Chelidonichthys lucerna (Linnaeus, 1758) Population Structure in the Northeast Atlantic Inferred from Landmark-Based Body Morphometry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Body Morphometric Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvey, E.S.; Cappo, M.; Kendrick, G.A.; McLean, D.L. Coastal Fish Assemblages Reflect Geological and Oceanographic Gradients within an Australian Zootone. PLoS ONE 2013, 8, e80955. [Google Scholar] [CrossRef]
- Brooker, M.A.; de Lestang, S.; Fairclough, D.V.; McLean, D.; Slawinski, D.; Pember, M.B.; Langlois, T.J. Environmental and Anthropogenic Factors Affect Fish Abundance: Relationships Revealed by Automated Cameras Deployed by Fishers. Front. Mar. Sci. 2020, 7, 279. [Google Scholar] [CrossRef]
- Costa, E.F.S.; Teixeira, G.M.; Freire, F.A.M.; Dias, J.F.; Fransozo, A. Effects of Biological and Environmental Factors on the Variability of Paralonchurus Brasiliensis (Sciaenidae) Density: An GAMLSS Application. J. Sea Res. 2022, 183, 102203. [Google Scholar] [CrossRef]
- Franssen, N.R.; Harris, J.; Clark, S.R.; Schaefer, A.F.; Stewart, L.K. Shared and Unique Morphological Responses of Stream Fishes to Anthropogenic Habitat Alteration. Proc. R. Soc. 2013, 280, 20122715. [Google Scholar] [CrossRef]
- Wright, P.J.; Pinnegar, J.K.; Fox, C. Impacts of Climate Change on Fish, Relevant to the Coastal and Marine Environment around the UK. MCCIP Sci. Rev. 2020, 354–381. [Google Scholar] [CrossRef]
- Santi, F.; Vella, E.; Jeffress, K.; Deacon, A.; Riesch, R. Phenotypic Responses to Oil Pollution in a Poeciliid Fish. Environ. Pollut. 2021, 290, 118023. [Google Scholar] [CrossRef]
- Begg, G.A.; Friedland, K.D.; Pearce, J.B. Stock Identification and Its Role in Stock Assessment and Fisheries Management: An Overview. Fish. Res. 1999, 43, 1–8. [Google Scholar] [CrossRef]
- Cadrin, S.X.; Kerr, L.A.; Mariani, S. Stock Identification Methods: Applications in Fishery Science; Cadrin, S.X., Kerr, L.A., Mariani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-397003-9. [Google Scholar]
- Rawat, S.; Benekappa, S.; Kumar, J.; Kumar Naik, A.S.; Pandey, G.; Pema, C.W. Identification of Fish Stocks Based on Truss Morphometric: A Review. J. Fish. Life Sci. 2017, 2, 9–14. [Google Scholar]
- Robinson, B.W.; Wilson, D.S. Genetic Variation and Phenotypic Plasticity in a Trophically Polymorphic Population of Pumpkinseed Sunfish (Lepomis gibbosus). Evol. Ecol. 1996, 10, 631–652. [Google Scholar] [CrossRef]
- Turan, C.; Oral, M.; Öztürk, B.; Düzgüneş, E. Morphometric and Meristic Variation between Stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and Northeastern Mediterranean Seas. Fish. Res. 2006, 79, 139–147. [Google Scholar] [CrossRef]
- Crispo, E. Modifying Effects of Phenotypic Plasticity on Interactions among Natural Selection, Adaptation and Gene Flow. J. Evol. Biol. 2008, 21, 1460–1469. [Google Scholar] [CrossRef]
- Hoff, N.T.; Dias, J.F.; de Lourdes Zani-Teixeira, M.; Soeth, M.; Correia, A.T. Population Structure of the Bigtooth Corvina Isopisthus parvipinnis from the Southwest Atlantic Ocean as Determined by Whole-Body Morphology. Reg. Stud. Mar. Sci. 2020, 39, 101379. [Google Scholar] [CrossRef]
- Moreira, C.; Froufe, E.; Vaz-Pires, P.; Triay-Portella, R.; Correia, A.T. Landmark-Based Geometric Morphometrics Analysis of Body Shape Variation among Populations of the Blue Jack Mackerel, Trachurus picturatus, from the North-East Atlantic. J. Sea Res. 2020, 163, 101926. [Google Scholar] [CrossRef]
- Muniz, A.A.; Moura, A.; Triay-Portella, R.; Moreira, C.; Santos, P.T.; Correia, A.T. Population Structure of the Chub Mackerel (Scomber colias) in the North-East Atlantic Inferred from Otolith Shape and Body Morphometrics. Mar. Freshw. Res. 2020, 72, 341–352. [Google Scholar] [CrossRef]
- Pulkkinen, K.; Ketola, T.; Laakso, J.; Mappes, J.; Sundberg, L.R. Rich Resource Environment of Fish Farms Facilitates Phenotypic Variation and Virulence in an Opportunistic Fish Pathogen. Evol. Appl. 2022, 15, 417–428. [Google Scholar] [CrossRef]
- Schroeder, R.; Schwingel, P.R.; Correia, A.T. Population Structure of the Brazilian Sardine (Sardinella brasiliensis) in the Southwest Atlantic Inferred from Body Morphology and Otolith Shape Signatures. Hydrobiologia 2022, 849, 1367–1381. [Google Scholar] [CrossRef]
- Quadroni, S.; De Santis, V.; Carosi, A.; Vanetti, I.; Zaccara, S.; Lorenzoni, M. Past and Present Environmental Factors Differentially Influence Genetic and Morphological Traits of Italian Barbels (Pisces: Cyprinidae). Water 2023, 15, 325. [Google Scholar] [CrossRef]
- Mallik, A.; Chakraborty, P.; Swain, S. Truss Networking: A Tool for Stock Structure Analysis of Fish. In Research Trends in Fisheries and Aquatic Sciences; Akinik Publications: New Delhi, India, 2020; pp. 96–108. [Google Scholar]
- Chakraborty, R.D. Truss Networking: A Tool for Stock Structure Analysis. In ICAR-CMFRI-Winter School on Recent Development in Taxonomic Techniques of Marine Fishes for Conservation and Sustainable Fisheries Management; ICAR-Central Marine Fisheries Research Institute: Kochi, India, 2022; pp. 84–94. [Google Scholar]
- Strauss, R.E.; Bookstein, F.L. The Truss: Body Form Reconstructions in Morphometrics. Syst. Biol. 1982, 31, 113–135. [Google Scholar] [CrossRef]
- Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Decima, Reformata; Laurentius Salvius: Holmiae, Turkey, 1758; Volume ii. [Google Scholar]
- FAO—Fisheries and Aquaculture Department. Species Fact. Sheets, Chelidonichthys lucerna (Linnaeus, 1758); FAO: Rome, Italy, 2023.
- Mytilineou, C.; Papaconstantinou, C.; Kavadas, S.; D’onghia, G.; Politou, C.-Y.; Papaconstantinou, C.; Sion, L. Deep-Water Fish Fauna in the Eastern Ionian Sea. Belg. J. Zool. 2005, 135, 229–233. [Google Scholar]
- ICES. Report. of the Working Group. on Assessment of New MoU Species (WGNEW), 11–15 October 2010; ICES: Copenhagen, Denmark, 2010. [Google Scholar]
- El-Serafy, S.S.; El-Gammal, F.I.; Mehanna, S.F.; Abdel-Hamid, N.-A.H.; Farrag, E.-S.F.E. Age, Growth and Reproduction of the Tub Gurnard, Chelidonichthys lucerna (Linnaeus, 1758) from the Egyptian Mediterranean Waters off, Alexandria. Int. J. Fish. Aquat. Sci. 2015, 4, 13–20. [Google Scholar] [CrossRef]
- Dulčić, J.; Grubišić, L.; Katavić, I.; Skakelja, N. Embryonic and Larval Development of the Tub Gurnard Trigla lucerna (Pisces: Triglidae). J. Mar. Biol. Assoc. United Kingd. 2001, 81, 313–316. [Google Scholar] [CrossRef]
- Vallisneri, M.; Montanini, S.; Stagioni, M. Size at Maturity of Triglid Fishes in the Adriatic Sea, Northeastern Mediterranean. J. Appl. Ichthyol. 2012, 28, 123–125. [Google Scholar] [CrossRef]
- Montanini, S.; Stagioni, M.; Benni, E.; Vallisneri, M. Feeding Strategy and Ontogenetic Changes in Diet of Gurnards (Teleostea: Scorpaeniformes: Triglidae) from the Adriatic Sea. Eur. Zool. J. 2017, 84, 356–367. [Google Scholar] [CrossRef]
- Carbonara, P.; Follesa, M.C. Handbook of Fish Age Determination: A Mediterranean Experience; FAO: Rome, Italy, 2019; ISBN 978-92-5-131176-9.
- Campos, J.; Costa- Dias, S.; Bio, A.; Santos, P.T.; Jorge, I. Age and Growth of Tub Gurnard Chelidonichthys lucerna (Linnaeus, 1758) during Estuarine Occupation of a Temperate Atlantic Nursery. Int. J. Environ. Sci. Nat. Resour. 2022, 31. [Google Scholar] [CrossRef]
- Ferreira, I.; Daros, F.A.; Moreira, C.; Feijó, D.; Rocha, A.; Mendez-Vicente, A.; Pisonero, J.; Correia, A.T. Is Chelidonichthys lucerna (Linnaeus, 1758) a Marine Estuarine-Dependent Fish? Insights from Saccular Otolith Microchemistry. Fishes 2023, 8, 383. [Google Scholar] [CrossRef]
- ICES. Report. of the Working Group. on the Assessment of New MOU Species (WGNEW), 13–15 December 2005; ICES: Copenhagen, Denmark, 2006. [Google Scholar]
- FAO. Fishery and Aquaculture Statistics. Global Capture Production 1950–2021 (FishStatJ). Available online: https://www.fao.org/fishery/statistics-query/en/global_production/global_production_quantity (accessed on 15 September 2023).
- Nunoo, F.; Poss, S.; Bannermann, P.; Russell, B. Chelidonichthys lucerna. The IUCN Red List of Threatened Species 2015: E.T198752A15597014. 2015. Available online: https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T198752A15597014.en (accessed on 17 December 2023).
- Uyan, A.; Turan, C. Genetic and Morphological Analyses of Tub Gurnard Chelidonichthys lucerna Populations in Turkish Marine Waters. Biochem. Syst. Ecol. 2017, 73, 35–40. [Google Scholar] [CrossRef]
- Ferreira, I.; Santos, D.; Moreira, C.; Feijó, D.; Rocha, A.; Correia, A.T. Population Structure of Chelidonichthys lucerna in Portugal Mainland Using Otolith Shape and Elemental Signatures. Mar. Biol. Res. 2019, 15, 500–512. [Google Scholar] [CrossRef]
- Muir, A.M.; Vecsei, P.; Krueger, C.C. A perspective on perspectives: Methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 2012, 141, 1161–1170. [Google Scholar] [CrossRef]
- O’Malley, B.P.; Schmitt, J.D.; Holden, J.P.; Weidel, B.C. Comparison of Specimen- and Image-Based Morphometrics for Cisco. J. ish Wildl. Manag. 2021, 12, 208–215. [Google Scholar] [CrossRef]
- Rohlf, F.J. TpsUtil—Version 1.83 Dated 04/03/2023. 2023. Available online: https://www.sbmorphometrics.org/soft-utility.html (accessed on 27 July 2023).
- Rohlf, F.J. TpsDig—Version 2.32 Dated 03/06/2021. 2021. Available online: https://www.sbmorphometrics.org/soft-dataacq.html (accessed on 27 July 2023).
- Reist, J.D. An Empirical Evaluation of Coefficients Used in Residual and Allometric Adjustment of Size Covariation. Can. J. Zool. 1986, 64, 1363–1368. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide To Cluster Analysis in R: Unsupervised Machine Learning (Multivariate Analysis I), 1st ed.; STHDA: Marseille, France, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Boudaya, L.; Feki, M.; Mosbahi, N.; Neifar, L. Stock discrimination of Chelidonichthys obscurus (Triglidae) in the central Mediterranean sea using morphometric analysis and parasite markers. J. Helminthol. 2020, 94, e74. [Google Scholar] [CrossRef] [PubMed]
- Cadrin, S.X.; Friedland, K.D. Morphometric Outlines. In Stock Identification Methods; Cadrin, S.X., Friedland, K.D., Waldman, J.R., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 173–183. ISBN 9780080470436. [Google Scholar]
- Rasheeq, A.A.; Rajesh, M.; Kumar, T.T.A.; Rajesh, K.M.; Kathirvelpandian, A.; Kumar, S.; Singh, P.K. Stock Structure Analysis of the White-Spotted Spine Foot Fish (Siganus canaliculatus) along the Indian Coast Using Truss Morphometry. Reg. Stud. Mar. Sci. 2023, 65, 103072. [Google Scholar] [CrossRef]
- Kaouèche, M.; Bahri-Sfar, L.; Hammami, I.; Ben Hassine, O.K. Morphological and Genetic Variations of Diplodus vulgaris along the Tunisian Coasts. Cybium 2013, 37, 111–120. [Google Scholar]
- Hammami, I.; Ben Hassine, O.K.; Kaouèche, M.; Bahri-Sfar, L. Morphological and Genetic Characterization of the Sharpsnout Seabream Populations (Diplodus puntazzo, Sparidae) along a Boundary Area between the Two Mediterranean Basins. Mar. Biol. Res. 2016, 12, 842–853. [Google Scholar] [CrossRef]
- Zhang, C.P.; Chen, X.; Yuan, L.; Wu, Y.; Ma, Y.; Jie, W.; Jiang, Y.; Guo, J.; Qiang, L.; Han, C.; et al. Genetic Diversity and Population Structure of Chinese Gizzard Shad Clupanodon thrissa in South China Based on Morphological and Molecular Markers. Glob. Ecol. Conserv. 2023, 41, e02367. [Google Scholar] [CrossRef]
- Hari, M.S.; Kathrivelpandian, A.; Bhavan, S.G.; Sajina, A.M.; Gangan, S.S.; Abidi, Z.J. Deciphering the Stock Structure of Chanos chanos (Forsskål, 1775) in Indian Waters by Truss Network and Otolith Shape Analysis. Turk. J. Fish Aquat. Sci 2020, 20, 103–111. [Google Scholar] [CrossRef]
- Khan, M.A.; Miyan, K.; Khan, S.; Kumar Patel, D.; Ghazi Ansari, N. Studies on the Elemental Profile of Otoliths and Truss Network Analysis for Stock Discrimination of the Threatened Stinging Catfish Heteropneustes fossilis (Bloch 1794) from the Ganga River and Its Tributaries. Zool. Stud. 2012, 51, 1195–1206. [Google Scholar]
- Miyan, K.; Khan, M.A.; Patel, D.K.; Khan, S.; Ansari, N.G. Truss Morphometry and Otolith Microchemistry Reveal Stock Discrimination in Clarias batrachus (Linnaeus, 1758) Inhabiting the Gangetic River System. Fish. Res. 2016, 173, 294–302. [Google Scholar] [CrossRef]
- Schroeder, R.; Avigliano, E.; Volpedo, A.V.; Callicó Fortunato, R.; Barrulas, P.; Daros, F.A.; Schwingel, P.R.; Dias, M.C.; Correia, A.T. Lebranche Mullet Mugil liza Population Structure and Connectivity Patterns in the Southwest Altantic Ocean Using a Multidisciplinary Approach. Estuar. Coast. Shelf Sci. 2023, 288, 108368. [Google Scholar] [CrossRef]
- Druon, J.N.; Loyer, S.; Gohin, F. Scaling of Coastal Phytoplankton Features by Optical Remote Sensors: Comparison with a Regional Ecosystem Model. Int. J. Remote Sens. 2005, 26, 4421–4444. [Google Scholar] [CrossRef]
- Karagiorgos, J.; Vervatis, V.; Sofianos, S. The Impact of Tides on the Bay of Biscay Dynamics. J. Mar. Sci. Eng. 2020, 8, 617. [Google Scholar] [CrossRef]
- Páez, D.J.; Hedger, R.; Bernatchez, L.; Dodson, J.J. The Morphological Plastic Response to Water Current Velocity Varies with Age and Sexual State in Juvenile Atlantic Salmon, Salmo salar. Freshw. Biol. 2008, 53, 1544–1554. [Google Scholar] [CrossRef]
- Akin, D.R.; Geheber, A.D. Conforming to the Status Flow: The Influence of Altered Habitat on Fish Body-Shape Characteristics. Freshw. Biol. 2020, 65, 1883–1893. [Google Scholar] [CrossRef]
- Sánchez-González, J.R.; Morcillo, F.; Ruiz-Legazpi, J.; Sanz-Ronda, F.J. Fish Morphology and Passage through Velocity Barriers. Experience with Northern Straight-Mouth Nase (Pseudochondrostoma duriense Coelho, 1985) in an Open Channel Flume. Hydrobiologia 2022, 849, 1351–1366. [Google Scholar] [CrossRef]
- Hadziabdic, P.; Rickards, L.J. Review of the Irish Sea (Area 6) Oceanography. Br. Oceanogr. Data Cent. 1999, 1–155. Available online: https://assets.publishing.service.gov.uk/media/5a75842540f0b6360e474b81/SEA6_Oceanography.pdf (accessed on 12 August 2023).
- Natural Resources Wales. Marine Character Areas: MCA 03 Red. Wharf & Conwy Bays; Natural Resources Wales: Cardiff, UK, 2015. Available online: https://cdn.cyfoethnaturiol.cymru/media/674481/mca-03-red-wharf-and-conwy-bays_final.pdf?mode=pad&rnd=131502218540000000 (accessed on 15 August 2023).
- Park, I.-S.; Im, J.H.; Ryu, D.K.; Nam, Y.K.; Kim, D.S. Effect of Starvation on Morphometric Changes in Rhynchocypris oxycephalus (Sauvage and Dabry). J. Appl. Ichthyol. 2001, 17, 277–281. [Google Scholar] [CrossRef]
- Kaouèche, M.; Bahri-Sfar, L.; Hammami, I.; Hassine, O.K. Ben Morphometric Variations in White Seabream Diplodus sargus (Linneus, 1758) Populations along the Tunisian Coast. Oceanologia 2017, 59, 129–138. [Google Scholar] [CrossRef]
- Baldasso, M.C.; Wolff, L.L.; Neves, M.P.; Delariva, R.L. Ecomorphological Variations and Food Supply Drive Trophic Relationships in the Fish Fauna of a Pristine Neotropical Stream. Env. Biol. Fishes 2019, 102, 783–800. [Google Scholar] [CrossRef]
- Hammami, I.; Bahri-Sfar, L.; Kaoueche, M.; Grenouillet, G.; Lek, S.; Kara, M.-H.; Ben Hassine, O.K. Morphological Characterization of Striped Seabream (Lithognathus mormyrus, Sparidae) in Some Mediterranean Lagoons. Cybium 2013, 37, 127–139. [Google Scholar] [CrossRef]
- de Barros, T.F.; Louvise, J.; Caramaschi, É.P. Flow Gradient Drives Morphological Divergence in an Amazon Pelagic Stream Fish. Hydrobiologia 2019, 833, 217–229. [Google Scholar] [CrossRef]
- Larouche, O.; Benton, B.; Corn, K.A.; Friedman, S.T.; Gross, D.; Iwan, M.; Kessler, B.; Martinez, C.M.; Rodriguez, S.; Whelpley, H.; et al. Reef-Associated Fishes Have More Maneuverable Body Shapes at a Macroevolutionary Scale. Coral Reefs 2020, 39, 1427–1439. [Google Scholar] [CrossRef]
- Barton, E.D. Canary and Portugal Currents. In Encyclopedia of Ocean Sciences; Academic Press: Cambridge, MA, USA, 2001; pp. 380–389. [Google Scholar]
- Webb, P.W. Body Form, Locomotion and Foraging in Aquatic Vertebrates. Am. Zool. 1984, 24, 107–120. [Google Scholar] [CrossRef]
- Boudaya, L.; Neifar, L.; Rizzo, P.; Badalucco, C.; Bouain, A.; Fiorentino, F. Growth and reproduction of Chelidonichthys lucerna (Linnaeus) (Pisces: Triglidae) in the Gulf of Gabès, Tunisia. J. Appl. Ichthyol. 2008, 24, 581–588. [Google Scholar] [CrossRef]
- McCarthy, I.D.; Marriott, A.L. Age, growth and maturity of tub gurnard (Chelidonichthys lucerna Linnaeus 1758; Triglidae) in the inshore coastal waters of Northwest Wales, UK. J. Appl. Ichthyol. 2018, 34, 581–589. [Google Scholar] [CrossRef]
- Kruitwagen, G.; Hecht, T.; Pratap, H.B.; Wendelaar Bonga, S.E. Changes in Morphology and Growth of the Mudskipper (Periophthalmus argentilineatus) Associated with Coastal Pollution. Mar. Biol. 2006, 149, 201–211. [Google Scholar] [CrossRef]
- Cadrin, S.X. Advances in Morphometric Identification of Fishery Stocks. Rev. Fish. Biol. Fish. 2000, 10, 91–112. [Google Scholar] [CrossRef]
Location | Date | N | SL (cm) |
---|---|---|---|
Irish Sea | October 2020 | 29 | 19.4 ± 2.9 |
Cantabria Sea | April 2021 | 50 | 28.3 ± 2.0 |
Portuguese Waters | December 2021 | 50 | 22.1 ± 1.7 |
Body Landmarks | ||
---|---|---|
Number | Location | |
1 | Anterior tip of the mouth | |
2 | Anterior margin of the eye | |
3 | Posterior tip of the mouth | |
4 | Anterior insertion of the pelvic fin | |
5 | Anterior insertion of the 1st dorsal fin | |
6 | Posterior insertion of the 1st dorsal fin | |
7 | Anterior insertion of the caudal fin | |
8 | Anterior insertion of the 2nd dorsal fin | |
9 | Posterior insertion of the 2nd dorsal fin | |
10 | Posterior insertion of the caudal fin | |
11 | Ventral insertion of the caudal fin | |
12 | Dorsal insertion of the caudal fin | |
13 | Posterior margin of the caudal peduncle | |
14R | Right dorsal margin of the head (centre of the eye) | |
14L | Left dorsal margin of the head (centre of the eye) | |
15R | Insertion of the right pectoral fin | |
15L | Insertion of the left pectoral fin | |
Morphometric Distances | ||
Distances | Landmarks | Description |
D1 | 1 to 2 | Head length |
D2 | 1 to 3 | Maxilla length |
D3 | 2 to 3 | Anterior height of head |
D4 | 2 to 4 | Posterior height of head |
D5 | 2 to 5 | Distance from the most posterior aspect of neurocranian to the 1st dorsal fin |
D6 | 3 to 4 | Distance from maxilla to pelvic fin |
D7 | 3 to 5 | Distance from the posterior tip of the mouth to the anterior insertion of the 1st dorsal fin |
D8 | 4 to 5 | Anterior body height |
D9 | 4 to 6 | Distance from the anterior insertion of the pelvic fin to the posterior insertion of the 1st dorsal fin |
D10 | 4 to 7 | Distance between pelvic fin and anal fin |
D11 | 5 to 6 | Length of 1st dorsal din |
D12 | 5 to 7 | Distance between the origin of 1st dorsal fin and the origin of anal fin |
D13 | 6 to 7 | Posterior body height |
D14 | 6 to 8 | Distance between 1st and 2nd dorsal fins |
D15 | 7 to 8 | Distance from the anterior insertion of the caudal fin to the anterior insertion of the 2nd dorsal fin |
D16 | 7 to 9 | Distance from the anterior insertion of the caudal fin to the posterior insertion of the 2nd dorsal fin |
D17 | 7 to 10 | Length of anal fin |
D18 | 8 to 9 | Length of 2nd dorsal fin |
D19 | 8 to 10 | Anterior diagonal height of posterior body |
D20 | 9 to 10 | Anterior caudal peduncle height |
D21 | 9 to 11 | Anterior diagonal of caudal peduncle |
D22 | 9 to 12 | Distance between 2nd dorsal fin and caudal fin |
D23 | 10 to 11 | Distance between anal fin and caudal fin |
D24 | 10 to 12 | Posterior diagonal of caudal peduncle |
D25 | 11 to 12 | Posterior caudal peduncle height |
D26 | 11 to 13 | Distance between the ventral insertion of caudal fin and the posterior end of vertebrate column |
D27 | 12 to 13 | Distance between the dorsal insertion of caudal fin and the posterior end of vertebrate column |
D28 | 1 to 14R | Distance from the anterior tip of the mouth to the right dorsal margin of the head |
D29 | 1 to 14L | Distance from the anterior tip of the mouth to the left dorsal margin of the head |
D30 | 14R to 14L | Distance between the right and left dorsal margins of the head |
D31 | 14R to 15R | Distance from the right dorsal margin of the head to the insertion of the right pectoral fin |
D32 | 14L to 15L | Distance from the left dorsal margin of the head to the insertion of the left pectoral fin |
D33 | 14R to 15L | Distance from the right dorsal margin of the head to the insertion of the left pectoral fin |
D34 | 14L to 15R | Distance from the left dorsal margin of the head to the insertion of the right pectoral fin |
D35 | 15R to 15L | Distance between the right and left insertions of the pectoral fins |
D36 | 15R to 13 | Distance from the insertion of the right pectoral fin to the posterior margin of the caudal peduncle |
D37 | 15L to 13 | Distance from the insertion of the left pectoral fin to the posterior margin of the caudal peduncle |
Distance | Irish Sea | Cantabria Sea | Portuguese Waters | |||
---|---|---|---|---|---|---|
DT1 | 3.820 ± 0.068 | a | 3.573 ± 0.028 | b | 3.910 ± 0.041 | a |
DT2 | 2.545 ± 0.068 | a | 2.547 ± 0.035 | a | 2.633 ± 0.035 | a |
DT3 | 3.820 ± 0.068 | a | 3.573 ± 0.028 | b | 3.910 ± 0.041 | a |
DT4 | 4.265 ± 0.079 | a | 4.148 ± 0.038 | a | 4.645 ± 0.059 | b |
DT5 | 4.294 ± 0.081 | a | 4.128 ± 0.024 | a | 4.575 ± 0.058 | b |
DT6 | 2.668 ± 0.111 | a | 2.522 ± 0.068 | a | 2.991 ± 0.058 | b |
DT7 | 6.228 ± 0.126 | a | 5.843 ± 0.037 | b | 6.496 ± 0.077 | a |
DT8 | 4.799 ± 0.075 | a | 4.544 ± 0.043 | b | 4.944 ± 0.062 | a |
DT9 | 7.175 ± 0.119 | a | 6.830 ± 0.084 | b | 7.360 ± 0.084 | a |
DT10 | 8.036 ± 0.143 | a | 7.311 ± 0.085 | b | 7.429 ± 0.111 | b |
DT11 | 3.776 ± 0.069 | a | 3.738 ± 0.059 | a | 4.088 ± 0.051 | b |
DT12 | 7.081 ± 0.110 | a | 6.628 ± 0.050 | b | 7.142 ± 0.087 | a |
DT13 | 4.291 ± 0.090 | a | 3.963 ± 0.041 | b | 4.492 ± 0.057 | a |
DT14 | 1.401 ± 0.093 | a | 1.194 ± 0.046 | a,b | 1.139 ± 0.048 | b |
DT15 | 3.721 ± 0.072 | a | 3.528 ± 0.033 | b | 4.147 ± 0.049 | c |
DT16 | 7.632 ± 0.197 | a | 7.226 ± 0.053 | b | 8.020 ± 0.110 | a |
DT17 | 7.402 ± 0.210 | a | 6.818 ± 0.057 | b | 7.627 ± 0.111 | a |
DT18 | 7.970 ± 0.162 | a | 7.399 ± 0.059 | b | 7.957 ± 0.115 | a |
DT19 | 8.372 ± 0.178 | a | 7.669 ± 0.057 | b | 8.415 ± 0.110 | a |
DT20 | 1.433 ± 0.041 | a | 1.433 ± 0.014 | a | 1.658 ± 0.020 | b |
DT21 | 1.854 ± 0.077 | a | 1.895 ± 0.023 | b | 2.197 ± 0.040 | a |
DT22 | 1.368 ± 0.106 | a | 1.416 ± 0.028 | a | 1.739 ± 0.048 | b |
DT23 | 1.114 ± 0.090 | a | 1.441 ± 0.035 | b | 1.730 ± 0.050 | c |
DT24 | 1.759 ± 0.060 | a | 1.966 ± 0.028 | b | 2.212 ± 0.043 | c |
DT25 | 1.198 ± 0.023 | a | 1.115 ± 0.009 | b | 1.159 ± 0.015 | a,b |
DT26 | 1.484 ± 0.033 | a | 1.286 ± 0.017 | b | 1.133 ± 0.026 | c |
DT27 | 1.365 ± 0.033 | a | 1.209 ± 0.017 | b | 1.095 ± 0.025 | c |
DT28 | 3.437 ± 0.084 | a | 3.227 ± 0.025 | b | 3.426 ± 0.042 | a |
DT29 | 3.482 ± 0.086 | a | 3.297 ± 0.026 | b | 3.506 ± 0.037 | a |
DT30 | 3.687 ± 0.084 | a | 3.424 ± 0.028 | b | 3.771 ± 0.047 | a |
DT31 | 2.920 ± 0.093 | a | 2.690 ± 0.042 | b | 3.206 ± 0.046 | c |
DT32 | 2.786 ± 0.089 | a | 2.600 ± 0.039 | a | 3.247 ± 0.055 | b |
DT33 | 4.845 ± 0.109 | a | 4.552 ± 0.041 | b | 5.248 ± 0.063 | c |
DT34 | 4.955 ± 0.122 | a | 4.560 ± 0.042 | b | 5.207 ± 0.054 | c |
DT35 | 4.313 ± 0.085 | a | 4.008 ± 0.035 | b | 4.473 ± 0.053 | a |
DT36 | 16.872 ± 0.218 | a | 15.893 ± 0.076 | b | 16.592 ± 0.184 | a |
DT37 | 17.015 ± 0.215 | a | 15.952 ± 0.081 | b | 16.603 ± 0.194 | a |
PERMANOVA | Df | SSq | R2 | F | Pr (>F) | |
---|---|---|---|---|---|---|
Region | 2 | 0.057 | 0.228 | 18.48 | 0.0001 | |
Residual | 125 | 0.192 | 0.772 | |||
Total | 127 | 0.249 | 1 | |||
Pairwise PERMANOVA | Df | SSq | F. Model | R2 | p. value | p. adjusted |
Cantabria Sea vs. Irish Sea | 1 | 0.021 | 13.989 | 0.154 | 0.001 | 0.003 |
Cantabria Sea vs. Portuguese Waters | 1 | 0.046 | 38.707 | 0.285 | 0.001 | 0.003 |
Irish Sea vs. Portuguese Waters | 1 | 0.014 | 6.805 | 0.082 | 0.002 | 0.006 |
Original Location | Predicted Location | % of Correct Re-Allocation | % of Overall Re-Allocation | ||
---|---|---|---|---|---|
Irish Sea | Cantabria Sea | Portuguese Waters | |||
Irish Sea | 23 | 1 | 0 | 96 | 95 |
Cantabria Sea | 3 | 37 | 0 | 93 | |
Portuguese Waters | 0 | 1 | 39 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, I.; Schroeder, R.; Mugerza, E.; Oyarzabal, I.; McCarthy, I.D.; Correia, A.T. Chelidonichthys lucerna (Linnaeus, 1758) Population Structure in the Northeast Atlantic Inferred from Landmark-Based Body Morphometry. Biology 2024, 13, 17. https://doi.org/10.3390/biology13010017
Ferreira I, Schroeder R, Mugerza E, Oyarzabal I, McCarthy ID, Correia AT. Chelidonichthys lucerna (Linnaeus, 1758) Population Structure in the Northeast Atlantic Inferred from Landmark-Based Body Morphometry. Biology. 2024; 13(1):17. https://doi.org/10.3390/biology13010017
Chicago/Turabian StyleFerreira, Inês, Rafael Schroeder, Estanis Mugerza, Iñaki Oyarzabal, Ian D. McCarthy, and Alberto T. Correia. 2024. "Chelidonichthys lucerna (Linnaeus, 1758) Population Structure in the Northeast Atlantic Inferred from Landmark-Based Body Morphometry" Biology 13, no. 1: 17. https://doi.org/10.3390/biology13010017
APA StyleFerreira, I., Schroeder, R., Mugerza, E., Oyarzabal, I., McCarthy, I. D., & Correia, A. T. (2024). Chelidonichthys lucerna (Linnaeus, 1758) Population Structure in the Northeast Atlantic Inferred from Landmark-Based Body Morphometry. Biology, 13(1), 17. https://doi.org/10.3390/biology13010017