Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fish Handling and Sampling
2.3. Phenotypic Traits
2.3.1. Growth
2.3.2. Feed Intake
2.3.3. Feed Efficiency
2.4. Model Covariates
2.4.1. Microbiome Layer
2.4.2. Proteome Layers
2.4.3. Metabolome Layers
2.4.4. General Composition Layer
2.4.5. Lipid Composition Layer
2.4.6. Blood Biomarker Layer
2.4.7. Haematology Layer
2.4.8. Health Layer
2.5. Data Analyses
2.5.1. Concordance Analysis
2.5.2. Random Block-Based Prediction of Phenotypes
2.5.3. Network Analysis and Inter-Layer Associations
3. Results and Discussion
3.1. Phenotypic Traits
3.2. Covariate Layer Associations
3.3. Integrated Random Block Prediction Accuracies
3.4. Covariate Layer Contributions
3.5. Important Random Block Predictor Variables for Feed Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- New Zealand King Salmon. New Zealand King Salmon Operations Report; New Zealand King Salmon Ltd.: Nelson, New Zealand, 2019. Available online: https://www.mpi.govt.nz/dmsdocument/16102-New-Zealand-King-Salmon-Operations-report (accessed on 28 March 2023).
- Iversen, A.; Asche, F.; Hermansen, Ø.; Nystøyl, R. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 2020, 522, 735089. [Google Scholar] [CrossRef]
- De Verdal, H.; Komen, H.; Quillet, E.; Chatain, B.; Allal, F.; Benzie, J.A.; Vandeputte, M. Improving feed efficiency in fish using selective breeding: A review. Rev. Aquac. 2018, 10, 833–851. [Google Scholar] [CrossRef]
- Zhang, X.; Luan, P.; Cao, D.; Hu, G. A high-density genetic linkage map and fine mapping of QTL for feed conversion efficiency in Common carp (Cyprinus carpio). Front. Genet. 2021, 12, 778487. [Google Scholar] [CrossRef]
- De Verdal, H.; O’Connell, C.M.; Mekkawy, W.; Vandeputte, M.; Chatain, B.; Bégout, M.L.; Benzie, J.A. Agonistic behaviour and feed efficiency in juvenile Nile tilapia Oreochromis niloticus. Aquaculture 2019, 505, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.I.; Conceição, L.E.; Schrama, J.W. Feeding behavior and stress response explain individual differences in feed efficiency in juveniles of Nile tilapia Oreochromis niloticus. Aquaculture 2011, 312, 192–197. [Google Scholar] [CrossRef]
- Carter, C.; Houlihan, D.; Keissling, A.; Medale, F.; Jobling, M. Physiological effects of feeding. In Food Intake in Fish; Houlihan, D., Boujard, T., Jobling, M., Eds.; Blackwell Science: Oxford, UK, 2001; pp. 297–331. [Google Scholar]
- Lemieux, H.; Blier, P.; Dutil, J.D. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol. Biochem. 1999, 20, 293–303. [Google Scholar] [CrossRef]
- Dawood, M.A.; Magouz, F.I.; Salem, M.F.; Elbialy, Z.I.; Abdel-Daim, H.A. Synergetic effects of Lactobacillus plantarum and β-glucan on digestive enzyme activity, intestinal morphology, growth, fatty acid, and glucose-related gene expression of genetically improved farmed tilapia. Probiotics Antimicrob. Proteins 2020, 12, 389–399. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Sschrama, J.W. Bioenergetics. In Fish Nutrition, 4th ed.; Hardy, R.W., Kaushik, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 17–56. [Google Scholar]
- Dvergedal, H.; Ødegård, J.; Øverland, M.; Mydland, L.T.; Klemetsdal, G. Selection for feed efficiency in Atlantic salmon using individual indicator traits based on stable isotope profiling. Genet. Sel. Evol. 2019, 51, 13. [Google Scholar] [CrossRef] [Green Version]
- Dvergedal, H.; Harvey, T.N.; Jin, Y.; Ødegård, J.; Grønvold, L.; Sandve, S.R.; Våge, D.I.; Moen, T.; Klemetsdal, G. Genomic regions and signaling pathways associated with indicator traits for feed efficiency in juvenile Atlantic salmon (Salmo salar). Genet. Sel. Evol. 2020, 52, 66. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, M.; Dodds, K.; Walker, S.; Clarke, S.; Tate, M.; Slattery, T.; Preece, M.; Arratia, L.; Symonds, J. Opportunities for improving feed efficiency and spinal health in New Zealand farmed Chinook salmon (Oncorhynchus tshawytscha) using genomic information. Aquaculture 2023, 563, 738936. [Google Scholar] [CrossRef]
- Carter, C.G.; Houlihan, D.F.; Buchanan, B.; Mitchell, A.I. Growth and feed utilization efficiencies of seawater Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzymes. Aquac. Res. 1994, 25, 37–46. [Google Scholar] [CrossRef]
- Hardy, R.W.; Kaushik, S.J. (Eds.) Fish Nutrition, 4th ed.; Academic Press: Cambridge, MA, USA, 2022; p. 905. [Google Scholar]
- Elvy, J.E.; Symonds, J.E.; Hilton, Z.; Walker, S.P.; Tremblay, L.A.; Casanovas, P.; Herbert, N.A. The relationship of feed intake, growth, nutrient retention, and oxygen consumption to feed conversion ratio of farmed saltwater Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 2022, 554, 738184. [Google Scholar] [CrossRef]
- Esmaeili, M.; Carter, C.G.; Wilson, R.; Walker, S.P.; Miller, M.R.; Bridle, A.; Symonds, J.E. Proteomic investigation of liver and white muscle in efficient and inefficient Chinook salmon (Oncorhynchus tshawytscha): Fatty acid metabolism and protein turnover drive feed efficiency. Aquaculture 2021, 542, 736855. [Google Scholar] [CrossRef]
- Esmaeili, N.; Carter, C.G.; Wilson, R.; Walker, S.P.; Miller, M.R.; Bridle, A.R.; Young, T.; Alfaro, A.C.; Laroche, O.; Symonds, J.E. An integrated proteomics and metabolomics investigation of feed efficiency in seawater reared Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 2023, 562, 738845. [Google Scholar] [CrossRef]
- Esmaeili, M.; Carter, C.G.; Wilson, R.; Walker, S.P.; Miller, M.R.; Bridle, A.R.; Symonds, J.E. Proteomic investigation of brain, liver and intestine in high feed intake and low feed intake Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 2022, 551, 737915. [Google Scholar] [CrossRef]
- Esmaeili, M.; Carter, C.G.; Wilson, R.; Walker, S.P.; Miller, M.R.; Bridle, A.R.; Symonds, J.E. Protein metabolism in the liver and white muscle is associated with feed efficiency in Chinook salmon (Oncorhynchus tshawytscha) reared in seawater: Evidence from proteomic analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 42, 100994. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Scott-Boyer, M.P.; Bodein, A.; Périn, O.; Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef]
- Love, M. Awesome Multi-Omics; Github: San Francisco, CA, USA, 2023; Available online: https://github.com/mikelove/awesome-multi-omics (accessed on 15 July 2023).
- Maghsoudi, Z.; Nguyen, H.; Tavakkoli, A.; Nguyen, T. A comprehensive survey of the approaches for pathway analysis using multi-omics data integration. Brief. Bioinform. 2022, 23, bbac435. [Google Scholar] [CrossRef]
- Zhou, G.; Li, S.; Xia, J. Network-based approaches for multi-omics integration. Comput. Methods Data Anal. Metab. 2020, 2104, 469–487. [Google Scholar]
- Agamah, F.E.; Bayjanov, J.R.; Niehues, A.; Njoku, K.F.; Skelton, M.; Mazandu, G.K.; Ederveen, T.H.; Mulder, N.; Chimusa, E.R.; t Hoen, P.A. Computational approaches for network-based integrative multi-omics analysis. Front. Mol. Biosci. 2022, 9, 1214. [Google Scholar] [CrossRef] [PubMed]
- Bartmanski, B.J.; Rocha, M.; Zimmermann-Kogadeeva, M. Recent advances in data- and knowledge-driven approaches to explore primary microbial metabolism. Curr. Opin. Chem. Biol. 2023, 75, 102324. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.; Wright, M.N. Block Forests: Random forests for blocks of clinical and omics covariate data. BMC Bioinform. 2019, 20, 358. [Google Scholar] [CrossRef]
- Petralia, F.; Wang, P.; Yang, J.; Tu, Z. Integrative random forest for gene regulatory network inference. Bioinformatics 2015, 31, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Sarica, A.; Cerasa, A.; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review. Front. Aging Neurosci. 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedemann, C. On the Multiplicity of Analysis Strategies and the Resulting Biased Interpretations of a Large-Scale Benchmark Study. Ph.D. Dissertation, Ludwig Maximilian University of Munich, Munich, Germany, 2020. [Google Scholar]
- Herrmann, M.; Probst, P.; Hornung, R.; Jurinovic, V.; Boulesteix, A.L. Large-scale benchmark study of survival prediction methods using multi-omics data. Brief. Bioinform. 2021, 22, bbaa167. [Google Scholar] [CrossRef] [PubMed]
- Wissel, D.; Rowson, D.; Boeva, V. Clinically driven knowledge distillation for sparsifying high-dimensional multi-omics survival models. bioRxiv 2022. [Google Scholar] [CrossRef]
- Walker, S.P.; Ingram, M.; Bailey, J.; Dodds, K.G.; Fisher, P.J.; Amer, P.R.; Symonds, J.E. Chinook salmon (Oncorhynchus tshawytscha) feed conversion efficiency: Evaluation and potential for selection. Proc. N. Z. Soc. Anim. Prod. 2012, 72, 227–230. [Google Scholar]
- Zhao, R.; Symonds, J.E.; Walker, S.P.; Steiner, K.; Carter, C.G.; Bowman, J.P.; Nowak, B.F. Effects of feed ration and temperature on Chinook salmon (Oncorhynchus tshawytscha) microbiota in freshwater recirculating aquaculture systems. Aquaculture 2021, 543, 736965. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P.; Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 2018, 34, 2292–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, C.S.; Sorensen, P.H.; Morin, G.B. A standardized and reproducible proteomics protocol for bottom-up quantitative analysis of protein samples using SP3 and mass spectrometry. Proteom. Biomark. Discov. Methods Protoc. 2019, 1959, 65–87. [Google Scholar]
- Johnson, W.E.; Li, C. Adjusting batch effects in microarray experiments with small sample size using empirical Bayes methods. In Batch Effects and Noise in Microarray Experiments: Sources and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 113–129. [Google Scholar]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Villas-Bôas, S.G.; Smart, K.F.; Sivakumaran, S.; Lane, G.A. Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 2011, 1, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Pinu, F.R.; Edwards, P.J.; Jouanneau, S.; Kilmartin, P.A.; Gardner, R.C.; Villas-Boas, S.G. Sauvignon blanc metabolomics: Grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics 2014, 10, 556–573. [Google Scholar] [CrossRef]
- Smart, K.F.; Aggio, R.B.; Van Houtte, J.R.; Villas-Bôas, S.G. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat. Protoc. 2010, 5, 1709–1729. [Google Scholar] [CrossRef]
- Aggio, R.; Villas− Bôas, S.G.; Ruggiero, K. Metab: An R package for high-throughput analysis of metabolomics data generated by GC-MS. Bioinformatics 2011, 27, 2316–2318. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Kind, T.; Cajka, T.; Hazen, S.L.; Tang, W.W.; Kaddurah-Daouk, R.; Irvin, M.R.; Arnett, D.K.; Barupal, D.K.; Fiehn, O. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal. Chem. 2019, 91, 3590–3596. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). International Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Miller, M.R.; Puddick, J.; Symonds, J.E.; Walker, S.P.; Tian, H. Application of a Fourier transform—Near infrared reflectance spectroscopy method for the rapid proximate analysis of the greenshell mussel (Perna canaliculus) and king (Chinook) salmon (Oncorhynchus tshawytscha). Aquac. Res. 2019, 50, 1668–1677. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Casanovas, P.; Walker, S.P.; Johnston, H.; Johnston, C.; Symonds, J.E. Comparative assessment of blood biochemistry and haematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater farms. Aquaculture 2021, 537, 736464. [Google Scholar] [CrossRef]
- Araújo, B.C.; Symonds, J.E.; Walker, S.P.; Miller, M.R. Effects of fasting and temperature on the biological parameters, proximal composition, and fatty acid profile of Chinook salmon (Oncorhynchus tshawytscha) at different life stages. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022, 264, 111113. [Google Scholar] [CrossRef]
- Zarkasi, K.Z.; Taylor, R.S.; Abell, G.C.; Tamplin, M.L.; Glencross, B.D.; Bowman, J.P. Atlantic salmon (Salmo salar L.) gastrointestinal microbial community dynamics in relation to digesta properties and diet. Microb. Ecol. 2016, 71, 589–603. [Google Scholar] [CrossRef]
- Jackson, D.A. PROTEST: A PROcrustean Randomization TEST of community environment concordance. Écoscience 1995, 2, 297–303. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: http://ggplot2.org (accessed on 5 October 2022).
- Shi, L.; Westerhuis, J.A.; Rosén, J.; Landberg, R.; Brunius, C. Variable selection and validation in multivariate modelling. Bioinformatics 2019, 35, 972–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E.; Dupont, C. Hmisc: Harrell Miscellaneous; R Package Version 4.5-0; HBIOSTAT: Nashville, TN, USA, 2021. [Google Scholar]
- Pedersen, T.L. Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks (2.0.5). 2021. Available online: https://cran.r-project.org/package=ggraph%7D (accessed on 5 October 2022).
- Melnik, A.V.; da Silva, R.R.; Hyde, E.R.; Aksenov, A.A.; Vargas, F.; Bouslimani, A.; Protsyuk, I.; Jarmusch, A.K.; Tripathi, A.; Alexandrov, T.; et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal. Chem. 2017, 89, 7549–7559. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Biagi, E.; Rampelli, S.; Fiori, J.; Soverini, M.; Audu, H.J.; Cristino, S.; Caporali, L.; Schnorr, S.L.; Carelli, V.; et al. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep. 2018, 23, 3056–3067. [Google Scholar] [CrossRef]
- Yuan, C.; Graham, M.; Staley, C.; Subramanian, S. Mucosal microbiota and metabolome along the intestinal tract reveal a location-specific relationship. Msystems 2020, 5, e00055-20. [Google Scholar] [CrossRef]
- Raposo de Magalhães, C.S.F.; Cerqueira, M.A.C.; Schrama, D.; Moreira, M.J.V.; Boonanuntanasarn, S.; Rodrigues, P.M.L. A Proteomics and other omics approach in the context of farmed fish welfare and biomarker discovery. Rev. Aquac. 2020, 12, 122–144. [Google Scholar] [CrossRef]
- Natnan, M.E.; Low, C.F.; Chong, C.M.; Bunawan, H.; Baharum, S.N. Integration of omics tools for understanding the fish immune response due to microbial challenge. Front. Mar. Sci. 2021, 8, 668771. [Google Scholar] [CrossRef]
- Natnan, M.E.; Mayalvanan, Y.; Jazamuddin, F.M.; Aizat, W.M.; Low, C.F.; Goh, H.H.; Azizan, K.A.; Bunawan, H.; Baharum, S.N. Omics strategies in current advancements of infectious fish disease management. Biology 2021, 10, 1086. [Google Scholar] [CrossRef] [PubMed]
- Shivam, S.; El-Matbouli, M.; Kumar, G. Development of fish parasite vaccines in the OMICs era: Progress and opportunities. Vaccines 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ekine-Dzivenu, C.; Vinsky, M.; Basarab, J.A.; Aalhus, J.L.; Dugan, M.E.R.; Li, C. Phenotypic and genetic relationships of residual feed intake measures and their component traits with fatty acid composition in subcutaneous adipose of beef cattle. J. Anim. Sci. 2017, 95, 2813–2824. [Google Scholar] [CrossRef]
- Acharjee, A.; Kloosterman, B.; Visser, R.G.; Maliepaard, C. Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinform. 2016, 17, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, F.; Seifert, S.; Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform. 2019, 20, 492–503. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, D.; Austin, B. Recovery of an extremely proteolytic form of Serratia liquefaciens as a pathogen of Atlantic salmon, Salmo solar, in Scotland. J. Fish Biol. 1990, 36, 765–772. [Google Scholar] [CrossRef]
- Aydin, S.; Erman, Z.; Bilgin, Ö.C. Investigations of Serratia liquefaciens infection in rainbow trout (Oncorhynchus mykiss Walbaum). Turk. J. Vet. Anim. Sci. 2001, 25, 643–650. [Google Scholar]
- Crouse, C.; Davidson, J.; May, T.; Summerfelt, S.; Good, C. Production of market-size European strain Atlantic salmon (Salmo salar) in land-based freshwater closed containment aquaculture systems. Aquac. Eng. 2021, 92, 102138. [Google Scholar] [CrossRef]
- Matter, A.F.; El Asely, A.M.; Shaheen, A.A.; El-Gawad, E.A.A.; El-Abd, H.; Abbass, A.A. Phenotypic and molecular characterization of bacterial pathogens isolated from diseased freshwater fishes. Int. J. Fish. Aquat. Stud. 2018, 6, 34–41. [Google Scholar]
- Lane, H.S.; Brosnahan, C.L.; Poulin, R. Aquatic disease in New Zealand: Synthesis and future directions. N. Z. J. Mar. Freshw. Res. 2022, 56, 1–42. [Google Scholar] [CrossRef]
- Lindholm-Perry, A.K.; Kuehn, L.A.; Wells, J.E.; Rempel, L.A.; Chitko-McKown, C.G.; Keel, B.N.; Oliver, W.T. Hematology parameters as potential indicators of feed efficiency in pigs. Transl. Anim. Sci. 2021, 5, txab219. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.; Tavares, L.C.; Rito, J.; Henriques, L.F.; Silva, J.G.; Ozório, R.; Pardal, M.A.; Magnoni, L.J.; Viegas, I. Metabolic effects of dietary glycerol supplementation in muscle and liver of European seabass and rainbow trout by 1H NMR metabolomics. Metabolites 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Mauerwerk, M.T.; Zadinelo, I.V.; Meurer, F. Use of glycerol in fish nutrition: A review. Rev. Aquac. 2021, 13, 853–861. [Google Scholar] [CrossRef]
- Todgham, A.E.; Anderson, P.M.; Wright, P.A. Effects of exercise on nitrogen excretion, carbamoyl phosphate synthetase III activity and related urea cycle enzymes in muscle and liver tissues of juvenile rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 129, 527–539. [Google Scholar] [CrossRef]
- Clark, T.C.; Tinsley, J.; Macqueen, D.J.; Martin, S.A.M. Rainbow trout (Oncorhynchus mykiss) urea cycle and polyamine synthesis gene families show dynamic expression responses to inflammation. Fish Shellfish. Immunol. 2019, 89, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.H.; Smich, J.; Rubino, J.G.; Wood, C.M. An in vitro study of urea and ammonia production and transport by the intestinal tract of fed and fasted rainbow trout: Responses to luminal glutamine and ammonia loading. J. Comp. Physiol. B 2021, 191, 273–287. [Google Scholar] [CrossRef]
- Wang, J.; Lin, J.; Wang, J.; Wu, S.; Qi, G.; Zhang, H.; Song, Z. Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chickens. Poult. Sci. 2020, 99, 3583–3593. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, L.; Xu, G.; Wu, Q.; Xiong, D.; Guo, Y.; Tan, W.; Xu, D. Effects of arginine on the regulation of the growth, the blood amino acid composition and the fat deposition in Nile tilapia (Oreochromis niloticus). Acta Hydrobiol. Sin. 2015, 39, 490–497. [Google Scholar]
- Li, W.; Liu, B.; Liu, A.; Han, M.; Yin, Y.; Xu, G.; Cheng, W.; Xie, L. Dietary supplementation of N-carbamylglutamate promotes growth performance by modulating the homeostasis of gut microbiota in tilapia (Oreochromis niloticus). Aquac. Rep. 2021, 20, 100750. [Google Scholar] [CrossRef]
- Wright, P.A.; Land, M.D. Urea production and transport in teleost fishes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 119, 47–54. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, A.L.; Telezhenetskaya, M.V. Quinazoline alkaloids in nature. Chem. Nat. Compd. 1997, 33, 221–267. [Google Scholar] [CrossRef]
- Ratnayake, W.N.; Galli, C. Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism. Ann. Nutr. Metab. 2009, 55, 8–43. [Google Scholar] [CrossRef] [PubMed]
- Gylfason, G.A.; Knútsdóttir, E.; Ásgeirsson, B. Nervonic acid (24: 1n-9) is a dominant unsaturated fatty acid in the intestinal brush border of Atlantic cod. Lipid Insights 2012, 5, LPI-S10291. [Google Scholar] [CrossRef]
- Nobrega, R.O.; Banze, J.F.; Batista, R.O.; Fracalossi, D.M. Improving winter production of Nile tilapia: What can be done? Aquac. Rep. 2020, 18, 100453. [Google Scholar] [CrossRef]
Covariate Class | Feature Type | Sample Type | N Layers | N Features | |
---|---|---|---|---|---|
Non-clinical | Microbiome | Microbial ASVs | F | 1 | 135 |
Proteome | Proteins | L, M | 2 | 3223 | |
Metabolome | Metabolites | L, M P | 6 | 556 | |
General composition | Macromolecules | WB, Fi | 1 | 28 | |
Lipid composition | Fatty acids | WB | 1 | 32 | |
Clinical | Blood biomarkers | Proteins and Metabolites | B | 1 | 24 |
Haematology indices | Blood cell profiles | B | 1 | 12 | |
Health indices | Organs | O | 1 | 5 | |
Total | 14 | 4077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, T.; Laroche, O.; Walker, S.P.; Miller, M.R.; Casanovas, P.; Steiner, K.; Esmaeili, N.; Zhao, R.; Bowman, J.P.; Wilson, R.; et al. Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates. Biology 2023, 12, 1135. https://doi.org/10.3390/biology12081135
Young T, Laroche O, Walker SP, Miller MR, Casanovas P, Steiner K, Esmaeili N, Zhao R, Bowman JP, Wilson R, et al. Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates. Biology. 2023; 12(8):1135. https://doi.org/10.3390/biology12081135
Chicago/Turabian StyleYoung, Tim, Olivier Laroche, Seumas P. Walker, Matthew R. Miller, Paula Casanovas, Konstanze Steiner, Noah Esmaeili, Ruixiang Zhao, John P. Bowman, Richard Wilson, and et al. 2023. "Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates" Biology 12, no. 8: 1135. https://doi.org/10.3390/biology12081135
APA StyleYoung, T., Laroche, O., Walker, S. P., Miller, M. R., Casanovas, P., Steiner, K., Esmaeili, N., Zhao, R., Bowman, J. P., Wilson, R., Bridle, A., Carter, C. G., Nowak, B. F., Alfaro, A. C., & Symonds, J. E. (2023). Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates. Biology, 12(8), 1135. https://doi.org/10.3390/biology12081135