghar, M.; Patki, G.; Bohat, R.; Jafri, F.; Allam, F.; Dao, A.T.; Mowrey, C.; Alkadhi, K.; Salim, S. A High-Salt Diet Further Impairs Age-Associated Declines in Cognitive, Behavioral, and Cardiovascular Functions in Male Fischer Brown Norway Rats. J. Nutr. 2013, 143, 1406–1413. [Google Scholar] [CrossRef]
- Han, T.S.; Lean, M.E.J. Metabolic Syndrome. Medicine 2015, 43, 80–87. [Google Scholar] [CrossRef]
- Buettner, R.; Schölmerich, J.; Bollheimer, L.C. High-Fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Peckham, S.C.; Entenman, C.; Carroll, H.W. The Influence of a Hypercaloric Diet on Gross Body and Adipose Tissue Composition in the Rat. J. Nutr. 1962, 77, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Youngren, J.F.; Paik, J.; Barnard, R.J. Impaired Insulin-Receptor Autophosphorylation Is an Early Defect in Fat-Fed, Insulin-Resistant Rats. J. Appl. Physiol. 2001, 91, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Heather, L.C.; Hafstad, A.D.; Halade, G.V.; Harmancey, R.; Mellor, K.M.; Mishra, P.K.; Mulvihill, E.E.; Nabben, M.; Nakamura, M.; Rider, O.J.; et al. Guidelines on Models of Diabetic Heart Disease. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H176–H200. [Google Scholar] [CrossRef]
- Qin, F.; Siwik, D.A.; Luptak, I.; Hou, X.; Wang, L.; Higuchi, A.; Weisbrod, R.M.; Ouchi, N.; Tu, V.H.; Calamaras, T.D.; et al. The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation 2012, 125, 1757–1764. [Google Scholar] [CrossRef]
- Luo, Y.; Burrington, C.M.; Graff, E.C.; Zhang, J.; Judd, R.L.; Suksaranjit, P.; Kaewpoowat, Q.; Davenport, S.K.; O’Neill, A.M.; Greene, M.W. Metabolic Phenotype and Adipose and Liver Features in a High-Fat Western Diet-Induced Mouse Model of Obesity-Linked NAFLD. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E418–E439. [Google Scholar] [CrossRef]
- Paigen, B.; Morrow, A.; Holmes, P.A.; Mitchell, D.; Williams, R.A. Quantitative Assessment of Atherosclerotic Lesions in Mice. Atherosclerosis 1987, 68, 231–240. [Google Scholar] [CrossRef]
- Gulledge, A.A.; McShea, C.; Schwartz, T.; Koch, G.; Lord, S.T. Effects of Hyperfibrinogenemia on Vasculature of C57BL/6 Mice with and without Atherogenic Diet. Arter. Thromb. Vasc. Biol. 2003, 23, 130–135. [Google Scholar] [CrossRef]
- Dornbush, S.; Aeddula, N.R. Physiology, Leptin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Chiba, T.; Shinozaki, S.; Nakazawa, T.; Kawakami, A.; Ai, M.; Kaneko, E.; Kitagawa, M.; Kondo, K.; Chait, A.; Shimokado, K. Leptin Deficiency Suppresses Progression of Atherosclerosis in apoE-Deficient Mice. Atherosclerosis 2008, 196, 68–75. [Google Scholar] [CrossRef]
- Wang, B.; Charukeshi Chandrasekera, P.; Pippin, J.J. Leptin- and Leptin Receptor-Deficient Rodent Models: Relevance for Human Type 2 Diabetes. Curr. Diabetes Rev. 2014, 10, 131–145. [Google Scholar] [CrossRef] [PubMed]
- 000632—B6 Ob Strain Details. Available online: https://www.jax.org/strain/000632# (accessed on 17 August 2024).
- Osborn, O.; Sanchez-Alavez, M.; Brownell, S.E.; Ross, B.; Klaus, J.; Dubins, J.; Beutler, B.; Conti, B.; Bartfai, T. Metabolic Characterization of a Mouse Deficient in All Known Leptin Receptor Isoforms. Cell. Mol. Neurobiol. 2010, 30, 23–33. [Google Scholar] [CrossRef]
- Nishina, P.M.; Naggert, J.K.; Verstuyft, J.; Paigen, B. Atherosclerosis in Genetically Obese Mice: The Mutants Obese, Diabetes, Fat, Tubby, and Lethal Yellow. Metabolism 1994, 43, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Brown, M.S.; Goldstein, J.L.; Gerard, R.D.; Hammer, R.E.; Herz, J. Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and Its Reversal by Adenovirus-Mediated Gene Delivery. J. Clin. Investig. 1993, 92, 883–893. [Google Scholar] [CrossRef]
- Ishibashi, S.; Goldstein, J.L.; Brown, M.S.; Herz, J.; Burns, D.K. Massive Xanthomatosis and Atherosclerosis in Cholesterol-Fed Low Density Lipoprotein Receptor-Negative Mice. Available online: https://www.jci.org/articles/view/117179/pdf (accessed on 17 August 2024).
- Nakashima, Y.; Plump, A.S.; Raines, E.W.; Breslow, J.L.; Ross, R. ApoE-Deficient Mice Develop Lesions of All Phases of Atherosclerosis throughout the Arterial Tree. Arter. Thromb. 1994, 14, 133–140. [Google Scholar] [CrossRef]
- Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; et al. High-Carbohydrate, High-Fat Diet–Induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. J. Cardiovasc. Pharmacol. 2011, 57, 611. [Google Scholar] [CrossRef]
- Boudina, S.; Sena, S.; O’Neill, B.T.; Tathireddy, P.; Young, M.E.; Abel, E.D. Reduced Mitochondrial Oxidative Capacity and Increased Mitochondrial Uncoupling Impair Myocardial Energetics in Obesity. Circulation 2005, 112, 2686–2695. [Google Scholar] [CrossRef] [PubMed]
- Ouwens, D.M.; Diamant, M.; Fodor, M.; Habets, D.D.J.; Pelsers, M.M.A.L.; El Hasnaoui, M.; Dang, Z.C.; van den Brom, C.E.; Vlasblom, R.; Rietdijk, A.; et al. Cardiac Contractile Dysfunction in Insulin-Resistant Rats Fed a High-Fat Diet Is Associated with Elevated CD36-Mediated Fatty Acid Uptake and Esterification. Diabetologia 2007, 50, 1938–1948. [Google Scholar] [CrossRef]
- Ouyang, S.; Hsuchou, H.; Kastin, A.J.; Wang, Y.; Yu, C.; Pan, W. Diet-Induced Obesity Suppresses Expression of Many Proteins at the Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 2014, 34, 43–51. [Google Scholar] [CrossRef]
- Takechi, R.; Pallebage-Gamarallage, M.M.; Lam, V.; Giles, C.; Mamo, J.C. Aging-Related Changes in Blood-Brain Barrier Integrity and the Effect of Dietary Fat. Neurodegener. Dis. 2012, 12, 125–135. [Google Scholar] [CrossRef]
- Zuloaga, K.L.; Johnson, L.A.; Roese, N.E.; Marzulla, T.; Zhang, W.; Nie, X.; Alkayed, F.N.; Hong, C.; Grafe, M.R.; Pike, M.M.; et al. High Fat Diet-Induced Diabetes in Mice Exacerbates Cognitive Deficit Due to Chronic Hypoperfusion. J. Cereb. Blood Flow Metab. 2016, 36, 1257–1270. [Google Scholar] [CrossRef]
- Arnold, S.E.; Lucki, I.; Brookshire, B.R.; Carlson, G.C.; Browne, C.A.; Kazi, H.; Bang, S.; Choi, B.-R.; Chen, Y.; McMullen, M.F.; et al. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice. Neurobiol. Dis. 2014, 67, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Oliart Ros, R.M.; Torres-Márquez, M.E.; Badillo, A.; Angulo Guerrero, O. Dietary Fatty Acids Effects on Sucrose-Induced Cardiovascular Syndrome in Rats. J. Nutr. Biochem. 2001, 12, 207–212. [Google Scholar] [CrossRef]
- Pacholko, A.G.; Bekar, L.K. Acute Inflammatory Events Attenuate High-Sucrose Diet-Induced Neurodegenerative Processes in Reproductively Normal Female Wild-Type Mice. bioRxiv 2019, 863670. [Google Scholar] [CrossRef]
- Luptak, I.; Qin, F.; Sverdlov, A.L.; Pimentel, D.R.; Panagia, M.; Croteau, D.; Siwik, D.A.; Bachschmid, M.M.; He, H.; Balschi, J.A.; et al. Energetic Dysfunction Is Mediated by Mitochondrial Reactive Oxygen Species and Precedes Structural Remodeling in Metabolic Heart Disease. Antioxid. Redox Signal. 2019, 31, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Takechi, R.; Lam, V.; Brook, E.; Giles, C.; Fimognari, N.; Mooranian, A.; Al-Salami, H.; Coulson, S.H.; Nesbit, M.; Mamo, J.C.L. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front. Aging Neurosci. 2017, 9, 399. [Google Scholar] [CrossRef]
- Buchanan, J.; Mazumder, P.K.; Hu, P.; Chakrabarti, G.; Roberts, M.W.; Yun, U.J.; Cooksey, R.C.; Litwin, S.E.; Abel, E.D. Reduced Cardiac Efficiency and Altered Substrate Metabolism Precedes the Onset of Hyperglycemia and Contractile Dysfunction in Two Mouse Models of Insulin Resistance and Obesity. Endocrinology 2005, 146, 5341–5349. [Google Scholar] [CrossRef]
- Fernandes, C.; Forny-Germano, L.; Andrade, M.M.; Lyra E Silva, N.M.; Ramos-Lobo, A.M.; Meireles, F.; Tovar-Moll, F.; Houzel, J.C.; Donato, J., Jr.; De Felice, F.G. Leptin Receptor Reactivation Restores Brain Function in Early-Life Lepr-Deficient Mice. Brain 2024, 147, 2706–2717. [Google Scholar] [CrossRef]
- Andrade, M.M.; Fernandes, C.; Forny-Germano, L.; Gonçalves, R.A.; Gomes, M.; Castro-Fonseca, E.; Ramos-Lobo, A.M.; Tovar-Moll, F.; Andrade-Moraes, C.H.; Donato, J., Jr.; et al. Alteration in the Number of Neuronal and Non-Neuronal Cells in Mouse Models of Obesity. Brain Commun. 2023, 5, fcad059. [Google Scholar] [CrossRef]
- Schiekofer, S.; Galasso, G.; Sato, K.; Kraus, B.J.; Walsh, K. Impaired Revascularization in a Mouse Model of Type 2 Diabetes Is Associated with Dysregulation of a Complex Angiogenic-Regulatory Network. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1603–1609. [Google Scholar] [CrossRef]
- da Costa Goncalves, A.C.; Tank, J.; Diedrich, A.; Hilzendeger, A.; Plehm, R.; Bader, M.; Luft, F.C.; Jordan, J.; Gross, V. Diabetic Hypertensive Leptin Receptor–Deficient Db/Db Mice Develop Cardioregulatory Autonomic Dysfunction. Hypertension 2009, 53, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, M.A.; Alshehri, A.O.; Alqahtani, F.; Khan, M.R.; Bakhrebah, M.A.; Alasmari, F.; Alshammari, T.K.; Alsharari, S.D. Increased Permeability of the Blood–Brain Barrier in a Diabetic Mouse Model (Leprdb/Db Mice). Int. J. Mol. Sci. 2024, 25, 7768. [Google Scholar] [CrossRef]
- Platt, T.L.; Beckett, T.L.; Kohler, K.; Niedowicz, D.M.; Murphy, M.P. Obesity, Diabetes, and Leptin Resistance Promote Tau Pathology in a Mouse Model of Disease. Neuroscience 2016, 315, 162–174. [Google Scholar] [CrossRef]
- Li, X.-L.; Aou, S.; Oomura, Y.; Hori, N.; Fukunaga, K.; Hori, T. Impairment of Long-Term Potentiation and Spatial Memory in Leptin Receptor-Deficient Rodents. Neuroscience 2002, 113, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.N.; Elased, K.M.; Garrett, T.L.; Lucot, J.B. Neurobehavioral Deficits in Db/Db Diabetic Mice. Physiol. Behav. 2010, 101, 381–388. [Google Scholar] [CrossRef]
- Thirumangalakudi, L.; Prakasam, A.; Zhang, R.; Bimonte-Nelson, H.; Sambamurti, K.; Kindy, M.S.; Bhat, N.R. High Cholesterol-Induced Neuroinflammation and Amyloid Precursor Protein Processing Correlate with Loss of Working Memory in Mice. J. Neurochem. 2008, 106, 475–485. [Google Scholar] [CrossRef]
- Micale, V.; Scapagnini, G.; Colombrita, C.; Mazzola, C.; Alkon, D.L.; Drago, F. Behavioral Effects of Dietary Cholesterol in Rats Tested in Experimental Models of Mild Stress and Cognition Tasks. Eur. Neuropsychopharmacol. 2008, 18, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Powell-Braxton, L.; Ogaoawara, A.K.; Dybdal, N.; Bunting, S.; Ohneda, O.; Jin, H. Hypertension and Endothelial Dysfunction in Apolipoprotein E Knockout Mice. Arter. Thromb. Vasc. Biol. 1999, 19, 2762–2768. [Google Scholar] [CrossRef]
- Fullerton, S.M.; Shirman, G.A.; Strittmatter, W.J.; Matthew, W.D. Impairment of the Blood–Nerve and Blood–Brain Barriers in Apolipoprotein E Knockout Mice. Exp. Neurol. 2001, 169, 13–22. [Google Scholar] [CrossRef]
- Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; et al. Apolipoprotein E Controls Cerebrovascular Integrity via Cyclophilin A. Nature 2012, 485, 512–516. [Google Scholar] [CrossRef]
- Gordon, I.; Grauer, E.; Genis, I.; Sehayek, E.; Michaelson, D.M. Memory Deficits and Cholinergic Impairments in Apolipoprotein E-Deficient Mice. Neurosci. Lett. 1995, 199, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Basford, J.E.; Koch, S.; Anjak, A.; Singh, V.P.; Krause, E.G.; Robbins, N.; Weintraub, N.L.; Hui, D.Y.; Rubinstein, J. Smooth Muscle LDL Receptor-Related Protein-1 Deletion Induces Aortic Insufficiency and Promotes Vascular Cardiomyopathy in Mice. PLoS ONE 2013, 8, e82026. [Google Scholar] [CrossRef] [PubMed]
- Calara, F.; Silvestre, M.; Casanada, F.; Yuan, N.; Napoli, C.; Palinski, W. Spontaneous Plaque Rupture and Secondary Thrombosis in Apolipoprotein E-Deficient and LDL Receptor-Deficient Mice. J. Pathol. 2001, 195, 257–263. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.; Moreira, E.L.G.; dos Santos, D.B.; Piermartiri, T.C.; Dutra, R.C.; Pinton, S.; Tasca, C.I.; Farina, M.; Prediger, R.D.S.; de Bem, A.F. Increased Susceptibility to Amyloid-β-Induced Neurotoxicity in Mice Lacking the Low-Density Lipoprotein Receptor. J. Alzheimer’s Dis. 2014, 41, 43–60. [Google Scholar] [CrossRef]
- Mulder, M.; Koopmans, G.; Wassink, G.; Al Mansouri, G.; Simard, M.-L.; Havekes, L.M.; Prickaerts, J.; Blokland, A. LDL Receptor Deficiency Results in Decreased Cell Proliferation and Presynaptic Bouton Density in the Murine Hippocampus. Neurosci. Res. 2007, 59, 251–256. [Google Scholar] [CrossRef]
- de Oliveira, J.; Engel, D.F.; de Paula, G.C.; Melo, H.M.; Lopes, S.C.; Ribeiro, C.T.; Delanogare, E.; Moreira, J.C.F.; Gelain, D.P.; Prediger, R.D.; et al. LDL Receptor Deficiency Does Not Alter Brain Amyloid-β Levels but Causes an Exacerbation of Apoptosis. J. Alzheimer’s Dis. 2020, 73, 585–596. [Google Scholar] [CrossRef]
- Mulder, M.; Jansen, P.J.; Janssen, B.J.A.; van de Berg, W.D.J.; van der Boom, H.; Havekes, L.M.; de Kloet, R.E.; Ramaekers, F.C.S.; Blokland, A. Low-Density Lipoprotein Receptor-Knockout Mice Display Impaired Spatial Memory Associated with a Decreased Synaptic Density in the Hippocampus. Neurobiol. Dis. 2004, 16, 212–219. [Google Scholar] [CrossRef]
- de Oliveira, J.; Hort, M.A.; Moreira, E.L.G.; Glaser, V.; Ribeiro-do-Valle, R.M.; Prediger, R.D.; Farina, M.; Latini, A.; de Bem, A.F. Positive Correlation between Elevated Plasma Cholesterol Levels and Cognitive Impairments in LDL Receptor Knockout Mice: Relevance of Cortico-Cerebral Mitochondrial Dysfunction and Oxidative Stress. Neuroscience 2011, 197, 99–106. [Google Scholar] [CrossRef]
- Lindsey, M.L.; Brunt, K.R.; Kirk, J.A.; Kleinbongard, P.; Calvert, J.W.; de Castro Brás, L.E.; DeLeon-Pennell, K.Y.; Del Re, D.P.; Frangogiannis, N.G.; Frantz, S.; et al. Guidelines for in Vivo Mouse Models of Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H1056–H1073. [Google Scholar] [CrossRef]
- Gao, E.; Lei, Y.H.; Shang, X.; Huang, Z.M.; Zuo, L.; Boucher, M.; Fan, Q.; Chuprun, J.K.; Ma, X.L.; Koch, W.J. A Novel and Efficient Model of Coronary Artery Ligation and Myocardial Infarction in the Mouse. Circ. Res. 2010, 107, 1445–1453. [Google Scholar] [CrossRef]
- De Villiers, C.; Riley, P.R. Mouse Models of Myocardial Infarction: Comparing Permanent Ligation and Ischaemia-Reperfusion. Dis. Models Mech. 2020, 13, dmm046565. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, Q.; Zheng, C.; Yang, J.; Fan, J.; Shentu, Y. Myocardial Infarction-Induced Anxiety-like Behavior Is Associated with Epigenetic Alterations in the Hippocampus of Rat. Brain Res. Bull. 2020, 164, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Wann, B.P.; Bah, T.M.; Kaloustian, S.; Boucher, M.; Dufort, A.M.; Le Marec, N.; Godbout, R.; Rousseau, G. Behavioural Signs of Depression and Apoptosis in the Limbic System Following Myocardial Infarction: Effects of Sertraline. J. Psychopharmacol. 2009, 23, 451–459. [Google Scholar] [CrossRef]
- Vanherle, L.; Lidington, D.; Uhl, F.E.; Steiner, S.; Vassallo, S.; Skoug, C.; Duarte, J.M.N.; Ramu, S.; Uller, L.; Desjardins, J.-F.; et al. Restoring Myocardial Infarction-Induced Long-Term Memory Impairment by Targeting the Cystic Fibrosis Transmembrane Regulator. eBioMedicine 2022, 86, 104384. [Google Scholar] [CrossRef]
- Meissner, A.; Visanji, N.P.; Momen, M.A.; Feng, R.; Francis, B.M.; Bolz, S.-S.; Hazrati, L.-N. Tumor Necrosis Factor-α Underlies Loss of Cortical Dendritic Spine Density in a Mouse Model of Congestive Heart Failure. J. Am. Heart Assoc. 2015, 4, e001920. [Google Scholar] [CrossRef]
- Kaplan, A.; Yabluchanskiy, A.; Ghali, R.; Altara, R.; Booz, G.W.; Zouein, F.A. Cerebral Blood Flow Alteration Following Acute Myocardial Infarction in Mice. Biosci. Rep. 2018, 38, BSR20180382. [Google Scholar] [CrossRef]
- Althammer, F.; Roy, R.K.; Kirchner, M.K.; McGrath, S.; Lira, E.C.; Stern, J.E. Angiotensin-II Drives Changes in Microglia-Vascular Interactions in Rats with Heart Failure. bioRxiv 2023. [Google Scholar] [CrossRef]
- Schüttler, D.; Bapat, A.; Kääb, S.; Lee, K.; Tomsits, P.; Clauss, S.; Hucker, W.J. Animal Models of Atrial Fibrillation. Circ. Res. 2020, 127, 91–110. [Google Scholar] [CrossRef]
- Liu, X.; Qu, C.; Yang, H.; Shi, S.; Zhang, C.; Zhang, Y.; Liang, J.; Yang, B. Chronic Stimulation of the Sigma-1 Receptor Ameliorates Autonomic Nerve Dysfunction and Atrial Fibrillation Susceptibility in a Rat Model of Depression. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1521–H1531. [Google Scholar] [CrossRef]
- Nagayama, T.; Hirooka, Y.; Kishi, T.; Mukai, Y.; Inoue, S.; Takase, S.; Takemoto, M.; Chishaki, A.; Sunagawa, K. Blockade of Brain Angiotensin II Type 1 Receptor Inhibits the Development of Atrial Fibrillation in Hypertensive Rats. Am. J. Hypertens. 2015, 28, 444–451. [Google Scholar] [CrossRef]
- Brieler, J.; Breeden, M.A.; Tucker, J. Cardiomyopathy: An Overview. Am. Fam. Physician 2017, 96, 640–646. [Google Scholar]
- Dajani, A.-H.J.; Liu, M.B.; Olaopa, M.A.; Cao, L.; Valenzuela-Ripoll, C.; Davis, T.J.; Poston, M.D.; Smith, E.H.; Contreras, J.; Pennino, M.; et al. Heterogeneous Cardiac Sympathetic Innervation Gradients Promote Arrhythmogenesis in Murine Dilated Cardiomyopathy. JCI Insight 2023, 8, e157956. [Google Scholar] [CrossRef]
- Dossat, A.M.; Sanchez-Gonzalez, M.A.; Koutnik, A.P.; Leitner, S.; Ruiz, E.L.; Griffin, B.; Rosenberg, J.T.; Grant, S.C.; Fincham, F.D.; Pinto, J.R.; et al. Pathogenesis of Depression- and Anxiety-like Behavior in an Animal Model of Hypertrophic Cardiomyopathy. FASEB J. 2017, 31, 2492–2506. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, P. Myocardial Infarction Predisposes Neurodegenerative Diseases. J. Alzheimer’s Dis. 2020, 74, 579–587. [Google Scholar] [CrossRef]
- Xu, J.; Bu, L.; Huang, L.; Yang, Y.; Yu, M.; Liu, J.; Wang, P.; Huang, D.; Bai, X.; Ma, Y.; et al. Heart Failure Having Little Effect on the Progression of Parkinson’s Disease: Direct Evidence from Mouse Model. Int. J. Cardiol. 2014, 177, 683–689. [Google Scholar] [CrossRef]
- Wiesmann, M.; Roelofs, M.; van der Lugt, R.; Heerschap, A.; Kiliaan, A.J.; Claassen, J.A. Angiotensin II, Hypertension and Angiotensin II Receptor Antagonism: Roles in the Behavioural and Brain Pathology of a Mouse Model of Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2017, 37, 2396–2413. [Google Scholar] [CrossRef]
- Takane, K.; Hasegawa, Y.; Lin, B.; Koibuchi, N.; Cao, C.; Yokoo, T.; Kim-Mitsuyama, S. Detrimental Effects of Centrally Administered Angiotensin II Are Enhanced in a Mouse Model of Alzheimer Disease Independently of Blood Pressure. J. Am. Heart Assoc. 2017, 6, e004897. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Wu, S.-Y.; Yu, M.; Huang, S.-H.; Lee, C.-W.; Jiang, M.-J.; Lin, P.-Y.; Yang, T.-T.; Kuo, Y.-M. Hypertension Accelerates Alzheimer’s Disease-Related Pathologies in Pigs and 3xTg Mice. Front. Aging Neurosci. 2018, 10, 73. [Google Scholar] [CrossRef]
- Heras-Garvin, A.; Refolo, V.; Reindl, M.; Wenning, G.K.; Stefanova, N. High-Salt Diet Does Not Boost Neuroinflammation and Neurodegeneration in a Model of α-Synucleinopathy. J. Neuroinflammation 2020, 17, 35. [Google Scholar] [CrossRef]
- Wang, M.; Lv, J.; Huang, X.; Wisniewski, T.; Zhang, W. High-Fat Diet-Induced Atherosclerosis Promotes Neurodegeneration in the Triple Transgenic (3 × Tg) Mouse Model of Alzheimer’s Disease Associated with Chronic Platelet Activation. Alzheimer’s Res. Ther. 2021, 13, 144. [Google Scholar] [CrossRef]
- Sah, S.K.; Lee, C.; Jang, J.-H.; Park, G.H. Effect of High-Fat Diet on Cognitive Impairment in Triple-Transgenic Mice Model of Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 2017, 493, 731–736. [Google Scholar] [CrossRef]
- Lin, B.; Hasegawa, Y.; Takane, K.; Koibuchi, N.; Cao, C.; Kim-Mitsuyama, S. High-Fat-Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer’s Disease, Independently of Metabolic Disorders. J. Am. Heart Assoc. 2016, 5, e003154. [Google Scholar] [CrossRef]
- Morris, J.K.; Bomhoff, G.L.; Stanford, J.A.; Geiger, P.C. Neurodegeneration in an Animal Model of Parkinson’s Disease Is Exacerbated by a High-Fat Diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1082–R1090. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, X.; Zhang, H.; Yin, J.; Zhao, P.; Yin, Q.; Wang, Z. Ketogenic Diet Protects MPTP-Induced Mouse Model of Parkinson’s Disease via Altering Gut Microbiota and Metabolites. MedComm 2023, 4, e268. [Google Scholar] [CrossRef]
- Whittaker, D.S.; Tamai, T.K.; Bains, R.S.; Villanueva, S.A.M.; Luk, S.H.C.; Dell’Angelica, D.; Block, G.D.; Ghiani, C.A.; Colwell, C.S. Dietary Ketosis Improves Circadian Dysfunction as Well as Motor Symptoms in the BACHD Mouse Model of Huntington’s Disease. Front. Nutr. 2022, 9, 1034743. [Google Scholar] [CrossRef]
- Dupuis, L.; Oudart, H.; René, F.; de Aguilar, J.-L.G.; Loeffler, J.-P. Evidence for Defective Energy Homeostasis in Amyotrophic Lateral Sclerosis: Benefit of a High-Energy Diet in a Transgenic Mouse Model. Proc. Natl. Acad. Sci. USA 2004, 101, 11159–11164. [Google Scholar] [CrossRef]
- Davanzo, G.G.; Castro, G.; Monteiro, L.d.B.; Castelucci, B.G.; Jaccomo, V.H.; da Silva, F.C.; Marques, A.M.; Francelin, C.; de Campos, B.B.; de Aguiar, C.F.; et al. Obesity Increases Blood-Brain Barrier Permeability and Aggravates the Mouse Model of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 72, 104605. [Google Scholar] [CrossRef]
- Fomina, A.M. Effect of High Dietary Sugar and Metformin in a Mouse Model of Alzheimer’s Disease. Master’s Thesis, University of Lethbridge, Alberta, CA, Canada, 2020. [Google Scholar]
- Yeh, S.H.-H.; Shie, F.-S.; Liu, H.-K.; Yao, H.-H.; Kao, P.-C.; Lee, Y.-H.; Chen, L.-M.; Hsu, S.-M.; Chao, L.-J.; Wu, K.-W.; et al. A High-Sucrose Diet Aggravates Alzheimer’s Disease Pathology, Attenuates Hypothalamic Leptin Signaling, and Impairs Food-Anticipatory Activity in APPswe/PS1dE9 Mice. Neurobiol. Aging 2020, 90, 60–74. [Google Scholar] [CrossRef]
- Oblak, A.L.; Kotredes, K.P.; Pandey, R.S.; Reagan, A.M.; Ingraham, C.; Perkins, B.; Lloyd, C.; Baker, D.; Lin, P.B.; Soni, D.M.; et al. Plcg2M28L Interacts with High Fat/High Sugar Diet to Accelerate Alzheimer’s Disease-Relevant Phenotypes in Mice. Front. Aging Neurosci. 2022, 14, 886575. [Google Scholar] [CrossRef]
- Lamichhane, G.; Liu, J.; Lee, S.-J.; Lee, D.-Y.; Zhang, G.; Kim, Y. Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer’s Disease-Induced (3xTg-AD) Mice. Nutrients 2024, 16, 240. [Google Scholar] [CrossRef]
- Martino Adami, P.V.; Galeano, P.; Wallinger, M.L.; Quijano, C.; Rabossi, A.; Pagano, E.S.; Olivar, N.; Reyes Toso, C.; Cardinali, D.; Brusco, L.I.; et al. Worsening of Memory Deficit Induced by Energy-Dense Diet in a Rat Model of Early-Alzheimer’s Disease Is Associated to Neurotoxic Aβ Species and Independent of Neuroinflammation. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017, 1863, 731–743. [Google Scholar] [CrossRef]
- Mattson, M.P.; Cutler, R.G.; Camandola, S. Energy Intake and Amyotrophic Lateral Sclerosis. Neuromol. Med. 2007, 9, 17–20. [Google Scholar] [CrossRef]
- Li, L.; Cao, D.; Garber, D.W.; Kim, H.; Fukuchi, K. Association of Aortic Atherosclerosis with Cerebral β-Amyloidosis and Learning Deficits in a Mouse Model of Alzheimer’s Disease. Am. J. Pathol. 2003, 163, 2155–2164. [Google Scholar] [CrossRef]
- Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda, T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.; Morishita, R. Diabetes-Accelerated Memory Dysfunction via Cerebrovascular Inflammation and Aβ Deposition in an Alzheimer Mouse Model with Diabetes. Proc. Natl. Acad. Sci. USA 2010, 107, 7036–7041. [Google Scholar] [CrossRef]
- Lim, M.A.; Bence, K.K.; Sandesara, I.; Andreux, P.; Auwerx, J.; Ishibashi, J.; Seale, P.; Kalb, R.G. Genetically Altering Organismal Metabolism by Leptin-Deficiency Benefits a Mouse Model of Amyotrophic Lateral Sclerosis. Hum. Mol. Genet. 2014, 23, 4995–5008. [Google Scholar] [CrossRef]
- Katsouri, L.; Georgopoulos, S. Lack of LDL Receptor Enhances Amyloid Deposition and Decreases Glial Response in an Alzheimer’s Disease Mouse Model. PLoS ONE 2011, 6, e21880. [Google Scholar] [CrossRef]
- Cao, D.; Fukuchi, K.; Wan, H.; Kim, H.; Li, L. Lack of LDL Receptor Aggravates Learning Deficits and Amyloid Deposits in Alzheimer Transgenic Mice. Neurobiol. Aging 2006, 27, 1632–1643. [Google Scholar] [CrossRef]
- Bales, K.R.; Verina, T.; Cummins, D.J.; Du, Y.; Dodel, R.C.; Saura, J.; Fishman, C.E.; DeLong, C.A.; Piccardo, P.; Petegnief, V.; et al. Apolipoprotein E Is Essential for Amyloid Deposition in the APP(V717F) Transgenic Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 1999, 96, 15233–15238. [Google Scholar] [CrossRef]
- Holtzman, D.M.; Bales, K.R.; Tenkova, T.; Fagan, A.M.; Parsadanian, M.; Sartorius, L.J.; Mackey, B.; Olney, J.; McKeel, D.; Wozniak, D.; et al. Apolipoprotein E Isoform-Dependent Amyloid Deposition and Neuritic Degeneration in a Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2000, 97, 2892–2897. [Google Scholar] [CrossRef]
- Gallardo, G.; Schlüter, O.M.; Südhof, T.C. A Molecular Pathway of Neurodegeneration Linking α-Synuclein to ApoE and Aβ Peptides. Nat. Neurosci. 2008, 11, 301–308. [Google Scholar] [CrossRef]
- Shin, S.; Walz, K.A.; Archambault, A.S.; Sim, J.; Bollman, B.P.; Koenigsknecht-Talboo, J.; Cross, A.H.; Holtzman, D.M.; Wu, G.F. Apolipoprotein E Mediation of Neuro-Inflammation in a Murine Model of Multiple Sclerosis. J. Neuroimmunol. 2014, 271, 8–17. [Google Scholar] [CrossRef] [PubMed]
Disease | Model | Mech. | Features of CVD | Neuropathology | Behaviour |
---|---|---|---|---|---|
HT | TAC | S | Cardiac pressure overload-induced hypertrophy, HF [285] | ↓ CBF/TJP expression, ↑ BBB permeability [300,301] | ↑ Memory impairments [301,302] |
HT | Kidney Clip | S | Renovascular HT [288] | ↑ Ventricle volume, WM abnormalities [303], altered CBF & ↓ TJP expression [304] | ↑ Memory impairments, ↓ Cognitive flexibility [304,305,306] |
HT | Ang II Osmotic Pump | S | Systolic HT [307] | ↑ Ventricle volume/BBB permeability, ↓ TJP expression [308,309,310], ↑ Glial cell activation [311,312,313] | ↑ Memory impairments/Anxiety-like behaviour [312,314] |
HT | SHR | G | Systolic HT [292] | ↑ Ventricle volume, ↓ Grey matter [315], ↑ Astrocyte activation/BBB permeability [316,317] | Hyperactivity [318], ↑ Memory impairments [289] |
HT | BPH/2 | G | Neurogenic HT [297] | ↑ Microglial activation [296] | ↑ Spatial/Working memory impairments [296] |
HT | High-Salt | D | Systolic HT * [319] | Altered CBF [320,321,322], ↑ BBB permeability [279] | Altered CBF [279,323], ↑ BBB permeability [324] |
Disease | Model | Mech. | Features of CVD | Neuropathology | Behaviour |
---|---|---|---|---|---|
MetS | High-Fat | D | Systolic HT, Cardiac hypertrophy, fibrosis & stiffness [343,344,345] | ↓ TJP expression/Neuronal density [346], ↑ Astrocyte activation [347] | ↑ Memory impairments [348,349] |
MetS | High-Sugar | D | Systolic HT * [350], Cardiac fibrosis & Cardiomyopathy [87] | ↑ Amyloid-beta & Phosphorylated tau [351] | ↑ Spatial memory impairments [351] |
MetS | High-Fat/Sugar | D | Cardiac fibrosis [352] | ↑ BBB permeability/Astrocyte activation, ↓ TJP expression [353] | ↑ Memory impairments [353] |
CAD | Leb (ob/ob) | G | ↓ Cardiac efficiency, cardiac hypertrophy [354] | ↓ Total brain volume [355]/Neuronal density [356] | ↑ Memory impairments [355] |
CAD | Leb (db/db) | G | ↓ Cardiac efficiency [354], Impaired angiogenesis [357] & ↑ Mean arterial pressure [358] | ↑ BBB permeability [359]/. Phosphorylated tau [360] | ↑ Memory impairments [361]/Depression-like behaviour, ↓ Anxiety-like behaviour/Pre-pulse inhibition [362] |
AS | Atherogenic | D | ↑ Atherosclerotic lesions [332] | ↑ Glial cell activation [363] | ↑ Memory impairments [363,364] |
CAD | ApoE−/− | G | ↑ Atherosclerotic lesions [342], cardiac hypertrophy [365] | ↑ BBB permeability [366,367] | ↑ Memory impairments [368] |
CAD | Ldlr−/− | G | ↓ Diastolic blood pressure, Cardiomyopathy [369] & ↑ Atherosclerotic lesions [370] | ↑ BBB permeability [371], ↓ HPC cell proliferation & apoptosis [372,373] | ↑ Memory impairments [373,374,375] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cousineau, J.P.; Dawe, A.M.; Alpaugh, M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. Biology 2024, 13, 764. https://doi.org/10.3390/biology13100764
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. Biology. 2024; 13(10):764. https://doi.org/10.3390/biology13100764
Chicago/Turabian StyleCousineau, Jason Patrick, Aimee Maria Dawe, and Melanie Alpaugh. 2024. "Investigating the Interplay between Cardiovascular and Neurodegenerative Disease" Biology 13, no. 10: 764. https://doi.org/10.3390/biology13100764
APA StyleCousineau, J. P., Dawe, A. M., & Alpaugh, M. (2024). Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. Biology, 13(10), 764. https://doi.org/10.3390/biology13100764