The Use of Non-Apoptotic Sperm Selected by Magnetic Activated Cell Sorting (MACS) to Enhance Reproductive Outcomes: What the Evidence Says
Abstract
:Simple Summary
Abstract
1. Infertility Prevalence and Male Contribution
2. Apoptosis: What Is It and How Is It Related with Male Infertility?
3. Selecting the Best Spermatozoa—MACS
4. Basic Studies: Using MACS to Improve Sperm Sample Quality
5. Uses of MACS of Non-Apoptotic Sperm: Clinical Studies
5.1. Case Reports
5.2. Non-Randomized Trials: Superiority versus Standard Processing
5.2.1. Retrospective Studies
5.2.2. Prospective Studies
5.3. Prospective Randomized Controlled Trials
5.4. Meta-Analyses
6. The Use of CLBR as an Improved Measure of Success
7. Other Outcomes: Children’s Health
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrido, N.; Hervás, I. Personalized Medicine in Infertile Men. Urol. Clin. N. Am. 2020, 47, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis of Samples Collected Globally in the 20th and 21st Centuries. Hum. Reprod. Update 2023, 29, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Tiegs, A.W.; Landis, J.; Garrido, N.; Scott, R.T.; Hotaling, J.M. Total Motile Sperm Count Trend Over Time: Evaluation of Semen Analyses From 119,972 Men From Subfertile Couples. Urology 2019, 132, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Ramalingam, M.; Garrido, N.; Barratt, C.L.R. Sperm Selection in Natural Conception: What Can We Learn from Mother Nature to Improve Assisted Reproduction Outcomes? Hum. Reprod. Update 2015, 21, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, M.C.O.; Steilmann, C.; Failing, K.; Bergmann, M.; Kliesch, S.; Weidner, W.; Steger, K. Apoptotic Gene Expression in Potentially Fertile and Subfertile Men. Mol. Hum. Reprod. 2011, 17, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, S.; Paasch, U.; Wuendrich, K.; Glander, H.-J. Sperm caspases become more activated in infertility patients than in healthy donors during cryopreservation. Arch. Androl. 2005, 51, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Paasch, U.; Sharma, R.K.; Gupta, A.K.; Grunewald, S.; Mascha, E.J.; Thomas, A.J.; Glander, H.J.; Agarwal, A. Cryopreservation and Thawing Is Associated with Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa. Proc. Biol. Reprod. 2004, 71, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Seli, E.; Manicardi, G.C.; Nijs, M.; Ombelet, W.; Bizzaro, D. The Presence of Abnormal Spermatozoa in the Ejaculate: Did Apoptosis Fail? Hum. Fertil. 2004, 7, 99–103. [Google Scholar] [CrossRef]
- Said, T.; Agarwal, A.; Grunewald, S.; Rasch, M.; Baumann, T.; Kriegel, C.; Li, L.; Glander, H.J.; Thomas, A.J.; Paasch, U. Selection of Nonapoptotic Spermatozoa as a New Tool for Enhancing Assisted Reproduction Outcomes: An in Vitro Model. Biol. Reprod. 2006, 74, 530–537. [Google Scholar] [CrossRef]
- Oehninger, S.; Morshedi, M.; Weng, S.L.; Taylor, S.; Duran, H.; Beebe, S. Presence and Significance of Somatic Cell Apoptosis Markers in Human Ejaculated Spermatozoa. Reprod. Biomed. Online 2003, 7, 469–476. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, R.Z.; Sharma, R.K.; Said, T.M.; Erenpreiss, J.; Agarwal, A. Association of Sperm Apoptosis and DNA Ploidy with Sperm Chromatin Quality in Human Spermatozoa. Fertil. Steril. 2009, 91, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Paasch, U.; Grunewald, S.; Agarwal, A.; Glandera, H.-J. Activation Pattern of Caspases in Human Spermatozoa. Fertil. Steril. 2004, 81, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Barroso, G.; Morshedi, M. Analysis of DNA Fragmentation, Plasma Membrane Translocation of Phosphatidylserine and Oxidative Stress in Human Spermatozoa. Hum. Reprod. 2000, 15, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.T.; Hosseini, G.; Absalan, F.; Tabar, M.H.; Nikbakht, R. Effects of Vitamin D on Apoptosis and Quality of Sperm Iasthenozoospermia. JBRA Assist. Reprod. 2020, 24, 316–323. [Google Scholar] [CrossRef]
- Sakkas, D.; Seli, E.; Bizzaro, D.; Tarozzi, N.; Manicardi, G.C. Abnormal Spermatozoa in the Ejaculated: Abortive Apoptosis and Faulty Nuclear Remodelling during Spermatogenesis. Reprod. Biomed. Online 2003, 7, 428–432. [Google Scholar] [CrossRef]
- Berteli, T.S.; Da Broi, M.G.; Martins, W.P.; Ferriani, R.A.; Navarro, P.A. Magnetic-Activated Cell Sorting before Density Gradient Centrifugation Improves Recovery of High-Quality Spermatozoa. Andrology 2017, 5, 776–782. [Google Scholar] [CrossRef]
- Chen, Z.; Hauser, R.; Trbovich, A.M.; Shifren, J.L.; Dorer, D.J.; Godfrey-Bailey, L.; Singh, N.P. The Relationship between Human Semen Characteristics and Sperm Apoptosis: A Pilot Study. J. Androl. 2006, 27, 112–120. [Google Scholar] [CrossRef]
- Grunewald, S.; Fitzl, G.; Springsguth, C. Induction of Ultra-Morphological Features of Apoptosis in Mature and Immature Sperm. Asian J. Androl. 2016, 18, 533. [Google Scholar] [CrossRef]
- Weng, S.-L.; Taylor, S.L.; Morshedi, M.; Schuffner, A.; Duran, E.H.; Beebe, S.; Oehninger, S. Caspase Activity and Apoptotic Markers in Ejaculated Human Sperm. Mol. Hum. Reprod. 2002, 8, 984–991. [Google Scholar] [CrossRef]
- Engel, K.M.; Springsguth, C.H.; Grunewald, S. What Happens to the Unsuccessful Spermatozoa? Andrology 2018, 6, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Hichri, R.; Amor, H.; Khammari, M.; Harzallah, M.; El Fekih, S.; Saad, A.; Ajina, M.; Ben Ali, H. Apoptotic Sperm Biomarkers and the Correlation between Conventional Sperm Parameters and Clinical Characteristics. Andrologia 2018, 50, e12813. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-G.; Jurisicova, A.; Casper, R.F. Detection of Deoxyribonucleic Acid Fragmentation in Human Sperm: Correlation with Fertilization In Vitro. Biol. Reprod. 1997, 56, 602–607. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241547789. [Google Scholar]
- Said, T.M.; Land, J.A. Effects of Advanced Selection Methods on Sperm Quality and ART Outcome: A Systematic Review. Hum. Reprod. Update 2011, 17, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Valihrach, L.; Androvic, P.; Kubista, M. Platforms for Single-Cell Collection and Analysis. Int. J. Mol. Sci. 2018, 19, 807. [Google Scholar] [CrossRef] [PubMed]
- Day, R.N.; Schaufele, F. Fluorescent Protein Tools for Studying Protein Dynamics in Living Cells: A Review. J. Biomed. Opt. 2008, 13, 031202. [Google Scholar] [CrossRef] [PubMed]
- Day, R.N.; Davidson, M.W. The Fluorescent Protein Palette: Tools for Cellular Imaging. Chem. Soc. Rev. 2009, 38, 2887–2921. [Google Scholar] [CrossRef]
- Wiedenmann, J.; Oswald, F.; Nienhaus, G.U. Fluorescent Proteins for Live Cell Imaging: Opportunities, Limitations, and Challenges. IUBMB Life 2009, 61, 1029–1042. [Google Scholar] [CrossRef]
- Abraham, P.; Maliekal, T.T. Single Cell Biology beyond the Era of Antibodies: Relevance, Challenges, and Promises in Biomedical Research. Cell. Mol. Life Sci. 2017, 74, 1177–1189. [Google Scholar] [CrossRef]
- Baker, M. Reproducibility Crisis: Blame It on the Antibodies. Nature 2015, 521, 274–276. [Google Scholar] [CrossRef]
- Bradbury, A.; Plückthun, A. Reproducibility: Standardize Antibodies Used in Research. Nature 2015, 518, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Shi, Q.; Wei, W. Single Cell Proteomics in Biomedicine: High-Dimensional Data Acquisition, Visualization, and Analysis. Proteomics 2017, 17, 1600267. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Liu, S. Single-Cell Transcriptome Sequencing: Recent Advances and Remaining Challenges. F1000 Res. 2016, 5. [Google Scholar] [CrossRef]
- Sánchez-Martín, P.; Dorado-Silva, M.; Sánchez-Martín, F.; González Martínez, M.; Johnston, S.D.; Gosálvez, J. Magnetic Cell Sorting of Semen Containing Spermatozoa with High DNA Fragmentation in ICSI Cycles Decreases Miscarriage Rate. Reprod. Biomed. Online 2017, 34, 506–512. [Google Scholar] [CrossRef]
- Sheikhi, A.; Jalali, M.; Gholamian, M.; Jafarzadeh, A.; Jannati, S.; Mousavifar, N. Elimination of Apoptotic Spermatozoa by Magnetic-Activated Cell Sorting Improves the Fertilization Rate of Couples Treated with ICSI Procedure. Andrology 2013, 1, 845–849. [Google Scholar] [CrossRef]
- Bébarová, M. Advances in Patch Clamp Technique: Towards Higher Quality and Quantity. Gen. Physiol. Biophys. 2012, 31, 131–140. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, W.; Xin, H.; Deng, G. Single Cell Isolation and Analysis. Front. Cell Dev. Biol. 2016, 4, 116. [Google Scholar] [CrossRef]
- Rubaiy, H.N. A Short Guide to Electrophysiology and Ion Channels. J. Pharm. Pharm. Sci. 2017, 20, 48–67. [Google Scholar] [CrossRef]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of Apoptosis in Sperm Cryoinjury. Reprod. Biomed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef]
- Simopoulou, M.; Gkoles, L.; Bakas, P.; Giannelou, P.; Kalampokas, T.; Pantos, K.; Koutsilieris, M. Improving ICSI: A Review from the Spermatozoon Perspective. Syst. Biol. Reprod. Med. 2016, 62, 359–371. [Google Scholar] [CrossRef]
- Said, T.M.; Grunewald, S.; Paasch, U.; Rasch, M.; Agarwal, A.; Glander, H.J. Effects of Magnetic-Activated Cell Sorting on Sperm Motility and Cryosurvival Rates. Fertil. Steril. 2005, 83, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, C.F.; Kruger, T.F.; Bouic, P.J.D.; Henkel, R.R. A Novel Approach for the Selection of Human Sperm Using Annexin V-Binding and Flow Cytometry. Fertil. Steril. 2009, 91, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High Gradient Magnetic Cell Separation with MACS. Cytometry 1990, 11, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Said, T.M.; Agarwal, A.; Zborowski, M.; Grunewald, S.; Glander, H.J.; Paasch, U. Utility of Magnetic Cell Separation as a Molecular Sperm Preparation Technique. J. Androl. 2008, 29, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Said, T.M.; Grunewald, S.; Paasch, U.; Glander, H.J.; Baumann, T.; Kriegel, C.; Li, L.; Agarwal, A. Advantage of Combining Magnetic Cell Separation with Sperm Preparation Techniques. Reprod. Biomed. Online 2005, 10, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kattoor, A.J.; Ghulmiyyah, J.; Agarwal, A. Effect of Sperm Storage and Selection Techniques on Sperm Parameters. Syst. Biol. Reprod. Med. 2015, 61, 1–12. [Google Scholar] [CrossRef]
- Said, T.M.; Agarwal, A.; Grunewald, S.; Rasch, M.; Glander, H.J.; Paasch, U. Evaluation of Sperm Recovery Following Annexin V Magnetic-Activated Cell Sorting Separation. Reprod. Biomed. Online 2006, 13, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Gil Juliá, M.; Hervás, I.; Navarro-Gomezlechon, A.; Quintana, F.; Amorós, D.; Pacheco, A.; González-Ravina, C.; Rivera-Egea, R.; Garrido, N. Cumulative Live Birth Rates in Donor Oocyte ICSI Cycles Are Not Improved by Magnetic-Activated Cell Sorting Sperm Selection. Reprod. Biomed. Online 2022, 44, 677–684. [Google Scholar] [CrossRef]
- Dirican, E.K.; Özgün, O.D.; Akarsu, S.; Akin, K.O.; Ercan, Ö.; Uǧurlu, M.; Çamsari, Ç.; Kanyilmaz, O.; Kaya, A.; Ünsal, A. Clinical Outcome of Magnetic Activated Cell Sorting of Non-Apoptotic Spermatozoa before Density Gradient Centrifugation for Assisted Reproduction. J. Assist. Reprod. Genet. 2008, 25, 375–381. [Google Scholar] [CrossRef]
- Bucar, S.; Gonçalves, A.; Rocha, E.; Barros, A.; Sousa, M.; Sá, R. DNA Fragmentation in Human Sperm after Magnetic-Activated Cell Sorting. J. Assist. Reprod. Genet. 2015, 32, 147–154. [Google Scholar] [CrossRef]
- Delbes, G.; Herrero, M.B.; Troeung, E.T.; Chan, P.T.K. The Use of Complimentary Assays to Evaluate the Enrichment of Human Sperm Quality in Asthenoteratozoospermic and Teratozoospermic Samples Processed with Annexin-V Magnetic Activated Cell Sorting. Andrology 2013, 1, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.G.; Sánchez-Martín, P.; Dorado-Silva, M.; Fernández, J.L.; Girones, E.; Johnston, S.D.; Gosálvez, J. Magnetic-Activated Cell Sorting Is Not Completely Effective at Reducing Sperm DNA Fragmentation. J. Assist. Reprod. Genet. 2018, 35, 2215–2221. [Google Scholar] [CrossRef] [PubMed]
- Cakar, Z.; Cetinkaya, B.; Aras, D.; Koca, B.; Ozkavukcu, S.; Kaplanoglu, İ.; Can, A.; Cinar, O. Does Combining Magnetic-Activated Cell Sorting with Density Gradient or Swim-up Improve Sperm Selection? J. Assist. Reprod. Genet. 2016, 33, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Sar-Shalom, V.; Melendez Sivira, Y.; Carreras, R.; Checa, M.A. Sperm Selection Using Magnetic Activated Cell Sorting (MACS) in Assisted Reproduction: A Systematic Review and Meta-Analysis. J. Assist. Reprod. Genet. 2013, 30, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Lepine, S.; McDowell, S.; Searle, L.M.; Kroon, B.; Glujovsky, D.; Yazdani, A. Advanced Sperm Selection Techniques for Assisted Reproduction. Cochrane Database Syst. Rev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Rawe, V.Y.; Boudri, H.U.; Sedó, C.A.; Carro, M.; Papier, S.; Nodar, F. Healthy Baby Born after Reduction of Sperm DNA Fragmentation Using Cell Sorting before ICSI. Reprod. Biomed. Online 2010, 20, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Polak de Fried, E.; Denaday, F. Single and Twin Ongoing Pregnancies in Two Cases of Previous ART Failure after ICSI Performed with Sperm Sorted Using Annexin V Microbeads. Fertil. Steril. 2010, 94, 351.e15–351.e18. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.B.; Delbes, G.; Chung, J.T.; Son, W.Y.; Holzer, H.; Buckett, W.; Chan, P. Case Report: The Use of Annexin v Coupled with Magnetic Activated Cell Sorting in Cryopreserved Spermatozoa from a Male Cancer Survivor: Healthy Twin Newborns after Two Previous ICSI Failures. J. Assist. Reprod. Genet. 2013, 30, 1415–1419. [Google Scholar] [CrossRef]
- Pacheco, A.; Blanco, A.; Bronet, F.; Cruz, M.; García-Fernández, J.; García-Velasco, J.A. Magnetic-Activated Cell Sorting (Macs): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm Dna Fragmentation. J. Clin. Med. 2020, 9, 3976. [Google Scholar] [CrossRef]
- García-Ferreyra, J. High Pregnancy and Implantation Rates Can Be Obtained Using Magnetic-Activated Cell Sorting (MACS) to Selection Spermatozoa in Patients with High Levels of Spermatic DNA Fragmentation. J. Fertil. Vitr. IVF-Worldw. Reprod. Med. Genet. Stem Cell Biol. 2014, 3, 10–4172. [Google Scholar] [CrossRef]
- Stimpfel, M.; Verdenik, I.; Zorn, B.; Virant-Klun, I. Magnetic-Activated Cell Sorting of Non-Apoptotic Spermatozoa Improves the Quality of Embryos According to Female Age: A Prospective Sibling Oocyte Study. J. Assist. Reprod. Genet. 2018, 35, 1665–1674. [Google Scholar] [CrossRef] [PubMed]
- Salehi Novin, M.; Mehdizadeh, A.; Artimani, T.; Bakhtiari, M.; Mehdizadeh, M.; Aflatoonian, R.; Zandieh, Z. MACS-DGC Sperm Preparation Method Resulted in High-Quality Sperm, Top-Quality Embryo, and Higher Blastocyst Rate in Male Factor Infertile Couples with High DNA Fragmented Sperm. Hum. Fertil. 2023. [Google Scholar] [CrossRef] [PubMed]
- Romany, L.; Garrido, N.; Motato, Y.; Aparicio, B.; Remohí, J.; Meseguer, M. Removal of Annexin V-Positive Sperm Cells for Intracytoplasmic Sperm Injection in Ovum Donation Cycles Does Not Improve Reproductive Outcome: A Controlled and Randomized Trial in Unselected Males. Fertil. Steril. 2014, 102, 1567–1575.e1. [Google Scholar] [CrossRef] [PubMed]
- Troya, J.; Zorrilla, I. Annexin V-MACS in Infertile Couples as Method for Separation of Sperm without DNA Fragmentation. J. Bras. Reprod. Assist. 2015, 19, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Ziarati, N.; Tavalaee, M.; Bahadorani, M.; Nasr Esfahani, M.H. Clinical Outcomes of Magnetic Activated Sperm Sorting in Infertile Men Candidate for ICSI. Hum. Fertil. 2019, 22, 118–125. [Google Scholar] [CrossRef]
- Hasanen, E.; Elqusi, K.; Eltanbouly, S.; Hussin, A.E.; Alkhadr, H.; Zaki, H.; Henkel, R.; Agarwal, A. PICSI vs. MACS for Abnormal Sperm DNA Fragmentation ICSI Cases: A Prospective Randomized Trial. J. Assist. Reprod. Genet. 1913, 37, 2605–2613. [Google Scholar] [CrossRef]
- González-Ravina, C.; Santamaría-López, E.; Pacheco, A.; Ramos, J.; Carranza, F.; Murria, L.; Ortiz-Vallecillo, A.; Fernández-Sánchez, M. Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial. Cells 2022, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine and the Practice Committee for the Society for Assisted Reproductive Technology Guidance Regarding Gamete and Embryo Donation. Fertil. Steril. 2021, 115, 1395–1410. [CrossRef]
- van de Wiel, L.; Wilkinson, J.; Athanasiou, P.; Harper, J. The Prevalence, Promotion and Pricing of Three IVF Add-Ons on Fertility Clinic Websites. Reprod. Biomed. Online 2020, 41, 801–806. [Google Scholar] [CrossRef]
- Garrido, N.; Bellver, J.; Remohí, J.; Simón, C.; Pellicer, A. Cumulative Live-Birth Rates per Total Number of Embryos Needed to Reach Newborn in Consecutive in Vitro Fertilization (IVF) Cycles: A New Approach to Measuring the Likelihood of IVF Success. Fertil. Steril. 2011, 96, 40–46. [Google Scholar] [CrossRef]
- Garrido, N.; Bellver, J.; Remohí, J.; Alamá, P.; Pellicer, A. Cumulative Newborn Rates Increase with the Total Number of Transferred Embryos According to an Analysis of 15,792 Ovum Donation Cycles. Fertil. Steril. 2012, 98, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, E.; Simon, C.; Levy, M.; Guanes, P.P.; Remohi, J.; Pellicer, A. Effect of Age on Sperm Fertility Potential: Oocyte Donation as a Model. Fertil. Steril. 1996, 66, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Gil Juliá, M.; Hervás, I.; Navarro-Gómez Lechón, A.; Quintana, F.; Amorós, D.; Pacheco, A.; González-Ravina, C.; Rivera-Egea, R.; Garrido, N. Sperm Selection by Magnetic-Activated Cell Sorting before Microinjection of Autologous Oocytes Increases Cumulative Live Birth Rates with Limited Clinical Impact: A Retrospective Study in Unselected Males. Biology 2021, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Antonouli, S.; Papatheodorou, A.; Panagiotidis, Y.; Petousis, S.; Prapas, N.; Nottola, S.A.; Palmerini, M.G.; Macchiarelli, G.; Prapas, Y. The Impact of Sperm DNA Fragmentation on ICSI Outcome in Cases of Donated Oocytes. Arch. Gynecol. Obstet. 2019, 300, 207–215. [Google Scholar] [CrossRef]
- Romany, L.; Garrido, N.; Cobo, A.; Aparicio-Ruiz, B.; Serra, V.; Meseguer, M. Obstetric and Perinatal Outcome of Babies Born from Sperm Selected by MACS from a Randomized Controlled Trial. J. Assist. Reprod. Genet. 2017, 34, 201–207. [Google Scholar] [CrossRef]
- Gil Juliá, M.; Hervas, I.; Navarro-Gomezlechon, A.; Mossetti, L.; Quintana, F.; Amoros, D.; Pacheco, A.; Gonzalez-Ravina, C.; Rivera-Egea, R.; Garrido, N. Semen Processing Using Magnetic-Activated Cell Sorting before ICSI Is Deemed Safe for Obstetric and Perinatal Outcomes: A Retrospective Multicentre Study. Reprod. Biomed. Online 2023, 47, 103172. [Google Scholar] [CrossRef]
Reference (Year) | Study Design | Male Patients’ Inclusion/Exclusion Criteria | Female Patients’ Inclusion/Exclusion Criteria | Intervention (n) | Controls (n) | Control of Bias | Main Outcomes Measured | Effect’s Size and p Value |
---|---|---|---|---|---|---|---|---|
Rawe 2010 | Case report | Four years of primary infertility due to male factor. Six cycles of intrauterine inseminations. Thirty-eight-year-old man with bilateral varicocele surgically treated. Previous sperm DNA fragmentation test via TUNEL assay = 31% fragmented spermatozoa (above the normal 20% threshold). Cleaved caspase 3 was present in 8% of spermatozoa (normal expected range 4.8 ± 2.9%) | Four years of primary infertility due to male factor. Six cycles of intrauterine inseminations of a 37-year-old woman. | DGC-MACS-ICSI n = 1 | No | Not applicable | Clinical pregnancy | Not applicable |
Polak de Fried 2010 | Case series | Case 1: asthenoteratozoospermia, abnormal DNA fragmentation (TUNEL 30%) Case 2: Couple with >4 years of primary infertility and recent ICSI failure. Semen with teratozoospermia and abnormal active caspase-3 (16%; when normal <11%). | Case 1: Premature ovarian failure patient with previous fertilization failures. Case 2: Couple with >4 years of primary infertility and recent ICSI failure. | DGC-MACS-ICSI n = 2 | No | Not applicable | Progression of the cycle is described (fertilized oocytes, embryo development, transfer and cryopreservation). Ongoing pregnancy Live birth | Not applicable |
Herrero 2013 | Case report | Cryopreserved spermatozoa with high level of sperm DNA fragmentation from a cancer patient survivor. | Couple with two previous IVF/ICSI failures when the sperm cryopreserved prior to the cancer treatment was used. | DGC-MACS-ICSI n = 1 | No | Not applicable | Sperm quality post-MACS Progression of the cycle Live birth | Not applicable |
Dirican 2008 | Prospective Non-randomized | Oligozoospermia, asthenozoospermia, oligoasthenospermia and/or teratozoospermia. | Primary infertility, maximum baseline FSH of 10 mIU/mL, maximum baseline E2 of 75 pg/mL, ovulatory menstrual cycles, age at the time of screening <35 years old, no uterine abnormalities or communicating hydrosalpinx, no history of low or absent ovarian response during FSH/HMG treatment. Fresh day-3 embryo transfer | MACS-DGC-ICSI n = 122 | DGC-ICSI n = 74 | Baseline comparisons | Number of 2PN conceptuses Fertilization rate Number of embryos Cleavage rate (%) Number of blastomeres/embryo Fragmentation rate Biochemical pregnancy/transfer (%) Clinical pregnancy/transfer (%) Implantation rate | ns ns 7.7 vs. 7.5 p < 0.01 97.2 vs. 88.2 p < 0.01 ns ns 61.47 vs. 45.95 p < 0.05 48.36 vs. 36.49 p < 0.052 ns |
Sheikhi 2013 | Prospective Non-randomized | Unexplained infertility with previous normal semen parameters: sperm count ≥ 20 million/mL, sperm motility ≥ 30% and normal sperm morphology ≥ 10%. | Couples with unexplained infertility with no obvious male and female infertility factors. Fresh day-3 embryo transfer. | MACS-DGC-ICSI n = 37 | DGC-ICSI n = 37 | Baseline comparisons Duration of infertility 3.39 vs. 4.59 p = 0.002 (years) | Total number of embryos Fertilization rate (%±SD) Cleavage rate Number of 8-grade1 embryos Embryo quality (%±SD) → ratio of 8-grade1 embryos to oocytes injected. Number of blastomeres Pregnancy rate Live birth rate | ns 73.41 ± 22.78 vs. 61.11 ± 24.85 p = 0.03 ns ns 45.5 ± 24.82 vs. 34.16 ± 22.37 vs. p = 0.049 ns ns ns |
García-Ferreira 2015 | Prospective Non-randomized | High sperm DNA fragmentation (measured by sperm chromatin dispersion (SCD) using Halosperm kit) | Unclear/Not available. Fresh day-5 transfer | High sperm DNA fragmentation. MACS-DGC-ICSI n = 57 107 embryos were transferred | Normal sperm DNA fragmentation. DGC-ICSI n = 77 146 embryos were transferred | Baseline comparisons Statistically significant (p < 0.05) differences between groups in female age and male age. Subanalysis of pregnancy rate, implantation rate and miscarriage rate dividing patients into 3 age groups: <35, 35–39, ≥40. | Total number of fertilized oocytes (2PN) Cleavage rate of embryo at day 3 Number of cells at day 3 Good quality embryos at day 3 Blastocyst development Good quality blastocysts Full blastocyst Expanded blastocyst Hatching blastocyst Total number of embryo transferred/patient Pregnancy rate Implantation rate Single pregnancies Twin pregnancies Miscarriages Biochemical pregnancy rate | ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns |
Sanchez-Martín 2017 | Retrospective | Volume ≥ 1.5 mL, sperm concentration ≥ 5×106/mL, progressive motility > 15% normal sperm morphology of ≥ 1%. SDF ≥ 30% Excluded: clinical cases with severe male factor infertility. | Inclusion: 6–15 metaphase II (MII) oocytes on the day of oocyte retrieval in autologous cycles. Exclusion: Poor response to ovarian stimulation protocols, polycystic ovary syndrome, adenomyosis, endometriosis grade III and IV, hydrosalpinx, alterations of the endometrium, known genetic alterations and uterine malformations | MACS-DGC-ICSI 30–50% SDF Autologous-ICSI n = 42 Donor-ICSI n = 29 >50% SDF Autologous-ICSI n = 23 Donor-ICSI n = 11 | DGC-ICSI 30–50% SDF Autologous-ICSI n = 144 Donor-ICSI n = 40 >50% SDF Autologous-ICSI n = 7 Donor-ICSI n = 9 | Baseline comparisons | 30–50% SDF (both autologous-ICSI and donor-ICSI) Live birth rate Miscarriage rate <50% SDF (both autologous-ICSI and donor-ICSI) Live birth rate Miscarriage rate Regardless of the SDF Autologous-ICSI Clinical pregnancy (events) Miscarriage (events) Donor-ICSI Clinical pregnancy (events) Miscarriage (events) | ns ns ns ns overall p = 0.0436 26 vs. 93 0 vs. 7 26 vs. 32 0 vs. 3 |
Pacheco 2020 | Retrospective | Couples using both own and donor oocytes. >20% sperm DNA fragmentation measured by TUNEL assay. Exclusion: seminal infection, orchitis/epididymitis, AZF microdeletions, altered karyotype, sperm aneuploidies determined by fluorescent in situ hybridization (FISH) analysis, and patients with systemic diseases or history of cryptorchidism. | Couples using both own and donor oocytes. | DGC-MACS-ICSI n = 366 PGT-A ICSI n = 126 Autologous ova n = 121 Donated ova n = 119 | DGC-ICSI n = 358 PGT-A ICSI n = 116 Autologous ova n = 120 Donated ova n = 122 | Baseline comparisons Subanalysis separating three subpopulations: PGT-A Autologous ova Donor oocytes | ALL Fertilization rate Pregnancy rate (%) Miscarriage rate (%) Livebirth rate (%) PGT-A SDF Fertilization rate Pregnancy rate Miscarriage rate Live-birth rate AUTOLOGOUS SDF Fertilization rate Pregnancy rate Miscarriage rate (%) Live-birth rate (%) DONATED SDF Fertilization rate Pregnancy rate (%) Miscarriage rate Live-birth rate (%) | ns 60.7 vs. 51.5 p = 0.014 14.7 vs. 20.6 p = 0.034 47.4 vs. 31.2 p = 0.001 ns ns ns ns ns ns ns ns 11.3 vs. 25.5 p = 0.005 40.9 vs. 24.6 p = 0.03 ns ns 69.6 vs. 53.9 p = 0.013 ns 51.8 vs. 29.4 p = 0.03 |
Gil Juliá 2023 | Retrospective | Unselected males | Couples undergoing ICSI cycles using either donor or autologous oocytes | MACS-ICSI Various capacitation methods considered Cycles using donor oocytes n = 705 deliveries, 587 singleton deliveries. Cycles using autologous oocytes n = 880 deliveries, 746 singleton deliveries. | Standard ICSI Cycles using donor oocytes n = 24,651 deliveries, 19,852 singleton deliveries. Cycles using autologous oocytes n = 18,193 deliveries, 15,171 singleton deliveries. | Baseline comparisons Multivariant analysis | Type of birth Cesarean section/Vaginal birth Type of cesarean section Scheduled/Intrapartum/Emergency Type of vaginal birth Spontaneous/Induced Gestational diabetes Gestational anemia (% (95%CI)) Gestational hypertension Proteinuria Pre-eclampsia Bleeding Amniocentesis Bleeding during the 2nd or 3rd trimester Membrane rupture Week of membrane rupture Puerperium pathology Weight Low birthweight (% (95%CI)) Very low birthweight (% (95%CI)) Neonatal length Head circumference Gestational age (weeks. mean (95%CI)) Premature birth (% (95%CI)) Very premature birth (% (95%CI)) Sex of the newborn Apgar score at 1min Apgar score at 5 min (mean (95%CI)) Apgar score at 10 min Admissions to the NICU | ns S ns ns ns 14.03 (10.49–18.22) vs. 9.58 (8.95–10.23) p = 0.004 (donor), 19.58 16.42–23.06) vs. 10.04 (9.41–10.69) p < 0.001 (autologous) ns ns ns ns ns ns ns ns ns ns 11.80 (8.56–15.72) vs. 10.32 (9.82–10.84) p = 0.03 (donor) 0.42 (0.05–1.50) vs. 0.99 (0.82–1.19) p < 0.001 (autologous) ns ns 8.37 (6.47–10.60) vs. 7.83 7.40–8.27) p = 0.009 (autologous) 9.06 (6.86–11.68) vs. 12.44 (11.98–12.91) p = 0.04 (donor) 1.88 (0.94–3.34) vs. 4.08 (3.81–4.36) p = 0.01 (donor) ns ns 9.67 (9.59–9.75) vs. 9.84 (9.72–9.76) p = 0.02 (autologous) ns ns |
Reference (Year) | Study Design | Male Patients’ Inclusion/Exclusion Criteria | Female Patients’ Inclusion/Exclusion Criteria | Intervention (n) | Controls (n) | Control of Bias | Main Outcomes Measured | Effect’s Size and p Value |
---|---|---|---|---|---|---|---|---|
Stimpfel 2018 | Prospective Sibling oocytes Randomized | Couples who were recommended ICSI due to male factor—teratozoospermia (<15% normal morphology according to the strict Kruger criteria). | Women not older than 36, with a normal ovarian response to controlled ovarian hyperstimulation (≥6 mature oocytes after ultrasound retrieval). Exclusion: previous births or pregnancies. | For each couple, one half of the mature oocytes was fertilized with DGC-MACS-Swim up-ICSI n = 127 oocytes | The other half was fertilized with DGC-ICSI n = 133 oocytes | Sibling oocytes design Subanalysis according to the female patient’s age: ≤30 vs. ≥31. | Fertilized oocytes Cleaved embryos Good quality day 3 Fair quality day 3 Poor quality day 3 Number of embryos cultured until the day 5 Number of blastocysts Good quality blastocyst Fair quality blastocyst 8 Poor quality blastocyst Number of frozen blastocysts Number of cycles with blastocyst freezing Implantation rate Number of pregnancies Number of deliveries For women ≥31 years old: Good quality blastocysts (%) | ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 75.0 vs. 33.3 (p < 0.05) |
Salehi Novin 2022 | Prospective Sibling oocytes Randomized | Severe male factor infertility DFI >30% measured by SDF assay (Halosperm) | - | MACS-DGC n = 60 102 oocytes | DGC n = 60 86 oocytes | Randomization (Sibling sperm samples, sibling oocytes) and baseline comparisons | DFI—means not stated Morphology—means not stated Total motility—means not stated Fertilization rate Top-quality day-3 embryos (%±SD) Blastocyst rate (%) PLCZ1 gene expression—values not stated | p = 0.000 p = 0.001 p = 0.028 ns 85 ± 0.57 vs. 63.23 ± 0.44 p = 0.038 69.69 vs. 48.00 p < 0.001 p = 0.046 |
Romany 2014 | RCT | Unselected men. >10% motile sperm in raw sample, >1 million motile sperm after swim-up. | First ICSI with donor oocytes. Fresh day-3 embryo transfer. Female partners: 30–45 years old, body mass index (BMI) < 30 kg/m2, confirmed absence of reported uterine pathology, and no clinical history of recurrent miscarriage. | Swim-up-MACS-ICSI n= 123 | Swim-up-ICSI n = 114 | Randomization Triple-blind Baseline characteristics Per embryo transferred Per intention to treat | Fertilization rate (%) Good-quality embryos (%) Implantation rate (%) Positive beta-hCG (%) Live-birth rate (%) Miscarriage rate (%) | ns ns ns ns ns ns |
Troya 2015 | RCT | Unselected males. Normal sperm concentration according to the WHO 2010 criterion. | Exclusion: Endometriosis. | DGC-PICSI n = 45 or DGC-MACS-ICSI n = 33 | DGC-ICSI n = 55 | Randomization and baseline characteristics | Fertilization rate (% (95%CI)) Number of day-3 embryos Number of freezing embryos Clinical pregnancy rate (%) Biochemical pregnancy rate Pregnancy loss rate | 70.15 (63.98–76.33)/80.28 (73.74–86.81)/78.97 (74.37–83.57) p < 0.05 ns ns 40.40/58.10/27.30 p < 0.05 ns ns |
Romany 2017 | RCT | Unselected men. >10% motile sperm in raw sample, >1 million motile sperm after swim-up. | First ICSI with donor oocytes. Fresh day-3 embryo transfer. Female partners: 30–45 years old, body mass index (BMI) < 30 kg/m2, confirmed absence of reported uterine pathology, and no clinical history of recurrent miscarriage. | Swim-up-MACS-ICSI n= 65 newborns | Swim-up-ICSI n = 66 newborns | Randomization Triple-blind | 1st trimester bleeding Invasive procedures Gestational anemia Gestational cholestasis Gestational diabetes 2nd and 3rd trimester bleeding Premature rupture of membranes earlier than 37 weeks Urinary tract infection Weeks at delivery Preterm birth Very preterm birth Cesarean section Female newborns Birth weight Birth weight female Birth weight male Low birthweight Very low birthweight Neonatal height Apgar score at 1 min Apgar score at 5 min Apgar score at 10 min Birth defects Major malformations Minor malformations Admissions to neonatal intensive care unit (NICU) Days at NICU | ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns |
Ziarati 2019 | RCT | At least two semen parameters below WHO 2010 criteria. Exclusion: seminal infection, history of cryptorchidism sperm, autoantibodies, orchitis, or those that have systemic diseases or endocrine disorders. | Exclusion: >42 years-old, <6 matured oocytes retrieved, poor quality oocyte. | MACS-DGC-ICSI procedure n = 29 | DGC-ICSI n = 33 | Randomization and baseline parameters | Fertilization rate Embryo score A (%±SD) Embryo score B Embryo score C Mean of embryo score Mean embryo score of transferred embryos Clinical pregnancy (%) Implantation rate (%) | ns 35.85 ± 6.58 vs. 20.00 ± 3.93 p = 0.04 ns ns ns ns 54.54 vs. 24.24 p < 0.01 36.30 vs. 15.70 p < 0.02 |
Hasanen 2020 | RCT | Abnormal sperm SDF (≥20.3%) Total progressive motile sperm count ≥ 1 million Exclusion: Leukocytospermia, varicocele, known genetic disorder, or any known factors that affect ovarian stimulation or embryo implantation. | 18–35 years old ≥5 mature oocytes retrieved | DGC-MACS-ICSI n = 196 | DGC-PICSI n = 200 | Baseline comparisons Subanalysis according to male age: ≤35 years 36–41 years >41 years And female age: <30 years 30–35 years | Overall Ongoing pregnancy Cleavage rate Blastulation rate Good-quality blastulation rate Clinical pregnancy rate Implantation rate Subanalysis acc to male age Subanalysis acc to female age Ongoing pregnancy (%) <30 y.o Good-quality blastulation rate (%±SD) <30 y.o Clinical pregnancy rate (%) <30 y.o Implantation rate (%) 30–35 y.o | ns ns ns ns ns ns all ns 69.5 vs. 51.3 p = 0.01 71.1 ± 25.4 vs. 62.9 ± 24.7 p = 0.03 73.9 vs. 58.3 p = 0.03 33.3 vs. 46 p = 0.05 |
González-Ravina 2022 | RCT | Donor sperm intrauterine inseminations (D-IUI). | At least one permeable fallopian tube and normal ovulation. | DGC-MACS-IUI n = 90 | DGC-IUI n = 91 | Randomization and baseline comparisons | Clinical pregnancy rate Live-birth rate Miscarriage rate | ns ns ns |
Gil 2013 | Metanalysis—five prospective randomized trials: 499 patients. | Unselected males | Unselected | MACS | Standard semen sample preparation | Metanalysis | Pregnancy rate Implantation rate Miscarriage rate | p = 0.004 RR = 1.50 (1.14–1.98) ns RR = 1.03 (0.80–1.31) ns RR = 2.00 (0.19–20.90) |
Lepine 2019 | Metanalysis—RCTs | None | MACS-ICSI | Standard ICSI | Metanalysis | Live birth rate (1 RCT) Clinical pregnancy rate (3 RCTs) Miscarriage rate (2 RCTs) | RR 1.95 (0.89–4.29) RR 1.05 (0.84–1.31) RR 0.51 (0.09–2.82) Uncertain of the effect of MACS on those outcomes. Quality of evidence was very low. |
Reference (Year) | Study Design | Male Patients’ Inclusion/Exclusion Criteria | Female Patients’ Inclusion/Exclusion Criteria | Intervention (n) | Controls (n) | Control of Bias | Main Outcomes Measured | Effect’s Size and p Value |
---|---|---|---|---|---|---|---|---|
Gil Juliá 2021 | Retrospective | Unselected males | Couples using the female patients’ own oocytes (autologous) | MACS-ICSI Various capacitation methods considered | Standard ICSI | Baseline comparisons Multivariant analysis Subanalysis of live birth rate according to performance or not of PGT-A | Per transfer Biochemical pregnancy rate Clinical pregnancy rate Ongoing pregnancy rate Live birth rate Clinical miscarriage rate Per cycle Live birth rate Cumulative live birth rates Per MII oocyte used Per embryo replaced Per embryo transfer | ns ns ns ns ns ns ns p < 0.001 p = 0.009 |
Gil Juliá 2022 | Retrospective | Unselected males | Couples using donor oocytes. | MACS-ICSI Various capacitation methods considered | Standard ICSI | Baseline comparisons Multivariant analysis | Per transfer Biochemical pregnancy rate Clinical pregnancy rate Ongoing pregnancy rate Live birth rate Clinical miscarriage rate Per cycle Live birth rate Cumulative live birth rates Per MII oocyte used Per embryo replaced Per embryo transfer | ns ns ns ns ns ns p < 0.001 p < 0.001 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido, N.; Gil Juliá, M. The Use of Non-Apoptotic Sperm Selected by Magnetic Activated Cell Sorting (MACS) to Enhance Reproductive Outcomes: What the Evidence Says. Biology 2024, 13, 30. https://doi.org/10.3390/biology13010030
Garrido N, Gil Juliá M. The Use of Non-Apoptotic Sperm Selected by Magnetic Activated Cell Sorting (MACS) to Enhance Reproductive Outcomes: What the Evidence Says. Biology. 2024; 13(1):30. https://doi.org/10.3390/biology13010030
Chicago/Turabian StyleGarrido, Nicolás, and María Gil Juliá. 2024. "The Use of Non-Apoptotic Sperm Selected by Magnetic Activated Cell Sorting (MACS) to Enhance Reproductive Outcomes: What the Evidence Says" Biology 13, no. 1: 30. https://doi.org/10.3390/biology13010030
APA StyleGarrido, N., & Gil Juliá, M. (2024). The Use of Non-Apoptotic Sperm Selected by Magnetic Activated Cell Sorting (MACS) to Enhance Reproductive Outcomes: What the Evidence Says. Biology, 13(1), 30. https://doi.org/10.3390/biology13010030