Obstetrical and Perinatal Outcomes Are Not Associated with Advanced Paternal Age in IVF or ICSI Pregnancies with Autologous Oocytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assisted Reproduction Treatment
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Paternal Age and Obstetrical Outcomes
3.3. Paternal Age and Perinatal Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrido, N.; García-Herrero, S.; Meseguer, M. Assessment of Sperm Using MRNA Microarray Technology. Fertil. Steril. 2013, 99, 1008–1022. [Google Scholar] [CrossRef]
- Jodar, M.; Selvaraju, S.; Sendler, E.; Diamond, M.P.; Krawetz, S.A. The Presence, Role and Clinical Use of Spermatozoal RNAs. Hum. Reprod. Updat. 2013, 19, 604–624. [Google Scholar] [CrossRef]
- Cheung, S.; Parrella, A.; Rosenwaks, Z.; Palermo, G.D. Genetic and Epigenetic Profiling of the Infertile Male. PLoS ONE 2019, 14, e0214275. [Google Scholar] [CrossRef]
- Kühnert, B.; Nieschlag, E. Reproductive Functions of the Ageing Male. Hum. Reprod. Updat. 2004, 10, 327–339. [Google Scholar] [CrossRef]
- Bray, I.; Gunnell, D.; Smith, G.D. Advanced Paternal Age: How Old Is Too Old? J. Epidemiol. Community Health 2006, 60, 851–853. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, A.; Rohra, V.K.; Assidi, M.; Abu-Elmagd, M.; Turki, R.F. Effects of Increased Paternal Age on Sperm Quality, Reproductive Outcome and Associated Epigenetic Risks to Offspring. Reprod. Biol. Endocrinol. 2015, 13, 35. [Google Scholar] [CrossRef]
- Carrasquillo, R.J.; Kohn, T.P.; Cinnioglu, C.; Rubio, C.; Simon, C.; Ramasamy, R.; Al-Asmar, N. Advanced Paternal Age Does Not Affect Embryo Aneuploidy Following Blastocyst Biopsy in Egg Donor Cycles. J. Assist. Reprod. Genet. 2019, 36, 2039–2045. [Google Scholar] [CrossRef]
- Dviri, M.; Madjunkova, S.; Koziarz, A.; Antes, R.; Abramov, R.; Mashiach, J.; Moskovtsev, S.; Kuznyetsova, I.; Librach, C. Is There a Correlation between Paternal Age and Aneuploidy Rate? An Analysis of 3118 Embryos Derived from Young Egg Donors. Fertil. Steril. 2020, 114, 293–300. [Google Scholar] [CrossRef]
- Sigman, M. Introduction: What to Do with Older Prospective Fathers: The Risks of Advanced Paternal Age. Fertil. Steril. 2017, 107, 299–300. [Google Scholar] [CrossRef]
- Jennings, M.O.; Owen, R.C.; Keefe, D.; Kim, E.D. Management and Counseling of the Male with Advanced Paternal Age. Fertil. Steril. 2017, 107, 324–328. [Google Scholar] [CrossRef]
- Khandwala, Y.S.; Zhang, C.A.; Lu, Y.; Eisenberg, M.L. The Age of Fathers in the USA Is Rising: An Analysis of 168 867 480 Births from 1972 to 2015. Hum. Reprod. 2017, 32, 2110–2116. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.J.; Hamilton, B.E. Delayed Childbearing: More Women Are Having Their First Child Later in Life. NCHS Data Brief 2008, 21, 1–8. [Google Scholar]
- Ogawa, K.; Urayama, K.Y.; Tanigaki, S.; Sago, H.; Sato, S.; Saito, S.; Morisaki, N. Association between Very Advanced Maternal Age and Adverse Pregnancy Outcomes: A Cross Sectional Japanese Study. BMC Pregnancy Childbirth 2017, 17, 349. [Google Scholar] [CrossRef]
- Londero, A.P.; Rossetti, E.; Pittini, C.; Cagnacci, A.; Driul, L. Maternal Age and the Risk of Adverse Pregnancy Outcomes: A Retrospective Cohort Study. BMC Pregnancy Childbirth 2019, 19, 261. [Google Scholar] [CrossRef]
- Li, H.; Nawsherwan; Fan, C.; Mubarik, S.; Nabi, G.; Ping, Y.X. The Trend in Delayed Childbearing and Its Potential Consequences on Pregnancy Outcomes: A Single Center 9-Years Retrospective Cohort Study in Hubei, China. BMC Pregnancy Childbirth 2022, 22, 514. [Google Scholar] [CrossRef]
- Saccone, G.; Gragnano, E.; Ilardi, B.; Marrone, V.; Strina, I.; Venturella, R.; Berghella, V.; Zullo, F. Maternal and Perinatal According to Maternal Age: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Obstet. 2022, 159, 43–55. [Google Scholar] [CrossRef]
- Oldereid, N.B.; Wennerholm, U.B.; Pinborg, A.; Loft, A.; Laivuori, H.; Petzold, M.; Romundstad, L.B.; Söderström-Anttila, V.; Bergh, C. The Effect of Paternal Factors on Perinatal and Paediatric Outcomes: A Systematic Review and Meta-Analysis. Hum. Reprod. Updat. 2018, 24, 320–389. [Google Scholar] [CrossRef]
- du Fossé, N.A.; van der Hoorn, M.L.P.; van Lith, J.M.M.; le Cessie, S.; Lashley, E.E.L.O. Advanced Paternal Age Is Associated with an Increased Risk of Spontaneous Miscarriage: A Systematic Review and Meta-Analysis. Hum. Reprod. Updat. 2020, 26, 650–669. [Google Scholar] [CrossRef]
- Barsky, M.; Blesson, C.S. Should We Be Worried about Advanced Paternal Age? Fertil. Steril. 2020, 114, 259–260. [Google Scholar] [CrossRef]
- Toriello, H.V.; Meck, J.M. Statement on Guidance for Genetic Counseling in Advanced Paternal Age. Genet. Med. 2008, 10, 457–460. [Google Scholar] [CrossRef]
- Couture, V.; Delisle, S.; Mercier, A.; Pennings, G. The Other Face of Advanced Paternal Age: A Scoping Review of Its Terminological, Social, Public Health, Psychological, Ethical and Regulatory Aspects. Hum. Reprod. Updat. 2021, 27, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Nugent, D.; Balen, A.H. The Effects of Female Age on Fecundity and Pregnancy Outcome. Hum. Fertil. 2001, 4, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tanbo, T.; Åbyholm, T.; Henriksen, T. The Impact of Advanced Maternal Age and Parity on Obstetric and Perinatal Outcomes in Singleton Gestations. Arch. Gynecol. Obstet. 2011, 284, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Xiong, Y.; Li, L.; Huang, H.; Xie, Y. The Effect of Advanced Paternal Age on the Lifespan of Male Offspring in an Ancient Chinese Genealogical Data Set. Maturitas 2023, 168, 44–48. [Google Scholar] [CrossRef]
- Bu, X.; Ye, W.; Zhou, J. Paternal Age and Risk of Congenital Anomalies and Birth Outcomes: A Population-Based Cohort Study. Eur. J. Pediatr. 2023, 182, 3519–3526. [Google Scholar] [CrossRef]
- Murugesu, S.; Kasaven, L.S.; Petrie, A.; Vaseekaran, A.; Jones, B.P.; Bracewell-Milnes, T.; Barcroft, J.F.; Grewal, K.J.; Getreu, N.; Galazis, N.; et al. Does Advanced Paternal Age Affect Outcomes Following Assisted Reproductive Technology? A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2022, 45, 283–331. [Google Scholar] [CrossRef]
- Ashapkin, V.; Suvorov, A.; Pilsner, J.R.; Krawetz, S.A.; Sergeyev, O. Age-Associated Epigenetic Changes in Mammalian Sperm: Implications for Offspring Health and Development. Hum. Reprod. Updat. 2023, 29, 24–44. [Google Scholar] [CrossRef]
- Mazur, D.J.; Lipshultz, L.I. Infertility in the Aging Male. Curr. Urol. Rep. 2018, 19, 54. [Google Scholar] [CrossRef]
- Herati, A.S.; Zhelyazkova, B.H.; Butler, P.R.; Lamb, D.J. Age-Related Alterations in the Genetics and Genomics of the Male Germ Line. Fertil. Steril. 2017, 107, 319–323. [Google Scholar] [CrossRef]
- Khandwala, Y.S.; Baker, V.L.; Shaw, G.M.; Stevenson, D.K.; Lu, Y.; Eisenberg, M.L. Association of Paternal Age with Perinatal Outcomes between 2007 and 2016 in the United States: Population Based Cohort Study. BMJ 2018, 363, k4372. [Google Scholar] [CrossRef]
- Kidd, S.A.; Eskenazi, B.; Wyrobek, A.J. Effects of Male Age on Semen Quality and Fertility: A Review of the Literature. Fertil. Steril. 2001, 75, 237–248. [Google Scholar] [CrossRef]
- Beguería, R.; García, D.; Obradors, A.; Poisot, F.; Vassena, R.; Vernaeve, V. Paternal Age and Assisted Reproductive Outcomes in ICSI Donor Oocytes: Is There an Effect of Older Fathers? Hum. Reprod. 2014, 29, 2114–2122. [Google Scholar] [CrossRef] [PubMed]
- García-Ferreyra, J.; Hilario, R.; Dueñas, J. High Percentages of Embryos with 21, 18 or 13 Trisomy Are Related to Advanced Paternal Age in Donor Egg Cycles. JBRA Assist. Reprod. 2018, 22, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kang, X.; Zheng, H.; Liu, H.; Huang, Q.; Liu, J. Effect of Paternal Age on Reproductive Outcomes of Intracytoplasmic Sperm Injection. PLoS ONE 2016, 11, e0149867. [Google Scholar] [CrossRef]
- Kasman, A.M.; Li, S.; Zhao, Q.; Behr, B.; Eisenberg, M.L. Relationship between Male Age, Semen Parameters and Assisted Reproductive Technology Outcomes. Andrology 2020, 9, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Lawson, G.; Fletcher, R. Delayed Fatherhood. J. Fam. Plan. Reprod. Health Care 2014, 40, 283–288. [Google Scholar] [CrossRef]
- Zhu, J.L.; Madsen, K.M.; Vestergaard, M.; Basso, O.; Olsen, J. Paternal Age and Preterm Birth. Epidemiology 2005, 16, 259–262. [Google Scholar] [CrossRef]
- Astolfi, P.; De Pasquale, A.; Zonta, L.A. Paternal Age and Preterm Birth in Italy, 1990 to 1998. Epidemiology 2006, 17, 218–221. [Google Scholar] [CrossRef]
- Goisis, A.; Remes, H.; Barclay, K.; Martikainen, P.; Myrskylä, M. Paternal Age and the Risk of Low Birth Weight and Preterm Delivery: A Finnish Register-Based Study. J. Epidemiol. Community Health 2018, 72, 1104–1109. [Google Scholar] [CrossRef]
- Chung, Y.H.; Hwang, I.S.; Jung, G.; Ko, H.S. Advanced Parental Age Is an Independent Risk Factor for Term Low Birth Weight and Macrosomia. Medicine 2022, 101, E29846. [Google Scholar] [CrossRef]
- Sun, Y.; Vestergaard, M.; Zhu, J.L.; Madsen, K.M.; Olsen, J. Paternal Age and Apgar Scores of Newborn Infants. Epidemiology 2006, 17, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Hurley, E.G.; DeFranco, E.A. Influence of Paternal Age on Perinatal Outcomes. Am. J. Obstet. Gynecol. 2017, 217, 566.e1–566.e6. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Wen, S.W.; Smith, G.; Leader, A.; Sutandar, M.; Yang, Q.; Walker, M. Maternal Age, Paternal Age and New-Onset Hypertension in Late Pregnancy. Hypertens. Pregnancy 2006, 25, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Wen, S.W.; Krewski, D.; Fleming, N.; Yang, Q.; Walker, M.C. Paternal Age and Adverse Birth Outcomes: Teenager or 40+, Who Is at Risk? Hum. Reprod. 2008, 23, 1290–1296. [Google Scholar] [CrossRef]
- Navarro-Gomezlechon, A.; Gil Juliá, M.; Hervás, I.; Mossetti, L.; Rivera-Egea, R.; Garrido, N. Advanced Paternal Age Does Not Affect Medically-Relevant Obstetrical and Perinatal Outcomes Following IVF or ICSI in Humans with Donated Oocytes. J. Clin. Med. 2023, 12, 1014. [Google Scholar] [CrossRef] [PubMed]
- Reichenberg, A.; Gross, R.; Weiser, M.; Bresnahan, M.; Silverman, J.; Harlap, S.; Rabinowitz, J.; Shulman, C.; Malaspina, D.; Lubin, G.; et al. Advancing Paternal Age and Autism. Arch. Gen. Psychiatry 2006, 63, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Khachadourian, V.; Zaks, N.; Lin, E.; Reichenberg, A.; Janecka, M. Advanced Paternal Age and Risk of Schizophrenia in Offspring—Review of Epidemiological Findings and Potential Mechanisms. Schizophr. Res. 2021, 233, 72–79. [Google Scholar] [CrossRef]
- Weiser, M.; Fenchel, D.; Frenkel, O.; Fruchter, E.; Burshtein, S.; Ben Yehuda, A.; Yoffe, R.; Bergman-Levi, T.; Reichenberg, A.; Davidson, M.; et al. Understanding the Association between Advanced Paternal Age and Schizophrenia and Bipolar Disorder. Psychol. Med. 2020, 50, 431–437. [Google Scholar] [CrossRef]
- Larfors, G.; Hallböök, H.; Simonsson, B. Parental Age, Family Size, and Offspring’s Risk of Childhood and Adult Acute Leukemia. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1185–1190. [Google Scholar] [CrossRef]
- Domingues, A.; Moore, K.J.; Sample, J.; Kharoud, H.; Marcotte, E.L.; Spector, L.G. Parental Age and Childhood Lymphoma and Solid Tumor Risk: A Literature Review and Meta-Analysis. JNCI Cancer Spectr. 2022, 6, pkac040. [Google Scholar] [CrossRef]
- Materna-Kiryluk, A.; Wiśniewska, K.; Badura-Stronka, M.; Mejnartowicz, J.; Wiȩckowska, B.; Balcar-Boroń, A.; Czerwionka-Szaflarska, M.; Gajewska, E.; Godula-Stuglik, U.; Krawczyński, M.; et al. Parental Age as a Risk Factor for Isolated Congenital Malformations in a Polish Population. Paediatr. Périnat. Epidemiol. 2009, 23, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Qin, J.; Glaser, R.L.; Jabs, E.W.; Wexler, N.S.; Sokol, R.; Arnheim, N.; Calabrese, P. The Ups and Downs of Mutation Frequencies during Aging Can Account for the Apert Syndrome Paternal Age Effect. PLoS Genet. 2009, 5, e1000558. [Google Scholar] [CrossRef]
- Gourinat, A.; Mazeaud, C.; Hubert, J.; Eschwege, P.; Koscinski, I. Impact of Paternal Age on Assisted Reproductive Technology Outcomes and Offspring Health: A Systematic Review. Andrology 2023, 11, 973–986. [Google Scholar] [CrossRef]
- Olshan, A.F.; Schnitzer, P.G.; Baird, P.A. Paternal Age and the Risk of Congenital Heart Defects. Teratology 1994, 50, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Joinau-Zoulovits, F.; Bertille, N.; Cohen, J.F.; Khoshnood, B. Association between Advanced Paternal Age and Congenital Heart Defects: A Systematic Review and Meta-Analysis. Hum. Reprod. 2020, 35, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, Y.; Peng, M.; Xu, J.; Fan, Z.; Liu, C.; Zhao, K.; Zhang, H. Effect of Paternal Age on Offspring Birth Defects: A Systematic Review and Meta-Analysis. Aging 2020, 12, 25373–25394. [Google Scholar] [CrossRef] [PubMed]
- Esbert, M.; Pacheco, A.; Soares, S.R.; Amorós, D.; Florensa, M.; Ballesteros, A.; Meseguer, M. High Sperm DNA Fragmentation Delays Human Embryo Kinetics When Oocytes from Young and Healthy Donors Are Microinjected. Andrology 2018, 6, 697–706. [Google Scholar] [CrossRef]
- Romany, L.; Garrido, N.; Motato, Y.; Aparicio, B.; Remohí, J.; Meseguer, M. Removal of Annexin V-Positive Sperm Cells for Intracytoplasmic Sperm Injection in Ovum Donation Cycles Does Not Improve Reproductive Outcome: A Controlled and Randomized Trial in Unselected Males. Fertil. Steril. 2014, 102, 1567–1575.e1. [Google Scholar] [CrossRef]
- Bellver, J.; Melo, M.A.; Bosch, E.; Serra, V.; Remohí, J.; Pellicer, A. Obesity and Poor Reproductive Outcome: The Potential Role of the Endometrium. Fertil. Steril. 2007, 88, 446–451. [Google Scholar] [CrossRef]
- Cobo, A.; Meseguer, M.; Remohí, J.; Pellicer, A. Use of Cryo-Banked Oocytes in an Ovum Donation Programme: A Prospective, Randomized, Controlled, Clinical Trial. Hum. Reprod. 2010, 25, 2239–2246. [Google Scholar] [CrossRef]
- Cobo, A.; Garrido, N.; Pellicer, A.; Remohí, J. Six Years’ Experience in Ovum Donation Using Vitrified Oocytes: Report of Cumulative Outcomes, Impact of Storage Time, and Development of a Predictive Model for Oocyte Survival Rate. Fertil. Steril. 2015, 104, 1426–1434.e8. [Google Scholar] [CrossRef] [PubMed]
- de los Santos, M.J.; Diez Juan, A.; Mifsud, A.; Mercader, A.; Meseguer, M.; Rubio, C.; Pellicer, A. Variables Associated with Mitochondrial Copy Number in Human Blastocysts: What Can We Learn from Trophectoderm Biopsies? Fertil. Steril. 2018, 109, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.K.; Robaire, B. Advanced Paternal Age and Future Generations. Front. Endocrinol. 2022, 13, 89710. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Moustakli, E.; Zikopoulos, A.; Georgiou, I.; Dimitriadis, F.; Symeonidis, E.N.; Markou, E.; Michaelidis, T.M.; Tien, D.M.B.; Giannakis, I.; et al. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes 2023, 14, 486. [Google Scholar] [CrossRef]
≤30 | 31–40 | >40 | p | |
---|---|---|---|---|
Number of patients | 1164 | 11,668 | 1293 | |
Paternal age (years) | 28.46 (28.35–28.57) | 35.82 (35.77–35.87) | 41.75 (41.70–41.81) | <0.001 * |
Paternal BMI (kg/m2) | 23.45 (23.20–23.71) | 22.88 (22.81–22.95) | 23.19 (22.98–23.40) | <0.001 * |
Maternal age (years) | 28.22 (28.10–28.34) | 35.48 (35.43–35.53) | 41.32 (41.26–41.39) | <0.001 * |
Maternal BMI (kg/m2) | 23.38 (23.13–23.62) | 22.84 (22.77–22.91) | 23.13 (22.92–23.33) | <0.001 * |
Last endometrial lining thickness | 9.62 (9.50–9.74) | 9.60 (9.56–9.64) | 9.28 (9.17–9.39) | <0.001 * |
Sperm concentration (million/mL) | 28.16 (26.39–29.93) | 36.86 (36.23–37.48) | 46.34 (44.33–48.36) | <0.001 * |
Progressive sperm motility | 30.27 (28.91–31.63) | 33.95 (33.54–34.36) | 37.67 (36.56–38.78) | <0.001 * |
Number of MII oocytes | 11.43 (11.07–11.79) | 9.40 (9.30–9.50) | 8.68 (8.36–9.24) | <0.001 * |
Insemination technique | 0.014 * | |||
IVF | 1.37% (0.79–2.22) | 2.38% (2.11–2.68) | 3.17% (2.28–4.28) | |
ICSI | 98.63% (97.78–99.21) | 97.62% (97.32–97.89) | 96.83% (95.72–97.72) | |
Oocyte state | <0.001 * | |||
Fresh | 98.59% (97.72–99.19) | 95.81% (95.43–96.17) | 95.52% (94.24–96.59) | |
Vitrified | 1.06% (0.55–1.84) | 1.47% (1.26–1.71) | 0.55% (0.22–1.13) | |
Mixed | 0.35% (0.10–0.90) | 2.71% (2.42–3.03) | 3.93% (2.93–5.15) | |
Treatment | <0.001 * | |||
Fresh embryo transfer | 55.58% (52.68–58.46) | 56.07% (55.16–56.97) | 41.53% (38.83–44.27) | |
Frozen embryo transfer | 44.42% (41.54–47.32) | 43.93% (43.03–44.84) | 58.47% (55.73–61.17) | |
Cycle type | <0.001 * | |||
Stimulated | 54.36% (51.42–57.27) | 54.87% (53.95–55.78) | 40.92% (38.21–43.67) | |
Natural | 15.51% (13.46–17.73) | 15.37% (14.71–16.04) | 13.87% (12.03–15.89) | |
Substituted | 30.14% (27.50–32.89) | 29.77% (28.93–30.61) | 45.21% (42.46–47.98) | |
Sperm preparation method | <0.001 * | |||
Density gradient | 42.44% (39.58–45.34) | 49.73% (48.82–50.65) | 54.29% (51.53–57.03) | |
Swim-up | 42.96% (40.09–45.86) | 39.08% (38.19–39.97) | 38.36% (35.70–41.07) | |
Only washed | 9.54% (7.91–11.37) | 5.29% (4.89–5.71) | 2.94% (2.09–4.01) | |
Embryo transfer | <0.001 * | |||
Prior to day 5 | 40.98% (38.14–43.88) | 37.16% (36.28–38.04) | 15.53% (13.59–17.62) | |
On or after day 5 | 59.02% (56.12–61.86) | 62.84% (61.96–63.72) | 84.47% (82.38–86.41) |
Proportion (95% CI) | p | OR (95% CI) | p | AOR (95% CI) | Adjusted p | |
---|---|---|---|---|---|---|
Gestational diabetes | 0.03 * | |||||
≤30 | 5.20% (3.42–7.53) | Reference | – | Reference | – | |
31–40 | 7.96% (7.28–8.69) | 1.58 (1.05–2.37) | 0.028 * | 1.22 (0.66–2.25) | 0.528 | |
>40 | 9.36% (7.28–11.79) | 1.88 (1.18–3.02) | 0.009 * | 1.07 (0.48–2.38) | 0.878 | |
Anaemia | 0.025 * | |||||
≤30 | 12.95% (10.14–16.20) | Reference | – | Reference | – | |
31–40 | 12.14% (11.31–13.01) | 0.93 (0.71–1.22) | 0.595 | 0.96 (0.64–1.43) | 0.826 | |
>40 | 8.71% (6.70–11.10) | 0.64 (0.44–0.93) | 0.02 * | 0.79 (0.43–1.46) | 0.455 | |
Hypertension | 0.964 | |||||
≤30 | 4.83% (3.12–7.10) | Reference | – | Reference | – | |
31–40 | 4.70% (4.16–5.28) | 0.97 (0.63–1–49) | 0.894 | 0.74 (0.38–1.46) | 0.387 | |
>40 | 4.51% (3.08–6.33) | 0.93 (0.54–1.61) | 0.794 | 0.48 (0.18–1.27) | 0.139 | |
PROM | 0.165 | |||||
≤30 | 3.64% (2.17–5.70) | Reference | – | Reference | – | |
31–40 | 2.35% (1.98–2.78) | 0.64 (0.39–1.05) | 0.078 | 0.52 (0.21–1.31) | 0.167 | |
>40 | 2.07% (1.14–3.45) | 0.56 (0.28–1.13) | 0.107 | 0.58 (0.13–2.64) | 0.482 | |
Delivery threat | 0.002 * | |||||
≤30 | 8.28% (6.01–11.07) | Reference | – | Reference | – | |
31–40 | 5.57% (4.99–6.19) | 0.65 (0.47–0.92) | 0.014 * | 0.91 (0.52–1.58) | 0.738 | |
>40 | 3.51% (2.26–5.18) | 0.40 (0.24–0.68) | <0.001 * | 0.53 (0.20–1.41) | 0.204 | |
Preterm birth | 0.023 * | |||||
≤30 | 8.90% (7.32–10.69) | Reference | – | Reference | – | |
31–40 | 7.15% (6.69–7.64) | 0.79 (0.64–0.98) | 0.03 * | 0.85 (0.59–1.22) | 0.376 | |
>40 | 6.07% (4.82–7.51) | 0.66 (0.49–0.90) | 0.008 * | 0.70 (0.39–1.24) | 0.223 | |
Very preterm birth | 0.21 | |||||
≤30 | 2.42% (1.61–3.48) | Reference | Reference | |||
31–40 | 1.70% (1.47–1.95) | 0.70 (0.47–1.04) | 0.079 | 0.65 (0.33–1.26) | 0.201 | |
>40 | 1.79% (1.14–2.67) | 0.73 (0.42–1.28) | 0.277 | 0.66 (0.23–1.92) | 0.444 | |
Delivery by caesarean section a | <0.001 * | |||||
≤30 | 34.82% (32.03–37.69) | Reference | – | Reference | – | |
31–40 | 38.66% (37.76–39.56) | 1.18 (1.04–1.34) | 0.012 * | 0.93 (0.75–1.14) | 0.47 | |
>40 | 50.36% (47.55–53.16) | 1.90 (1.61–2.24) | <0.001 * | 1.06 (0.78–1.45) | 0.713 |
Proportion/Mean (95% CI) | p | OR/RC (95% CI) | p | AOR/ARC (95% CI) | Adjusted p Value | |
---|---|---|---|---|---|---|
Gestational age (days) | 0.004 * | |||||
≤30 | 274.14 (273.31–274.97) | Reference | – | Reference | – | |
31–40 | 275.41 (275.17–275.65) | 1.27 (0.46–2.07) | 0.002 * | 1.32 (0.03–2.60) | 0.045 * | |
>40 | 274.82 (274.09–275.55) | 0.68 (–0.38–1.74) | 0.209 | 1.19 (–0.73–3.11) | 0.224 | |
Sex a | 0.967 | |||||
≤30 | 49.01% (46.03–51.99) | Reference | – | Reference | – | |
31–40 | 49.02% (48.08–49.95) | 1.00 (0.88–1.13) | 0.997 | 0.95 (0.77–1.16) | 0.582 | |
>40 | 49.40% (46.59–52.21) | 1.02 (0.86–1.19) | 0.849 | 0.90 (0.67–1.21) | 0.488 | |
Birth weight | 0.362 | |||||
≤30 | 3228.27 (3192.61–3263.92) | Reference | – | Reference | – | |
31–40 | 3213.04 (3201.90–3224.18) | −15.22 (−51.86–21.42) | 0.416 | −19.94 (−65.91–26.02) | 0.395 | |
>40 | 3235.87 (3201.83–3269.90) | 7.60 (−41.33–56.53) | 0.761 | 9.86 (−59.30–79.01) | 0.78 | |
Low birth weight | 0.299 | |||||
≤30 | 6.18% (4.69–7.97) | Reference | – | Reference | – | |
31–40 | 7.37% (6.83–7.94) | 1.21 (0.91–1.61) | 0.194 | 1.23 (0.67–2.24) | 0.509 | |
>40 | 6.51% (5.00–8.30) | 1.06 (0.72–1.54) | 0.775 | 0.87 (0.35–2.13) | 0.757 | |
Very low birth weight | 0.564 | |||||
≤30 | 1.12% (0.54–2.06) | Reference | – | Reference | – | |
31–40 | 0.90% (0.71–1.12) | 0.80 (0.41–1.54) | 0.496 | 0.78 (0.07–8.23) | 0.833 | |
>40 | 1.19% (0.60–2.12) | 1.06 (0.45–2.51) | 0.89 | 1.03 (0.03–40.94) | 0.986 | |
Length at birth | 0.293 | |||||
≤30 | 49.90 (49.70–50.10) | Reference | – | Reference | – | |
31–40 | 49.95 (49.89–50.00) | 0.05 (−0.14–0.24) | 0.614 | −0.02 (−0.27–0.22) | 0.86 | |
>40 | 50.07 (49.92–50.22) | 0.17 (−0.07–0.42) | 0.164 | 0.11 (−0.25–0.48) | 0.54 | |
Cranial Perimeter | 0.032 * | |||||
≤30 | 34.38 (34.15–34.61) | Reference | – | Reference | – | |
31–40 | 34.59 (34.53–34.66) | 0.22 (−0.04–0.47) | 0.101 | 0.03 (−0.32–0.38) | 0.879 | |
>40 | 34.79 (34.57–35.00) | 0.41 (0.10–0.72) | 0.01 * | −0.03 (−0.53–0.47) | 0.908 | |
Apgar score 1 | 0.317 | |||||
≤30 | 8.90 (8.80–9.00) | Reference | – | Reference | – | |
31–40 | 8.81 (8.78–8.84) | −0.09 (−0.21–0.03) | 0.132 | 0.02 (−0.15–0.18) | 0.858 | |
>40 | 8.81 (8.73–8.89) | −0.09 (−0.24–0.05) | 0.21 | 0.10 (−0.14–0.34) | 0.43 | |
Apgar score 5 | 0.633 | |||||
≤30 | 9.77 (9.72–9.83) | Reference | – | Reference | – | |
31–40 | 9.74 (9.72–9.76) | −0.04 (−0.11–0.04) | 0.373 | −0.03 (−0.14–0.07) | 0.534 | |
>40 | 9.73 (9.68–9.79) | −0.04 (−0.14–0.05) | 0.368 | −0.02 (−0.17–0.14) | 0.825 | |
Apgar score 10 | 0.971 | |||||
≤30 | 9.86 (9.78–9.93) | Reference | – | Reference | – | |
31–40 | 9.85 (9.81–9.88) | −0.01 (−0.12–0.09) | 0.824 | 0.00 (−0.17–0.17) | 0.985 | |
>40 | 9.84 (9.76–9.92) | −0.02 (−0.15–0.12) | 0.823 | 0.00 (−0.25–0.25) | 0.995 | |
NICU Admission | 0.674 | |||||
≤30 | 7.75% (5.62–10.37) | Reference | – | Reference | – | |
31–40 | 6.77% (6.14–7.44) | 0.86 (0.62–1.21) | 0.392 | 0.78 (0.44–1.40) | 0.411 | |
>40 | 7.08% (5.36–9.13) | 0.91 (0.59–1.38) | 0.649 | 0.58 (0.25–1.35) | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Gomezlechon, A.; Gil Juliá, M.; Pacheco-Rendón, R.M.; Hervás, I.; Mossetti, L.; Rivera-Egea, R.; Garrido, N. Obstetrical and Perinatal Outcomes Are Not Associated with Advanced Paternal Age in IVF or ICSI Pregnancies with Autologous Oocytes. Biology 2023, 12, 1256. https://doi.org/10.3390/biology12091256
Navarro-Gomezlechon A, Gil Juliá M, Pacheco-Rendón RM, Hervás I, Mossetti L, Rivera-Egea R, Garrido N. Obstetrical and Perinatal Outcomes Are Not Associated with Advanced Paternal Age in IVF or ICSI Pregnancies with Autologous Oocytes. Biology. 2023; 12(9):1256. https://doi.org/10.3390/biology12091256
Chicago/Turabian StyleNavarro-Gomezlechon, Ana, María Gil Juliá, Rosa María Pacheco-Rendón, Irene Hervás, Laura Mossetti, Rocío Rivera-Egea, and Nicolás Garrido. 2023. "Obstetrical and Perinatal Outcomes Are Not Associated with Advanced Paternal Age in IVF or ICSI Pregnancies with Autologous Oocytes" Biology 12, no. 9: 1256. https://doi.org/10.3390/biology12091256