Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Measures and Experimental Procedure
2.2.1. Demographics
2.2.2. Blood Methodology
2.2.3. Biomechanical and Cognitive-Motor Tasks
2.3. Experimental Procedure
2.3.1. Whole-Body Movement and Coordination Testing
2.3.2. Sports Performance Analysis
2.4. Data Processing
2.4.1. Whole-Body Movement and Coordination Testing
2.4.2. Cognitive-Motor Tasks
2.5. Statistical Analysis
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IMPACT | Movement & Performance from Acute & Chronic Head Trauma |
RCT | Randomized controlled trial |
SRC | Sports-related concussion |
SCAT5 | Sport Concussion Assessment Tool-5th Edition |
S100B | Protein S100B |
CK | Creatine kinase |
NSE | Neuron-specific enolase |
BDNF | Brain-derived neurotrophic factor |
GFAP | Glial fibrillary acidic protein |
UCHL1 | Ubiquitin carboxyl-terminal esterase L1 |
CT | Computed tomography |
mTBI | Mild traumatic brain injury |
SG | Sport-event group |
CG | Control group |
SST | Serum separation vacutainer tubes |
ELISA | Enzyme-linked immunosorbent assay |
fNIRS | Functional Near-Infrared Spectroscopy |
MMSE | Mini-Mental State Examination |
FTT | Finger-tapping test |
HSR | High-speed running |
GPS | Global positioning system |
LPS | Local positioning system |
SCS | Segment coordinate system |
References
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.A.; Kane, S.; Kontos, A.P.; Leddy, J.J.; McCrea, M.A.; Poddar, S.K.; et al. American medical society for sports medicine position statement on concussion in sport. Clin. J. Sport Med. 2019, 29, 87–100. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. Sport concussion assessment tool-5th edition. Br. J. Sports Med. 2017, 51, 851–858. [Google Scholar] [CrossRef]
- Dechambre, X.; Carling, C.; Mrozek, S.; Pillard, F.; Decq, P.; Piscione, J.; Yrondi, A.; Brauge, D. What is the impact of physical effort on the diagnosis of concussion? Clin. J. Sport Med. 2019, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.; Brown, J.; Falvey, E.; Fuller, G.; Raftery, M. The effect of exercise on baseline SCAT5 performance in male professional rugby players. Sports Med.-Open 2020, 6, 37. [Google Scholar] [CrossRef]
- Bouvier, D.; Duret, T.; Abbot, M.; Stiernon, T.; Pereira, B.; Coste, A.; Chazal, J.; Sapin, V. Utility of S100B serum level for the determination of concussion in male rugby players. Sports Med. 2017, 47, 781–789. [Google Scholar] [CrossRef]
- Kiechle, K.; Bazarian, J.J.; Merchant-Borna, K.; Stoecklein, V.; Rozen, E.; Blyth, B.; Huang, J.H.; Dayawansa, S.; Kanz, K.; Biberthaler, P. Subjects-specific increases in serum s-100b distinguish sports-related concussion from sports-related exertion. PLoS ONE 2014, 9, e84977. [Google Scholar] [CrossRef]
- Asken, B.M.; Bauer, R.M.; DeKosky, S.T.; Svingos, A.M.; Hromas, G.; Boone, J.K.; DuBose, D.N.; Hayes, R.L.; Clugston, J.R. Concussion BASICS III: Serum biomarker changes following sport-related concussion. Neurology 2018, 91, e2133–e2143. [Google Scholar] [CrossRef]
- Graham, M.R.; Myers, T.; Evans, P.; Davies, B.; Cooper, S.M.; Bhattacharya, K.; Grace, F.M.; Baker, J.S. Direct hits to the head during amateur boxing is associated with a rise in serum biomarkers for brain injury. Int. J. Immunopathol. Pharmacol. 2011, 24, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.R.; Pates, J.; Davies, B.; Cooper, S.M.; Bhattacharya, K.; Evans, P.J.; Baker, J.S. Should an increase in cerebral neurochemicals following head kicks in full contact karate influence return to play? Int. J. Immunopathol. Pharmacol. 2015, 28, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Rogatzki, M.J.; Soja, S.E.; McCabe, C.A.; Breckenridge, R.E.; White, J.L.; Baker, J.S. Biomarkers of brain injury following an American football game: A pilot study. Int. J. Immunopathol. Pharmacol. 2016, 29, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Shahim, P.; Tegner, Y.; Marklund, N.; Blennow, K.; Zetterberg, H. Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology 2018, 90, e1780–e1788. [Google Scholar] [CrossRef] [Green Version]
- Shahim, P.; Tegner, Y.; Wilson, D.H.; Randall, J.; Skillbäck, T.; Pazooki, D.; Kallberg, B.; Blennow, K.; Zetterberg, H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014, 71, 684–692. [Google Scholar] [CrossRef]
- Meier, T.B.; Nelson, L.D.; Huber, D.L.; Bazarian, J.J.; Hayes, R.L.; McCrea, M.A. Prospective assessment of acute blood markers of brain injury in sport-related concussion. J. Neurotrauma 2017, 34, 3134–3142. [Google Scholar] [CrossRef]
- Kawata, K.; Rubin, L.H.; Takahagi, M.; Lee, J.H.; Sim, T.; Szwanki, V.; Bellamy, A.; Tierney, R.; Langford, D. Subconcussive impact-dependent increase in plasma S100B levels in collegiate football players. J. Neurotrauma 2017, 34, 2254–2260. [Google Scholar] [CrossRef]
- O’Connell, B.; Wilson, F.; Boyle, N.; O’Dwyer, T.; Denvir, K.; Farrell, G.; Kelly, A.M. Effect of match play and training on circulating S100B concentration in professional rugby players. Brain Inj. 2018, 32, 1811–1816. [Google Scholar] [CrossRef]
- Straume-Naesheim, T.M.; Andersen, T.E.; Jochum, M.; Dvorak, J.; Bahr, R. Minor head trauma in soccer and serum levels of S100B. Neurosurgery 2008, 62, 1297–1306. [Google Scholar] [CrossRef]
- Meier, T.B.; Huber, D.L.; Bohorquez-Montoya, L.; Nitta, M.E.; Savitz, J.; Teague, T.K.; Bazarian, J.J.; Hayes, R.L.; Nelson, L.D.; McCrea, M.A. A prospective study of acute blood-based biomarkers for sport-related concussion. Ann. Neurol. 2020, 87, 907–920. [Google Scholar] [CrossRef]
- Stålnacke, B.M.; Ohlsson, A.; Tegner, Y.; Sojka, P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br. J. Sports Med. 2006, 40, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Stålnacke, B.M.; Tegner, Y.; Sojka, P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: A pilot study. Brain Inj. 2004, 18, 899–909. [Google Scholar] [CrossRef]
- Stålnacke, B.M.; Tegner, Y.; Sojka, P. Playing ice hockey and basketball increases serum levels of S-100B in elite players: A pilot study. Clin. J. Sport Med. 2003, 13, 292–302. [Google Scholar] [CrossRef]
- Zonner, S.W.; Ejima, K.; Bevilacqua, Z.W.; Huibregtse, M.E.; Charleston, C.; Fulgar, C.; Kawata, K. Association of increased serum S100B levels with high school football subconcussive head impacts. Front. Neurol. 2019, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Rogatzki, M.J.; Keuler, S.A.; Harris, A.E.; Ringgenberg, S.W.; Breckenridge, R.E.; White, J.L.; Baker, J.S. Respons of protein S100B to playing American football, lifting weights, and treadmill running. Scand. J. Med. Sci. Sports 2018, 28, 2505–2514. [Google Scholar] [CrossRef] [Green Version]
- Stocchero, C.M.; Oses, J.P.; Cunha, G.S.; Martins, J.B.; Brum, L.M.; Zimmer, E.R.; Souza, D.O.; Portela, L.V.; R-Oliveira, A. Serum S100B level increases after running but not cycling exercise. Appl. Physiol. Nutr. Metab. 2014, 39, 340–344. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Mooren, F.C.; von Ahsen, N.; Keyvani, K.; Fromme, A.; Schwarze-Eicker, K.; Senner, V.; Paulus, W. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology 2004, 62, 1634–1636. [Google Scholar] [CrossRef]
- Otto, M.; Holthusen, S.; Bahn, E.; Sohnchen, N.; Wiltfang, J.; Geese, R. Boxing and running lead to a rise in serum levels of S-100B protein. Int. J. Sports Med. 2000, 21, 551–555. [Google Scholar] [CrossRef]
- Kawata, K.; Liu, C.Y.; Merkel, S.F.; Ramirez, S.H.; Tierney, R.T.; Langford, D. Blood biomarker for brain injury: What are we measuring? Neurosci. Biobehav. Rev. 2016, 68, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Di Battista, A.P.; Moes, K.A.; Shiu, M.Y.; Hutchison, M.G.; Churchill, N.; Thomas, S.G.; Rhind, S.G. High-intensity interval training is associated with alterations in blood biomarkers related to brain injury. Front. Physiol. 2018, 9, 1367. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, M.O.; Tort, A.B.; Schaf, D.V.; Farina, M.; Goncalves, C.A.; Souza, D.O.; Portela, L.V. Increase in serum S100B protein level after a swimming race. Can. J. Appl. Physiol. 2003, 28, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, D.B.; Cornwall, E.H.; Landar, A.; Song, W. The S100 protein family: History, function, and expression. Brain Res. Bull. 1995, 37, 417–429. [Google Scholar] [CrossRef]
- Apple, F.S.; Hellsten, Y.; Clarkson, P.M. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise. Clin. Chem. 1988, 34, 1102–1104. [Google Scholar] [CrossRef]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, O.; Giannitsis, E.; Huber, K.; Mockel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart Journal. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar]
- El-Menyar, A.; Sathian, B.; Wahlen, B.M.; Al-Thani, H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: A meta-analysis. Am. J. Emerg. Med. 2019, 37, 133–142. [Google Scholar] [PubMed] [Green Version]
- Hamdi, E.; Taema, K.; Shehata, M.; Radwan, W. Predictive value of cardiac troponin I in traumatic brain injury. Egypt. J. Neurol. Psychiatry Neurosurg. 2012, 49, 365–373. [Google Scholar]
- Cai, S.S.; Bonds, B.W.; Hu, P.F.; Stein, D.M. The role of cardiac troponin I in prognostication of patients with isolated severe traumatic brain injury. J. Trauma Acute Care Surg. 2016, 80, 477–483. [Google Scholar]
- Stavroulakis, G.A.; George, K.P. Exercise-induced release of troponin. Clin. Cardiol. 2020, 43, 872–881. [Google Scholar] [CrossRef] [Green Version]
- King, L.R.; McLaurin, R.L.; Lewis, H.P.; Knowles, H.C., Jr. Plasma cortisol levels after head injury. Ann. Surg. 1970, 172, 975–984. [Google Scholar] [CrossRef]
- Sterczala, A.J.; Flanagan, S.D.; Looney, D.P.; Hooper, D.R.; Szivak, T.K.; Comstock, B.A.; DuPont, W.H.; Martin, G.J.; Volek, J.S.; Maresh, C.M. Similar hormonal stress and tissue damage in response to National Collegiate Athletic Association Division I football games played in two consecutive seasons. J. Strength Cond. Res. 2014, 28, 3234–3238. [Google Scholar] [CrossRef]
- Zetterberg, H.; Tanriverdi, F.; Unluhizarci, K.; Selcuklu, A.; Kelestimur, F.; Blennow, K. Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj. 2009, 23, 723–726. [Google Scholar] [CrossRef]
- Domingos, C.; Pego, J.M.; Santos, N.C. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav. Brain Res. 2020; online ahead of print. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on symaptic plasticity and cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar]
- Tylicka, M.; Matuszczak, E.; Hermanowicz, A.; Debek, W.; Karpińska, M.; Kamińska, J.; Koper-Lenkiewicz, O.M. BDNF and IL-8, but not UCHL-1 and IL-11, are markers of brain injury in children caused by mild head trauma. Brain Sci. 2020, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Piastra, M.; Polidori, G.; Di Rocco, C.; Caresta, E.; Antonelli, A.; Amendola, T.; Aloe, L. Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Med. 2003, 29, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Barone, G.; Antonelli, A.; Pezzotti, P.; Genovese, O.; Tortorolo, L.; Conti, G. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009, 72, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, C.; Michalski, B.; Toepp, S.L.; Turco, C.V.; D’Hoine, T.; Harasym, D.; Gibala, M.J.; Fahnestock, M.; Nelson, A.J. A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary, healthy males. Neuroscience 2020, 437, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.W.; Chu, E.; Hui, T.; Helmeste, D.; Law, C. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci. Lett. 2008, 431, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ferris, L.T.; Williams, J.S.; Shen, C.-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef]
- Marquez, C.M.S.; Vanaudenaerde, B.; Troosters, T.; Wenderoth, N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015, 119, 1363–1373. [Google Scholar] [CrossRef] [Green Version]
- Goekint, M.; Heyman, E.; Roelands, B.; Njemini, R.; Bautmans, I.; Mets, T.; Meeusen, R. No influence of noradrenaline manipulation on acute exercise-induced increase of brain-derived neurotrophic factor. Med. Sci. Sports Exerc. 2008, 40, 1990–1996. [Google Scholar] [CrossRef]
- Heyman, E.; Gamelin, F.-X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; Marzo, V.D.; Meeusen, R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans-possible implications for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.D.; Ayaz, S.I.; Lewis, L.M.; Unden, J.; Chen, J.Y.; Mika, V.H.; Saville, B.; Tyndall, J.A.; Nash, M.; Buki, A. Ability of serum glial fibrillary acidic protein, ubiquitin c-terminal hydrolas-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J. Neurotrauma 2016, 33, 203–214. [Google Scholar] [CrossRef]
- FDA Authorizes Marketing of First Blood Test to Aid in the Evaluation of Concussion in Adults. 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults (accessed on 30 September 2020).
- Patricios, J.; Fuller, G.W.; Ellenbogen, R.; Herring, S.; Kutcher, J.S.; Loosemore, M.; Makdissi, M.; MacCrea, M.; Putukian, M.; Schneider, K.J. What are the critical elements of sideline screening that can be used to establish the diagnosis of concussion? A systematic review. Br. J. Sports Med. 2017, 51, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, T.; Parkkari, J.; Howell, D.R.; Palola, V.; Seppänen, A.; Tuominen, M.; Lverson, G.L.; Luoto, T.M. Reliability of the Sport Concussion Assessment Tool 5 baseline testing: A 2-week test-retest study. J. Sci. Med. Sport 2021, 24, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, D.; Osternig, L.; van Donkelaar, P.; Mayr, U.; Chou, L.S. Effects of concussion on attention and executive function in adolescents. Med. Sci. Sports Exerc. 2013, 45, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Willer, B.S.; Tiso, M.; Haider, M.N.; Hinds, A.L.; Baker, J.G.; Miecznikowski, J.C.; Leddy, J.J. Evaluation of executive function and mental health in retired contact sport athletes. J. Head Trauma Rehabil. 2018, 33, E9–E15. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Fos, L.A.; Greve, K.W.; Hammond, J.S. Assessment of executive function in patients with mild traumatic brain injury. J. Trauma 1999, 46, 159–163. [Google Scholar] [CrossRef]
- Guskiewicz, K.M.; McCrea, M.; Marshall, S.W.; Cantu, R.C.; Barr, W.; Onate, J.A.; Kelly, J.P. Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA concussion study. JAMA 2003, 290, 2549–2555. [Google Scholar] [CrossRef] [Green Version]
- Houston, M.N.; Hoch, J.M.; Cameron, K.L.; Abt, J.P.; Peck, K.Y.; Hoch, M.C. Sex and number of concussions influence the association between concussion and musculoskeletal injury history in collegiate athletes. Brain Inj. 2018, 32, 1353–1358. [Google Scholar] [CrossRef]
- Buckley, T.A.; Munkasy, B.A.; Clouse, B.P. Sensitivity and specificity of the modified balance error scoring system in concussed collegiate student athletes. Clin. J. Sport Med. 2018, 28, 174–176. [Google Scholar] [CrossRef]
- King, L.A.; Horak, F.B.; Mancini, M.; Pierce, D.; Priest, K.C.; Chesnutt, J.; Sullivan, P.; Chapman, J.C. Instrumenting the balance error scoring system for use with patients reporting persistent balance problems after mild traumatic brain injury. Arch. Phys. Med. Rehabil. 2014, 95, 353–359. [Google Scholar] [CrossRef]
- Manaseer, T.S.; Gross, D.P.; Dennett, L.; Schneider, K.; Whittaker, J.L. Gait deviations associated with concussion: A systematic review. Clin. J. Sport Med. 2020, 30, S11–S28. [Google Scholar] [CrossRef] [PubMed]
- Fino, P.C.; Parrignton, L.; Pitt, W.; Martini, D.N.; Chesnutt, J.C.; Chou, L.S.; King, L.A. Detecting gait abnormalities after concussion on mild traumatic brain injury: A systematic review of single-task, dual-task, and comple gait. Gait Posture 2018, 62, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Howell, D.R.; Lynall, R.C.; Buckley, T.A.; Herman, D.C. Neuromuscular control deficits and the risk of subsequent injury after a concussion: A scoping review. Sports Med. 2018, 48, 1097–1115. [Google Scholar] [CrossRef] [PubMed]
- Lempke, L.B.; Howell, D.R.; Eckner, J.T.; Lynall, R.C. Examination of reaction time deficits following concussion: A systemic review and meta-analysis. Sports Med. 2020, 50, 1341–1359. [Google Scholar] [CrossRef]
- Tiffin, J. Purdue Pegboard Examiner’s Manual; London House: Rosemont, IL, USA, 1968. [Google Scholar]
- Tiffin, J.; Asher, E.J. The Purdue Pegboard: Norms and studies of reliability and validity. J. Appl. Psychol. 1948, 32, 234. [Google Scholar] [CrossRef]
- Shirani, A.; Newton, B.D.; Okuda, D.T. Finger tapping impairments are highly sensitive for evaluating upper motor neuron lesions. BMC Neurol. 2017, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef]
- Gittoes, M.J.R.; Bezodis, I.N.; Wilson, C. An image-based approach to obtaining anthropometric measurements for inertia modeling. J. Appl. Biomech. 2009, 25, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Yeadon, M.R. The simulation of aerial movement—II. A mathematical inertia model of the human body. J. Biomech. 1990, 23, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Brazil, A.; Exell, T.; Wilson, T.; Irwin, G. A biomechanical approach to evaluate overload and specificity characteristics within physical preparatioon exercises. J. Sports Sci. 2020, 38, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Needham, L.; Exell, T.; Bezodis, I.; Irwin, G. Patterns of locomotor regulation during the pole vault approach phase. J. Sports Sci. 2018, 36, 1742–1748. [Google Scholar] [CrossRef] [PubMed]
- de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.F.; Lee, H.C.; Chung, W.S.; Kwong, P.K. Reliability and validity of the Cantonese version of mini-mental state examination-a preliminary study. J. Hong Kong Coll. Psychiatr. 1994, 4, 25–28. [Google Scholar]
- Wong, G.K.C.; Lam, S.W.; Wong, A.; Lai, M.; Siu, D.; Poon, W.S.; Mok, V. Mo CA-assessed cognitive function and excellent outcome after aneurysmal subarachnoid hemorrhage at 1 year. Eur. J. Neurol. 2014, 21, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L. Finger-Tapping Test. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; p. 1296. [Google Scholar]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Reaction Time Task. Available online: https://humanbenchmark.com/tests/reactiontime (accessed on 28 July 2023).
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. 2), S218–S226. [Google Scholar] [CrossRef] [Green Version]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Gabbett, T.J. Influence of the Opposing Team on the Physical Demands of Elite Rugby League Match Play. J. Strength Cond. Res. 2013, 27, 1629–1635. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Flannery, S.A.; Teukolsky, S.A.; Vetterline, B.P. Numerical Recipes in C; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
Base Line | Testing Day | ||
---|---|---|---|
Day before Testing Day | Post-Game 1 | Post-Game 2 | Post-Game 3 |
Demographic information: | |||
Standing height, age, sex, total body mass, duration of training, medication use, medical history | |||
Anthropometric Characteristics | |||
Body segment inertia characteristics | |||
Bloods: | Bloods: | Bloods: | Bloods: |
Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. |
Biomechanics | Biomechanics | Biomechanics | Biomechanics |
Whole body movement and coordination testing | Whole body movement and coordination testing | Whole body movement and coordination testing | Whole body movement and coordination testing |
An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). Collected at 0, 24, 48 and 72 h post Game 3 |
Cognitive-motor tasks | Cognitive-motor tasks | Cognitive-motor tasks | Cognitive-motor tasks |
Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE). Collected at 0, 24, 48 and 72 h post Game 3 |
i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory. Collected at 0, 24, 48 and 72 h post Game 3 |
Notational Analysis | Notational Analysis | Notational Analysis | |
Performance related analysis: to include X, Y, Z | Performance related analysis: to include X, Y, Z | Performance related analysis: to include X, Y, Z |
Zone | Gravitational Force | Description of Impact |
---|---|---|
1 | <5.0–6.0 | Very light impact, hard acceleration/deceleration/change of direction while running |
2 | 6.1–6.5 | Light to moderate impact, minor collision with opposition player, contact with ground |
3 | 6.5–7.0 | Moderate to heavy impact, making tackle or being tackled at moderate velocity |
4 | 7.1–8.0 | Heavy impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at submaximal velocity |
5 | 8.1–10.0 | Very heavy impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at near maximal velocity |
6 | >10.1 | Severe impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at maximal velocity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irwin, G.; Rogatzki, M.J.; Wiltshire, H.D.; Williams, G.K.R.; Gu, Y.; Ash, G.I.; Tao, D.; Baker, J.S. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology 2023, 12, 1089. https://doi.org/10.3390/biology12081089
Irwin G, Rogatzki MJ, Wiltshire HD, Williams GKR, Gu Y, Ash GI, Tao D, Baker JS. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology. 2023; 12(8):1089. https://doi.org/10.3390/biology12081089
Chicago/Turabian StyleIrwin, Gareth, Matthew J. Rogatzki, Huw D. Wiltshire, Genevieve K. R. Williams, Yaodong Gu, Garrett I. Ash, Dan Tao, and Julien S. Baker. 2023. "Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol" Biology 12, no. 8: 1089. https://doi.org/10.3390/biology12081089
APA StyleIrwin, G., Rogatzki, M. J., Wiltshire, H. D., Williams, G. K. R., Gu, Y., Ash, G. I., Tao, D., & Baker, J. S. (2023). Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology, 12(8), 1089. https://doi.org/10.3390/biology12081089