What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Histological Studies
2.3. Microbial Diversity through Next-Generation Sequencing
2.4. Data Analysis
3. Results
3.1. Histological Studies
3.2. Microbial Community Composition and Diversity inside Root Nodules
4. Discussion
4.1. Fire Boosts Infected Cells and Starch Accumulation
4.2. Acacia longifolia Harbours a Microbiome inside Root Nodules
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adair, K.L.; Lindgreen, S.; Poole, A.M.; Young, L.M.; Bernard-Verdier, M.; Wardle, D.A.; Tylianakis, J.M. Above and belowground community strategies respond to different global change drivers. Sci. Rep. 2019, 9, 2540. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.M.; de Dios, V.R.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Pörtner, H.O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Certini, G. Effect of fire on properties of soil—A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Johns, C. Living Soils: The Role of Microorganisms in Soil Health. In Independent Strategic Analysis of Australia’s Global Interests; Future Directions international: Dalkeith, Australia, 2017; pp. 1–7. [Google Scholar]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewic, Z.A.; Lozowicka, B. Soil biological activity as an indicator of soil pollution with pesticides—A review. Appl. Soil. Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Pereira, P. Fire in the environment. J. Environ. Manag. 2019, 253, 109703. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Hirsch, A.M. Signals and Responses. Plant Signal. Behav. 2006, 1, 161–168. [Google Scholar] [CrossRef]
- Lira, M.; Nascimento, L.; Fracetto, G. Legume-rhizobia signal exchange: Promiscuity and environmental effects. Front. Microbiol. 2015, 6, 945. [Google Scholar] [CrossRef]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2022, 70, 5607–5612. [Google Scholar] [CrossRef]
- Dutta, S.; Podile, A.R. Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Crit. Rev. Microbiol. 2010, 36, 232–244. [Google Scholar] [CrossRef]
- Shin, W.; Islam, R.; Benson, A.; Joe, M.M.; Kim, K.; Selvakumar, G.; Sandipan, S.; Somak, S.; Tongmin, S. Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement. Korean J. Soil Sci. Fertil. 2016, 49, 17–29. [Google Scholar] [CrossRef]
- Coba de la Peña, T.; Fedorova, E.; Pueyo, J.J.; Lucas, M.M. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? Front. Plant Sci. 2018, 8, 2229. [Google Scholar] [CrossRef] [PubMed]
- Burdon, J.J.; Gibson, A.H.; Searle, S.D.; Woods, M.J.; Brockwell, J. Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: Within-species interactions. J. Appl. Ecol. 1999, 36, 398–408. [Google Scholar] [CrossRef]
- Brewin, N.J. Development of the legume root nodule. Annu. Rev. Cell Biol. 1991, 7, 191–226. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, E.J.; Tatè, R.; Ferraioli, S.; Iaccarino, M. Organogenesis of legume root nodules. Int. Rev. Cytol. 2004, 234, 201–262. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Prell, J.; James, E.K.; Poole, P. Nutrient Sharing between Symbionts. Plant Physiol. 2007, 144, 604–614. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Nogueira, M.A. Selection of host-plant genotype: The next step to increase grain legume N2 fixation activity. J. Exp. Bot. 2018, 69, 3523–3530. [Google Scholar] [CrossRef]
- Krusell, L.; Krause, K.; Ott, T.; Desbrosses, G.; Krämer, U.; Sato, S.; Nakamura, Y.; Tabata, S.; James, E.K.; Sandal, N.; et al. The sulfate transporters SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 2005, 17, 1625–1636. [Google Scholar] [CrossRef]
- Minchin, F.R. Regulation of oxygen diffusion in legume nodules. Soil Biol. Biochem. 1997, 29, 881–888. [Google Scholar] [CrossRef]
- Pucciariello, C.; Boscari, A.; Tagliani, A.; Brouquisse, R.; Perata, P. Exploring legume-rhizobia symbiotic models for waterlogging tolerance. Front. Plant Sci. 2019, 10, 578. [Google Scholar] [CrossRef]
- Etesami, H. Root nodules of legumes: A suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Curr. Res. Biotechnol. 2022, 4, 78–86. [Google Scholar] [CrossRef]
- Deng, Z.S.; Kong, Z.Y.; Zhang, B.C.; Zhao, L.F. Insights into non-symbiotic plant growth promotion bacteria associated with nodules of Sphaerophysa salsula growing in northwestern China. Arch. Microbiol. 2020, 202, 399–409. [Google Scholar] [CrossRef]
- Mayhood, P.; Mirza, B.S. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Nonrhizobial Endophytes. Appl. Environ. Microbiol. 2021, 87, e02884-20. [Google Scholar] [CrossRef]
- Martinez-Hidalgo, P.; Hirsch, A. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J. 2017, 1, 70–82. [Google Scholar] [CrossRef]
- Richardson, D.; Carruthers, J.; Hui, C.; Impson, F.A.C.; Miller, J.T.; Robertson, M.P.; Rouget, M.; Le Roux, J.J.; Wilson, J.R.U. Human-mediated introductions of Australian acacias—A global experiment in biogeography. Divers. Distrib. 2011, 17, 771–787. [Google Scholar] [CrossRef]
- Rejmánek, M.; Richardson, D.M. Trees and shrubs as invasive alien species—2013 update of the global database. Divers. Distrib. 2013, 19, 1093–1094. [Google Scholar] [CrossRef]
- Marchante, E.; Kjøller, A.; Struwe, S.; Freitas, H. Short- and long-term impacts of Acacia longifolia on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 2008, 40, 210–217. [Google Scholar] [CrossRef]
- Richardson, D.M.; Kluge, R.L. Seed banks of invasive Australian Acacia species in South Africa: Roles in invasiveness and options for management. Perspect. Plant Ecol. Evol. Syst. 2008, 10, 161–177. [Google Scholar] [CrossRef]
- Jesus, J.G.; Tenreiro, R.; Máguas, C.; Trindade, H. Acacia longifolia: A Host of Many Guests Even after Fire. Diversity 2020, 12, 250. [Google Scholar] [CrossRef]
- Birnbaum, C.; Barrett, L.G.; Thrall, P.H.; Leishman, M.R. Mutualisms are not constraining cross-continental invasion success of Acacia species within Australia. Divers. Distrib. 2012, 18, 962–976. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, S.; Le Roux, J.J.; Crisóstomo, J.; Ndlovu, J. Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species? Divers. Distrib. 2011, 17, 946–957. [Google Scholar] [CrossRef]
- Aswathappa, N.; Marcar, N.E.; Thomson, L.A.J. Salt tolerance of Australian tropical and subtropical acacias. In Australian Acacias in Developing Countries; ACIAR Proceedings: Hanoi, Vietnam, 1987; pp. 70–73. [Google Scholar]
- Rodríguez-Echeverría, S.; Crisóstomo, J.A.; Nabais, C.; Freitas, H. Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol. Invasions 2009, 11, 651–661. [Google Scholar] [CrossRef]
- Carvalho, P.; Martins, R.; Portugal, A.; Gonçalves, M.T. Do mycorrhizal fungi create below-ground links between native plants and Acacia longifolia? A case study in a coastal maritime pine forest in Portugal. Web Ecol. 2018, 18, 105–114. [Google Scholar] [CrossRef]
- Richardson, D.; Allsopp, N.; D’Antonio, C.; Milton, S.; Rejmánek, M. Plant invasions—The role of mutualisms. Biol. Rev. 2000, 75, 65–93. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, S.; Crisóstomo, J.A.; Freitas, H. Genetic diversity of rhizobia associated with Acacia longifolia in two stages of invasion of coastal sand dunes. Appl. Environ. Microbiol. 2007, 73, 5066–5070. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, J.J.; Crous, P.W.; Kamutando, C.N.; Richardson, D.M.; Strasberg, D.; Wingfield, M.J.; Wright, M.G.; Valverde, A. A core of rhizosphere bacterial taxa associates with two of the world’s most isolated plant congeners. Plant Soil 2021, 468, 277–294. [Google Scholar] [CrossRef]
- IPMA. 2023. Available online: https://www.ipma.pt/pt/educativa/tempo.clima/ (accessed on 14 January 2023).
- Schumpp, O.; Deakin, W. How inefficient rhizobia prolong their existence within nodules. Trends Plant Sci. 2010, 15, 189–195. [Google Scholar] [CrossRef]
- Yuan, Y. CTAB DNA Extraction for High Quality/Molecular Weight DNA. 2019. Available online: https://www.protocols.io/view/ctab-dna-extraction-for-high-quality-molecular-wei-6qpvreynplmk/v1 (accessed on 5 February 2023).
- DeAngelis, M.M.; Wang, D.G.; Hawkins, T.L. Solid-Phase Reversible Immobilization for the Isolation of PCR Products. Nucleic Acids Res. 1995, 23, 4742–4743. [Google Scholar] [CrossRef]
- Stortchevoi, A.; Kamelamela, N.; Levine, S.S. SPRI Beads-Based Size Selection in the Range of 2–10 kb. J. Biomol. Tech. 2020, 31, 7–10. [Google Scholar] [CrossRef]
- Collins, T. ImageJ for Microscopy. BioTechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 7 August 2023).
- Sprent, J.I.; Sutherland, M.M.; de Faria, S.M. Structure and Function of Nodules from Woody Legumes; GB2012108736; Agricultural Science and Technology Information (AGRIS): Stara Zagora, Bulgaria, 1989. [Google Scholar]
- Corby, H.D.L. The shape of leguminous nodules and the colour of leguminous roots. Plant Soil 1971, 35, 305–314. [Google Scholar] [CrossRef]
- Franssen, H.; Vijn, I.; Yang, W.; Bisseling, T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol. Biol. 1992, 19, 89–107. [Google Scholar] [CrossRef]
- Lopez-Lara, I.; Orgambide, G.; Dazzo, F.; Olivares, J.; Toro, N. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from Acacia nodules. J. Bacteriol. 1993, 175, 2826–2832. [Google Scholar] [CrossRef]
- Vasse, J.; de Billy, F.; Camut, S.; Truchet, G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 1990, 172, 4295–4306. [Google Scholar] [CrossRef] [PubMed]
- Timmers, A.C.; Soupène, E.; Auriac, M.C.; de Billy, F.; Vasse, J.; Boistard, P.; Truchet, G. Saprophytic intracellular rhizobia in alfalfa nodules. Mol. Plant Microbe Interact. 2000, 13, 1204–1213. [Google Scholar] [CrossRef]
- Maunoury, N.; Kondorosi, A.; Kondorosi, E.; Mergaert, P. Cell biology of nodule infection and development. In Nitrogen-fixing Leguminous Symbioses; Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 153–189. [Google Scholar]
- Dupont, L.; Alloing, G.; Pierre, O.; El Msehli, S.; Hopkins, J.; Hérouart, D.; Frendo, P. The Legume Root Nodule: From Symbiotic Nitrogen Fixation to Senescence; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar] [CrossRef]
- Livingston, D.; Tuong, T.; Nogueira, M.; Sinclair, T. Three-dimensional reconstruction of soybean nodules provides an update on vascular structure. Am. J. Bot. Mar. 2019, 106, 507–513. [Google Scholar] [CrossRef]
- Newcomb, W. A correlated light and electron microscope study of symbiotic growth and differentiation in Pisum sativum root nodules. Can. J. Bot. 1976, 54, 2163–2186. [Google Scholar] [CrossRef]
- Forrest, S.I.; Verma, D.P.S.; Dhindsa, R.S. Starch content and activities of starch-metabolizing enzymes in effective and ineffective root nodules of soybean. Can. J. Bot. 1991, 69, 697–701. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, S. Rhizobial hitchhikers from Down Under: Invasional meltdown in a plant-bacteria mutualism? J. Biogeogr. 2010, 37, 1611–1622. [Google Scholar] [CrossRef]
- Birnbaum, C.; Bissett, A.; Thrall, P.H.; Leishman, M.R. Nitrogen-fixing bacterial communities in invasive legume nodules and associated soils are similar across introduced and native range populations in Australia. J. Biogeogr. 2016, 43, 1631–1644. [Google Scholar] [CrossRef]
- Keet, J.H.; Ellis, A.G.; Hui, C.; Le Roux, J.J. Legume–rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. Ann. Bot. 2017, 119, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- del Barrio-Duque, A.; Samad, A.; Nybroe, O.; Antionielli, L.; Sessitsch, A.; Compant, S. Interaction between endophytic Proteobacteria strains and Serendipita indica enhances biocontrol activity against fungal pathogens. Plant Soil 2020, 451, 277–305. [Google Scholar] [CrossRef]
- Osborne, B.; Doris, F.; Cullen, A.; McDonald, R.; Campbell, G.; Steer, M. Gunnera tinctoria: An Unusual Nitrogen-fixing Invader: This water-loving species may offer insights into the development of terrestrial plants. BioScience 1991, 41, 224–234. [Google Scholar] [CrossRef]
- Callieri, C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 2017, 364, fnx229. [Google Scholar] [CrossRef]
- Muñoz-Marín, M.C.; Gómez-Baena, G.; López-Lozano, A.; Moreno-Cabezuelo, J.A.; Díez, J.; García-Fernández, J.M. Mixotrophy in marine picocyanobacteria: Use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 2020, 14, 1065–1073. [Google Scholar] [CrossRef]
- Gallon, J.R.; Hashem, M.A.; Chaplin, A.E. Nitrogen fixation by Oscillatoria spp. under autotrophic and photoheterotrophic conditions. J. Gen. Microbiol. 1991, 137, 31–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Nair, S.; Tang, L.; Zhao, H.; Hu, Z.; Chen, M.; Zhang, Y.; Kao, S.J.; Jiao, N.; Zhang, Y. Long-term survival of Synechococcus and heterotrophic bacteria without external nutrient supply after changes in their relationship from antagonism to mutualism. mBio 2021, 12, e01614-21. [Google Scholar] [CrossRef]
- Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J. N2 Fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 1997, 19, 139–185. [Google Scholar] [CrossRef]
- Latysheva, N.; Junker, V.L.; Palmer, W.J.; Codd, G.A.; Barker, D. The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 2012, 28, 603–606. [Google Scholar] [CrossRef]
- Baroch, J.J. The Ecological Consequences of Horizontally Transferred Nitrogen Fixation Genes in Cyanobacterium Acaryochloris marina. Undergraduate Thesis, University of Montana, Missoula, MT, USA, 2022; p. 383. Available online: https://scholarworks.umt.edu/utpp/383 (accessed on 5 May 2023).
- Ofek, M.; Hadar, Y.; Minz, D. Ecology of Root Colonizing Massilia (Oxalobacteraceae). PLoS ONE 2012, 7, e40117. [Google Scholar] [CrossRef] [PubMed]
- Swarnalakshmi, K.; Yadav, V.; Tyagi, D.; Dhar, D.W.; Kannepalli, A.; Kumar, S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. Plants 2020, 17, 1596. [Google Scholar] [CrossRef] [PubMed]
- Boukhatem, Z.F.; Merabet, C.; Tsaki, H. Plant Growth Promoting Actinobacteria, the Most Promising Candidates as Bioinoculants? Front. Agron. 2022, 4, 849911. [Google Scholar] [CrossRef]
- Bottini, R.; Cassán, F.; Piccoli, P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 2004, 65, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Cantera, J.J.L.; Kawasaki, H.; Seki, T. The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: A case of lateral gene transfer? Microbiology 2004, 150, 2237–2246. [Google Scholar] [CrossRef]
- Chhonkar, P.K.; Subba-Rao, N.S. Phosphate solubilization by fungi associated with legume root nodules. Can. J. Microbiol. 1967, 13, 749–753. [Google Scholar] [CrossRef]
- Bournaud, C.; James, E.K.; de Faria, S.M.; Lebrun, M.; Melkonian, R.; Duponnois, R.; Tisseyre, P.; Moullin, L.; Prin, Y. Interdependency of efficient nodulation and arbuscular mycorrhization in Piptadenia gonoacantha, a Brazilian legume tree. Plant Cell Environ. 2018, 41, 2008–2020. [Google Scholar] [CrossRef]
- Challacombe, J.F.; Hesse, C.N.; Bramer, L.M.; McCue, L.A.; Lipton, M.; Purvine, S.; Nicora, C.; Gallegos-Graves, L.V.; Porras-Alfaro, A.; Kuske, C.R. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genom. 2019, 20, 976. [Google Scholar] [CrossRef]
- Scheublin, T.R.; van der Heijden, M.G. Arbuscular mycorrhizal fungi colonize non-fixing root nodules of several legume species. New Phytol. 2006, 172, 732–738. [Google Scholar] [CrossRef]
- Mishra, R.; Kushveer, J.S.; Sarma, V.V. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Frank, A.C.; Saldierna Guzmán, J.P.; Shay, J.E. Transmission of Bacterial Endophytes. Microorganisms 2017, 10, 54–70. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Greenwood, J.S.; Bombarely, A.; Mueller, L.A.; Tsao, R.; Mosser, D.D.; Raizada, M.N. An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr. Biol. 2015, 25, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, K.; Gerlach, N.; Sacristan, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramirez, D.; Bucher, M.; O’Connell, R.J.; et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Hussain, J.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I.J. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 2013, 35, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Enright, D.J.; Frangioso, K.M.; Isobe, K.; Rizzo, D.M.; Glassman, S.I. Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 2022, 31, 2475–2493. [Google Scholar] [CrossRef]
- Sáenz de Miera, L.E.; Pinto, R.; Gutierrez-Gonzalez, J.J.; Calvo, L.; Ansola, G. Wildfire effects on diversity and composition in soil bacterial communities. Sci. Total Environ. 2020, 726, 138636. [Google Scholar] [CrossRef]
- Pulido-Chavez, M.F.; Alvarado, E.C.; DeLuca, T.H.; Edmonds, R.L.; Glassman, S.I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 2021, 485, 118923. [Google Scholar] [CrossRef]
- Holden, S.; Treseder, K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 2012, 109, 49–61. [Google Scholar] [CrossRef]
- Fox, S.; Sikes, B.A.; Brown, S.P.; Cripps, C.L.; Glassman, S.I.; Hughes, K.; Semenova-Nelsen, T.; Jumpponen, A. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycologia 2022, 114, 215–241. [Google Scholar] [CrossRef]
- Dove, N.C.; Hart, S.C. Fire Reduces Fungal Species Richness and In Situ Mycorrhizal Colonization: A Meta-Analysis. Fire Ecol. 2017, 13, 37–65. [Google Scholar] [CrossRef]
- Lyu, D.; Zajonc, J.; Pagé, A.; Tanney, C.A.S.; Shah, A.; Monjezi, N.; Msimbira, L.A.; Antar, M.; Nazari, M.; Backer, R.; et al. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success. Microorganisms 2021, 9, 675. [Google Scholar] [CrossRef] [PubMed]
Microbial Group | Site | Classified Reads | OTUs | Shannon-Wiener Index | Pielou Index | Bray-Curtis Dissimilarity |
---|---|---|---|---|---|---|
Bacteria | Unburnt | 478,853 | 486 ± 90 | 4.15 ± 0.354 | 0.670 ± 0.04 | 0.250 |
Burnt | 320,485 | 410 ± 58 | 4.20 ± 0.187 | 0.651 ± 0.02 | ||
Fungi | Unburnt | 1,054,736 | 705 ± 133 | 3.66 ± 0.186 | 0.518 ± 0.03 | 0.616 |
Burnt | 975,557 | 531 ± 93 | 2.50 ± 0.656 | 0.363 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, J.G.; Máguas, C.; Dias, R.; Nunes, M.; Pascoal, P.; Pereira, M.; Trindade, H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. Biology 2023, 12, 1168. https://doi.org/10.3390/biology12091168
Jesus JG, Máguas C, Dias R, Nunes M, Pascoal P, Pereira M, Trindade H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. Biology. 2023; 12(9):1168. https://doi.org/10.3390/biology12091168
Chicago/Turabian StyleJesus, Joana G., Cristina Máguas, Ricardo Dias, Mónica Nunes, Pedro Pascoal, Marcelo Pereira, and Helena Trindade. 2023. "What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia" Biology 12, no. 9: 1168. https://doi.org/10.3390/biology12091168
APA StyleJesus, J. G., Máguas, C., Dias, R., Nunes, M., Pascoal, P., Pereira, M., & Trindade, H. (2023). What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. Biology, 12(9), 1168. https://doi.org/10.3390/biology12091168