Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- Structural Composition: We propose a novel deep learning network model that combines a dual-branch convolution module, an efficient transformer module, and a feature fusion with channel attention module to address image blurriness in MPI.
- (2)
- Improved Image Quality: The proposed method effectively mitigates blurring artifacts, resulting in improved spatial localization capabilities and clearer imaging.
- (3)
- Potential Impact on MPI: Our approach has the potential to enhance the capabilities of MPI as a non-invasive imaging technique by improving spatial precision and accuracy. This paper is structured as follows: Section 2 presents the materials and methods used for our experiments, followed by Section 3, which details the results obtained. In Section 4, we discuss the implications of our findings, and finally, in Section 5, we conclude with a summary of our key contributions and potential future directions for this research.
2. Materials and Methods
2.1. Dataset
2.1.1. Simulation Data
2.1.2. Experimental Data
2.2. Network Architecture
2.2.1. Convolutional Neural Network (CNN) Module
2.2.2. Transformer Module
2.2.3. Channel Attention Fusion Module
2.2.4. Multi-Supervisory Loss Function
2.2.5. Transfer Learning
2.2.6. Evaluation Metrics
3. Results
3.1. Simulation Data Analysis
3.2. Ablation Study
3.3. Experimental Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Weizenecker, J.; Borgert, J.; Gleich, B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 2007, 52, 6363. [Google Scholar]
- Yin, L.; Li, W.; Du, Y.; Wang, K.; Liu, Z.; Hui, H.; Tian, J. Recent developments of the reconstruction in magnetic particle imaging. Vis. Comput. Ind. Biomed. Art 2022, 5, 24. [Google Scholar] [CrossRef]
- Dietrich, P.; Vogel, P.; Kampf, T.; Rückert, M.A.; Behr, V.C.; Bley, T.A.; Herz, S. Near real-time magnetic particle imaging for visual assessment of vascular stenosis in a phantom model. Phys. Medica 2021, 81, 210–214. [Google Scholar] [CrossRef]
- Ludewig, P.; Gdaniec, N.; Sedlacik, J.; Forkert, N.D.; Szwargulski, P.; Graeser, M.; Adam, G.; Kaul, M.G.; Krishnan, K.M.; Ferguson, R.M.; et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 2017, 11, 10480–10488. [Google Scholar] [CrossRef]
- Yu, E.Y.; Bishop, M.; Zheng, B.; Ferguson, R.M.; Khandhar, A.P.; Kemp, S.J.; Krishnan, K.M.; Goodwill, P.W.; Conolly, S.M. Magnetic particle imaging: A novel in vivo imaging platform for cancer detection. Nano Lett. 2017, 17, 1648–1654. [Google Scholar] [CrossRef]
- Huang, X.; Hui, H.; Shang, W.; Gao, P.; Zhou, Y.; Pang, W.; Woo, C.M.; Lai, P.; Tian, J. Deep Penetrating and Sensitive Targeted Magnetic Particle Imaging and Photothermal Therapy of Early-Stage Glioblastoma Based on a Biomimetic Nanoplatform. Adv. Sci. 2023, 10, 2300854. [Google Scholar] [CrossRef]
- Tong, W.; Hui, H.; Shang, W.; Zhang, Y.; Tian, F.; Ma, Q.; Yang, X.; Tian, J.; Chen, Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 2021, 11, 506. [Google Scholar] [CrossRef]
- Tong, W.; Zhang, Y.; Hui, H.; Feng, X.; Ning, B.; Yu, T.; Wang, W.; Shang, Y.; Zhang, G.; Zhang, S.; et al. Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 2023, 90, 1–16. [Google Scholar] [CrossRef]
- Knopp, T.; Buzug, T.M. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Panagiotopoulos, N.; Duschka, R.L.; Ahlborg, M.; Bringout, G.; Debbeler, C.; Graeser, M.; Kaethner, C.; Lüdtke-Buzug, K.; Medimagh, H.; Stelzner, J.; et al. Magnetic particle imaging: Current developments and future directions. Int. J. Nanomed. 2015, 10, 3097–3114. [Google Scholar]
- Goodwill, P.W.; Conolly, S.M. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 2010, 29, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, P.W.; Conolly, S.M. Multidimensional x-space magnetic particle imaging. IEEE Trans. Med. Imaging 2011, 30, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Knopp, T.; Biederer, S.; Sattel, T.F.; Rahmer, J.; Weizenecker, J.; Gleich, B.; Borgert, J.; Buzug, T.M. 2D model-based reconstruction for magnetic particle imaging. Med. Phys. 2010, 37, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, J.; Li, Y.; Yin, L.; An, Y.; Zhong, J.; Hui, H.; Tian, J. Dual-Feature Frequency Component Compression Method for Accelerating Reconstruction in Magnetic Particle Imaging. IEEE Trans. Comput. Imaging 2023, 9, 289–297. [Google Scholar] [CrossRef]
- Li, Y.; Hui, H.; Zhang, P.; Zhong, J.; Yin, L.; Zhang, H.; Zhang, B.; An, Y.; Tian, J. Modified Jiles–Atherton Model for Dynamic Magnetization in X-Space Magnetic Particle Imaging. IEEE Trans. Biomed. Eng. 2023, 70, 10006383. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, P.W.; Lu, K.; Zheng, B.; Conolly, S.M. An x-space magnetic particle imaging scanner. Rev. Sci. Instrum. 2012, 83, 033708. [Google Scholar] [CrossRef]
- Liu, Y.; Hui, H.; Liu, S.; Li, G.; Zhang, B.; Zhong, J.; An, Y.; Tian, J. Weighted sum of harmonic signals for direct imaging in magnetic particle imaging. Phys. Med. Biol. 2022, 68, 015018. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (PMLR 2019), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Yeh, C.H.; Lin, C.H.; Lin, M.H.; Kang, L.W.; Huang, C.H.; Chen, M.J. Deep learning-based compressed image artifacts reduction based on multi-scale image fusion. Inf. Fusion 2021, 67, 195–207. [Google Scholar] [CrossRef]
- Rolnick, D.; Veit, A.; Belongie, S.; Shavit, N. Deep learning is robust to massive label noise. arXiv 2017, arXiv:1705.10694. [Google Scholar]
- Gjesteby, L.; Yang, Q.; Xi, Y.; Zhou, Y.; Zhang, J.; Wang, G. Deep learning methods to guide CT image reconstruction and reduce metal artifacts. In Medical Imaging 2017: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2017; Volume 10132, pp. 752–758. [Google Scholar]
- Yang, B.; Duan, K.; Fan, C.; Hu, C.; Wang, J. Automatic ocular artifacts removal in EEG using deep learning. Biomed. Signal Process. Control. 2018, 43, 148–158. [Google Scholar] [CrossRef]
- Kyathanahally, S.P.; Döring, A.; Kreis, R. Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy. Magn. Reson. Med. 2018, 80, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.A.; Liao, H.; Peng, C.; Sun, X.; Zhang, J.; Luo, J.; Chellappa, R.; Zhou, S.K. Dudonet: Dual domain network for ct metal artifact reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10512–10521. [Google Scholar]
- Luthra, A.; Sulakhe, H.; Mittal, T.; Iyer, A.; Yadav, S. Eformer: Edge enhancement based transformer for medical image denoising. arXiv 2021, arXiv:2109.08044. [Google Scholar]
- Wu, X.; Gao, P.; Zhang, P.; Shang, Y.; He, B.; Zhang, L.; Jiang, J.; Hui, H.; Tian, J. Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limited view reconstruction in projection magnetic particle imaging. Comput. Biol. Med. 2023, 158, 106809. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wei, Z.; Li, Y.; Zhu, T.; Wang, T.; Fan, Z.; Yang, X.; Tian, J.; Hui, H. Multi-scale dual domain network for nonlinear magnetization signal filtering in magnetic particle imaging. Biomed. Signal Process. Control 2023, 85, 104863. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, J.; Zhang, L.; Wu, X.; Zhang, P.; Yin, L.; Hui, H.; Tian, J. Deep learning for improving the spatial resolution of magnetic particle imaging. Phys. Med. Biol. 2022, 67, 125012. [Google Scholar] [CrossRef]
- Güngör, A.; Askin, B.; Soydan, D.A.; Saritas, E.U.; Top, C.B.; Çukur, T. TranSMS: Transformers for super-resolution calibration in magnetic particle imaging. IEEE Trans. Med. Imaging 2022, 41, 3562–3574. [Google Scholar] [CrossRef]
- Wu, X.; He, B.; Gao, P.; Zhang, P.; Shang, Y.; Zhang, L.; Zhong, J.; Jiang, J.; Hui, H.; Tian, J. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging. Med. Phys. 2022, 50, 2354–2371. [Google Scholar] [CrossRef]
- Güngör, A.; Askin, B.; Soydan, D.A.; Top, C.B.; Saritas, E.U.; Çukur, T. DEQ-MPI: A Deep Equilibrium Reconstruction with Learned Consistency for Magnetic Particle Imaging. arXiv 2022, arXiv:2212.13233. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Wei, Z.; Shen, Y.; Tian, J.; Hui, H. Content-Noise Feature Fusion Neural Network for Image Denoising in Magnetic Particle Imaging. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023. [Google Scholar]
- Ruderman, D.L. The statistics of natural images. Network Comput. Neural Syst. 1994, 5, 517. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Symbol | Parameters | Value | Unit |
---|---|---|---|
Permeability of vacuum | |||
D | Nanoparticle diameter | 20 | nm |
Kelvin temperature | 293 | K | |
Boltzmann constant | |||
Magnetic moment | |||
G | Gradient intensity | 6 | T/ |
SNR | 5–15 | dB |
Metrics | Native MPI | Blind Deconvolution | Lucy-Richardson | Wiener | FDS-MPI | Our Method |
---|---|---|---|---|---|---|
PSNR | 13.9062 ± 1.0367 | 11.1576 ± 1.5498 | 17.0005 ± 2.8273 | 18.2658 ± 3.2391 | 23.6107 ± 4.0975 | 27.9796 ± 2.4312 |
SSIM | 0.1806 ± 0.0291 | 0.1668 ± 0.0938 | 0.3978 ± 0.1002 | 0.4689 ± 0.0850 | 0.6291 ± 0.09913 | 0.8062 ± 0.0241 |
Concentration Ratio | Metrics | Native MPI | Blind Deconvolution | Lucy-Richardson | Wiener | FDS-MPI | Our Method |
---|---|---|---|---|---|---|---|
1:0.2 | PSNR | 8.3267 | 11.4971 | 11.3208 | 11.1897 | 19.2972 | 22.0169 |
SSIM | 0.1248 | 0.1245 | 0.1197 | 0.2959 | 0.5108 | 0.6097 | |
1:0.4 | PSNR | 10.2323 | 15.2176 | 15.4426 | 12.8129 | 20.5721 | 25.5540 |
SSIM | 0.1320 | 0.2012 | 0.2281 | 0.2923 | 0.3720 | 0.4247 | |
1:0.6 | PSNR | 9.2481 | 14.0769 | 14.0875 | 13.9752 | 21.2109 | 25.6356 |
SSIM | 0.1283 | 0.1538 | 0.1568 | 0.2856 | 0.4019 | 0.4890 | |
1:0.8 | PSNR | 8.8087 | 13.1996 | 13.0744 | 14.7216 | 21.0128 | 25.5039 |
SSIM | 0.1251 | 0.1408 | 0.1362 | 0.2833 | 0.4209 | 0.5171 | |
1:1 | PSNR | 8.4024 | 12.3050 | 12.2112 | 13.1736 | 22.1980 | 25.3194 |
SSIM | 0.1262 | 0.1283 | 0.1204 | 0.2811 | 0.4381 | 0.5053 |
CNN | Transformer | Feature Fusion | Channel Attention | PSNR | SSIM |
---|---|---|---|---|---|
✓ | 25.6309 ± 2.8278 | 0.6623 ± 0.0321 | |||
✓ | 26.1242 ± 3.9173 | 0.7091 ± 0.0523 | |||
✓ | ✓ | ✓ | 27.0598 ± 2.1294 | 0.7523 ± 0.0297 | |
✓ | ✓ | ✓ | ✓ | 27.9796 ± 2.6932 | 0.8062 ± 0.0247 |
Methods | Blind Deconvolution | Lucy-Richardson | Wiener | FDS-MPI | Our Method |
---|---|---|---|---|---|
Runtimes (s) | 0.1708 | 0.0472 | 0.0282 | 0.0203 | 0.0234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Y.; Liu, J.; Wang, Y. Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging. Biology 2024, 13, 2. https://doi.org/10.3390/biology13010002
Shang Y, Liu J, Wang Y. Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging. Biology. 2024; 13(1):2. https://doi.org/10.3390/biology13010002
Chicago/Turabian StyleShang, Yaxin, Jie Liu, and Yueqi Wang. 2024. "Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging" Biology 13, no. 1: 2. https://doi.org/10.3390/biology13010002
APA StyleShang, Y., Liu, J., & Wang, Y. (2024). Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging. Biology, 13(1), 2. https://doi.org/10.3390/biology13010002