Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Measures and Experimental Procedure
2.2.1. Demographics
2.2.2. Blood Methodology
2.2.3. Biomechanical and Cognitive-Motor Tasks
2.3. Experimental Procedure
2.3.1. Whole-Body Movement and Coordination Testing
2.3.2. Sports Performance Analysis
2.4. Data Processing
2.4.1. Whole-Body Movement and Coordination Testing
2.4.2. Cognitive-Motor Tasks
2.5. Statistical Analysis
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IMPACT | Movement & Performance from Acute & Chronic Head Trauma |
RCT | Randomized controlled trial |
SRC | Sports-related concussion |
SCAT5 | Sport Concussion Assessment Tool-5th Edition |
S100B | Protein S100B |
CK | Creatine kinase |
NSE | Neuron-specific enolase |
BDNF | Brain-derived neurotrophic factor |
GFAP | Glial fibrillary acidic protein |
UCHL1 | Ubiquitin carboxyl-terminal esterase L1 |
CT | Computed tomography |
mTBI | Mild traumatic brain injury |
SG | Sport-event group |
CG | Control group |
SST | Serum separation vacutainer tubes |
ELISA | Enzyme-linked immunosorbent assay |
fNIRS | Functional Near-Infrared Spectroscopy |
MMSE | Mini-Mental State Examination |
FTT | Finger-tapping test |
HSR | High-speed running |
GPS | Global positioning system |
LPS | Local positioning system |
SCS | Segment coordinate system |
References
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.A.; Kane, S.; Kontos, A.P.; Leddy, J.J.; McCrea, M.A.; Poddar, S.K.; et al. American medical society for sports medicine position statement on concussion in sport. Clin. J. Sport Med. 2019, 29, 87–100. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. Sport concussion assessment tool-5th edition. Br. J. Sports Med. 2017, 51, 851–858. [Google Scholar] [CrossRef]
- Dechambre, X.; Carling, C.; Mrozek, S.; Pillard, F.; Decq, P.; Piscione, J.; Yrondi, A.; Brauge, D. What is the impact of physical effort on the diagnosis of concussion? Clin. J. Sport Med. 2019, 36, 1–6. [Google Scholar] [CrossRef]
- Tucker, R.; Brown, J.; Falvey, E.; Fuller, G.; Raftery, M. The effect of exercise on baseline SCAT5 performance in male professional rugby players. Sports Med.-Open 2020, 6, 37. [Google Scholar] [CrossRef]
- Bouvier, D.; Duret, T.; Abbot, M.; Stiernon, T.; Pereira, B.; Coste, A.; Chazal, J.; Sapin, V. Utility of S100B serum level for the determination of concussion in male rugby players. Sports Med. 2017, 47, 781–789. [Google Scholar] [CrossRef]
- Kiechle, K.; Bazarian, J.J.; Merchant-Borna, K.; Stoecklein, V.; Rozen, E.; Blyth, B.; Huang, J.H.; Dayawansa, S.; Kanz, K.; Biberthaler, P. Subjects-specific increases in serum s-100b distinguish sports-related concussion from sports-related exertion. PLoS ONE 2014, 9, e84977. [Google Scholar] [CrossRef]
- Asken, B.M.; Bauer, R.M.; DeKosky, S.T.; Svingos, A.M.; Hromas, G.; Boone, J.K.; DuBose, D.N.; Hayes, R.L.; Clugston, J.R. Concussion BASICS III: Serum biomarker changes following sport-related concussion. Neurology 2018, 91, e2133–e2143. [Google Scholar] [CrossRef]
- Graham, M.R.; Myers, T.; Evans, P.; Davies, B.; Cooper, S.M.; Bhattacharya, K.; Grace, F.M.; Baker, J.S. Direct hits to the head during amateur boxing is associated with a rise in serum biomarkers for brain injury. Int. J. Immunopathol. Pharmacol. 2011, 24, 119–125. [Google Scholar] [CrossRef]
- Graham, M.R.; Pates, J.; Davies, B.; Cooper, S.M.; Bhattacharya, K.; Evans, P.J.; Baker, J.S. Should an increase in cerebral neurochemicals following head kicks in full contact karate influence return to play? Int. J. Immunopathol. Pharmacol. 2015, 28, 539–546. [Google Scholar] [CrossRef]
- Rogatzki, M.J.; Soja, S.E.; McCabe, C.A.; Breckenridge, R.E.; White, J.L.; Baker, J.S. Biomarkers of brain injury following an American football game: A pilot study. Int. J. Immunopathol. Pharmacol. 2016, 29, 450–457. [Google Scholar] [CrossRef]
- Shahim, P.; Tegner, Y.; Marklund, N.; Blennow, K.; Zetterberg, H. Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology 2018, 90, e1780–e1788. [Google Scholar] [CrossRef]
- Shahim, P.; Tegner, Y.; Wilson, D.H.; Randall, J.; Skillbäck, T.; Pazooki, D.; Kallberg, B.; Blennow, K.; Zetterberg, H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014, 71, 684–692. [Google Scholar] [CrossRef]
- Meier, T.B.; Nelson, L.D.; Huber, D.L.; Bazarian, J.J.; Hayes, R.L.; McCrea, M.A. Prospective assessment of acute blood markers of brain injury in sport-related concussion. J. Neurotrauma 2017, 34, 3134–3142. [Google Scholar] [CrossRef]
- Kawata, K.; Rubin, L.H.; Takahagi, M.; Lee, J.H.; Sim, T.; Szwanki, V.; Bellamy, A.; Tierney, R.; Langford, D. Subconcussive impact-dependent increase in plasma S100B levels in collegiate football players. J. Neurotrauma 2017, 34, 2254–2260. [Google Scholar] [CrossRef]
- O’Connell, B.; Wilson, F.; Boyle, N.; O’Dwyer, T.; Denvir, K.; Farrell, G.; Kelly, A.M. Effect of match play and training on circulating S100B concentration in professional rugby players. Brain Inj. 2018, 32, 1811–1816. [Google Scholar] [CrossRef]
- Straume-Naesheim, T.M.; Andersen, T.E.; Jochum, M.; Dvorak, J.; Bahr, R. Minor head trauma in soccer and serum levels of S100B. Neurosurgery 2008, 62, 1297–1306. [Google Scholar] [CrossRef]
- Meier, T.B.; Huber, D.L.; Bohorquez-Montoya, L.; Nitta, M.E.; Savitz, J.; Teague, T.K.; Bazarian, J.J.; Hayes, R.L.; Nelson, L.D.; McCrea, M.A. A prospective study of acute blood-based biomarkers for sport-related concussion. Ann. Neurol. 2020, 87, 907–920. [Google Scholar] [CrossRef]
- Stålnacke, B.M.; Ohlsson, A.; Tegner, Y.; Sojka, P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br. J. Sports Med. 2006, 40, 313–316. [Google Scholar] [CrossRef]
- Stålnacke, B.M.; Tegner, Y.; Sojka, P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: A pilot study. Brain Inj. 2004, 18, 899–909. [Google Scholar] [CrossRef]
- Stålnacke, B.M.; Tegner, Y.; Sojka, P. Playing ice hockey and basketball increases serum levels of S-100B in elite players: A pilot study. Clin. J. Sport Med. 2003, 13, 292–302. [Google Scholar] [CrossRef]
- Zonner, S.W.; Ejima, K.; Bevilacqua, Z.W.; Huibregtse, M.E.; Charleston, C.; Fulgar, C.; Kawata, K. Association of increased serum S100B levels with high school football subconcussive head impacts. Front. Neurol. 2019, 10, 327. [Google Scholar] [CrossRef]
- Rogatzki, M.J.; Keuler, S.A.; Harris, A.E.; Ringgenberg, S.W.; Breckenridge, R.E.; White, J.L.; Baker, J.S. Respons of protein S100B to playing American football, lifting weights, and treadmill running. Scand. J. Med. Sci. Sports 2018, 28, 2505–2514. [Google Scholar] [CrossRef]
- Stocchero, C.M.; Oses, J.P.; Cunha, G.S.; Martins, J.B.; Brum, L.M.; Zimmer, E.R.; Souza, D.O.; Portela, L.V.; R-Oliveira, A. Serum S100B level increases after running but not cycling exercise. Appl. Physiol. Nutr. Metab. 2014, 39, 340–344. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Mooren, F.C.; von Ahsen, N.; Keyvani, K.; Fromme, A.; Schwarze-Eicker, K.; Senner, V.; Paulus, W. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology 2004, 62, 1634–1636. [Google Scholar] [CrossRef]
- Otto, M.; Holthusen, S.; Bahn, E.; Sohnchen, N.; Wiltfang, J.; Geese, R. Boxing and running lead to a rise in serum levels of S-100B protein. Int. J. Sports Med. 2000, 21, 551–555. [Google Scholar] [CrossRef]
- Kawata, K.; Liu, C.Y.; Merkel, S.F.; Ramirez, S.H.; Tierney, R.T.; Langford, D. Blood biomarker for brain injury: What are we measuring? Neurosci. Biobehav. Rev. 2016, 68, 460–473. [Google Scholar] [CrossRef]
- Di Battista, A.P.; Moes, K.A.; Shiu, M.Y.; Hutchison, M.G.; Churchill, N.; Thomas, S.G.; Rhind, S.G. High-intensity interval training is associated with alterations in blood biomarkers related to brain injury. Front. Physiol. 2018, 9, 1367. [Google Scholar] [CrossRef]
- Dietrich, M.O.; Tort, A.B.; Schaf, D.V.; Farina, M.; Goncalves, C.A.; Souza, D.O.; Portela, L.V. Increase in serum S100B protein level after a swimming race. Can. J. Appl. Physiol. 2003, 28, 710–719. [Google Scholar] [CrossRef][Green Version]
- Zimmer, D.B.; Cornwall, E.H.; Landar, A.; Song, W. The S100 protein family: History, function, and expression. Brain Res. Bull. 1995, 37, 417–429. [Google Scholar] [CrossRef]
- Apple, F.S.; Hellsten, Y.; Clarkson, P.M. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise. Clin. Chem. 1988, 34, 1102–1104. [Google Scholar] [CrossRef]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, O.; Giannitsis, E.; Huber, K.; Mockel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart Journal. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar]
- El-Menyar, A.; Sathian, B.; Wahlen, B.M.; Al-Thani, H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: A meta-analysis. Am. J. Emerg. Med. 2019, 37, 133–142. [Google Scholar] [PubMed]
- Hamdi, E.; Taema, K.; Shehata, M.; Radwan, W. Predictive value of cardiac troponin I in traumatic brain injury. Egypt. J. Neurol. Psychiatry Neurosurg. 2012, 49, 365–373. [Google Scholar]
- Cai, S.S.; Bonds, B.W.; Hu, P.F.; Stein, D.M. The role of cardiac troponin I in prognostication of patients with isolated severe traumatic brain injury. J. Trauma Acute Care Surg. 2016, 80, 477–483. [Google Scholar]
- Stavroulakis, G.A.; George, K.P. Exercise-induced release of troponin. Clin. Cardiol. 2020, 43, 872–881. [Google Scholar] [CrossRef]
- King, L.R.; McLaurin, R.L.; Lewis, H.P.; Knowles, H.C., Jr. Plasma cortisol levels after head injury. Ann. Surg. 1970, 172, 975–984. [Google Scholar] [CrossRef]
- Sterczala, A.J.; Flanagan, S.D.; Looney, D.P.; Hooper, D.R.; Szivak, T.K.; Comstock, B.A.; DuPont, W.H.; Martin, G.J.; Volek, J.S.; Maresh, C.M. Similar hormonal stress and tissue damage in response to National Collegiate Athletic Association Division I football games played in two consecutive seasons. J. Strength Cond. Res. 2014, 28, 3234–3238. [Google Scholar] [CrossRef]
- Zetterberg, H.; Tanriverdi, F.; Unluhizarci, K.; Selcuklu, A.; Kelestimur, F.; Blennow, K. Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj. 2009, 23, 723–726. [Google Scholar] [CrossRef]
- Domingos, C.; Pego, J.M.; Santos, N.C. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav. Brain Res. 2020; online ahead of print. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on symaptic plasticity and cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar]
- Tylicka, M.; Matuszczak, E.; Hermanowicz, A.; Debek, W.; Karpińska, M.; Kamińska, J.; Koper-Lenkiewicz, O.M. BDNF and IL-8, but not UCHL-1 and IL-11, are markers of brain injury in children caused by mild head trauma. Brain Sci. 2020, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Piastra, M.; Polidori, G.; Di Rocco, C.; Caresta, E.; Antonelli, A.; Amendola, T.; Aloe, L. Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Med. 2003, 29, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Barone, G.; Antonelli, A.; Pezzotti, P.; Genovese, O.; Tortorolo, L.; Conti, G. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009, 72, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, C.; Michalski, B.; Toepp, S.L.; Turco, C.V.; D’Hoine, T.; Harasym, D.; Gibala, M.J.; Fahnestock, M.; Nelson, A.J. A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary, healthy males. Neuroscience 2020, 437, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.W.; Chu, E.; Hui, T.; Helmeste, D.; Law, C. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci. Lett. 2008, 431, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ferris, L.T.; Williams, J.S.; Shen, C.-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef]
- Marquez, C.M.S.; Vanaudenaerde, B.; Troosters, T.; Wenderoth, N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015, 119, 1363–1373. [Google Scholar] [CrossRef]
- Goekint, M.; Heyman, E.; Roelands, B.; Njemini, R.; Bautmans, I.; Mets, T.; Meeusen, R. No influence of noradrenaline manipulation on acute exercise-induced increase of brain-derived neurotrophic factor. Med. Sci. Sports Exerc. 2008, 40, 1990–1996. [Google Scholar] [CrossRef]
- Heyman, E.; Gamelin, F.-X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; Marzo, V.D.; Meeusen, R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans-possible implications for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.D.; Ayaz, S.I.; Lewis, L.M.; Unden, J.; Chen, J.Y.; Mika, V.H.; Saville, B.; Tyndall, J.A.; Nash, M.; Buki, A. Ability of serum glial fibrillary acidic protein, ubiquitin c-terminal hydrolas-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J. Neurotrauma 2016, 33, 203–214. [Google Scholar] [CrossRef]
- FDA Authorizes Marketing of First Blood Test to Aid in the Evaluation of Concussion in Adults. 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults (accessed on 30 September 2020).
- Patricios, J.; Fuller, G.W.; Ellenbogen, R.; Herring, S.; Kutcher, J.S.; Loosemore, M.; Makdissi, M.; MacCrea, M.; Putukian, M.; Schneider, K.J. What are the critical elements of sideline screening that can be used to establish the diagnosis of concussion? A systematic review. Br. J. Sports Med. 2017, 51, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, T.; Parkkari, J.; Howell, D.R.; Palola, V.; Seppänen, A.; Tuominen, M.; Lverson, G.L.; Luoto, T.M. Reliability of the Sport Concussion Assessment Tool 5 baseline testing: A 2-week test-retest study. J. Sci. Med. Sport 2021, 24, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Howell, D.; Osternig, L.; van Donkelaar, P.; Mayr, U.; Chou, L.S. Effects of concussion on attention and executive function in adolescents. Med. Sci. Sports Exerc. 2013, 45, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Willer, B.S.; Tiso, M.; Haider, M.N.; Hinds, A.L.; Baker, J.G.; Miecznikowski, J.C.; Leddy, J.J. Evaluation of executive function and mental health in retired contact sport athletes. J. Head Trauma Rehabil. 2018, 33, E9–E15. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Fos, L.A.; Greve, K.W.; Hammond, J.S. Assessment of executive function in patients with mild traumatic brain injury. J. Trauma 1999, 46, 159–163. [Google Scholar] [CrossRef]
- Guskiewicz, K.M.; McCrea, M.; Marshall, S.W.; Cantu, R.C.; Barr, W.; Onate, J.A.; Kelly, J.P. Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA concussion study. JAMA 2003, 290, 2549–2555. [Google Scholar] [CrossRef]
- Houston, M.N.; Hoch, J.M.; Cameron, K.L.; Abt, J.P.; Peck, K.Y.; Hoch, M.C. Sex and number of concussions influence the association between concussion and musculoskeletal injury history in collegiate athletes. Brain Inj. 2018, 32, 1353–1358. [Google Scholar] [CrossRef]
- Buckley, T.A.; Munkasy, B.A.; Clouse, B.P. Sensitivity and specificity of the modified balance error scoring system in concussed collegiate student athletes. Clin. J. Sport Med. 2018, 28, 174–176. [Google Scholar] [CrossRef]
- King, L.A.; Horak, F.B.; Mancini, M.; Pierce, D.; Priest, K.C.; Chesnutt, J.; Sullivan, P.; Chapman, J.C. Instrumenting the balance error scoring system for use with patients reporting persistent balance problems after mild traumatic brain injury. Arch. Phys. Med. Rehabil. 2014, 95, 353–359. [Google Scholar] [CrossRef]
- Manaseer, T.S.; Gross, D.P.; Dennett, L.; Schneider, K.; Whittaker, J.L. Gait deviations associated with concussion: A systematic review. Clin. J. Sport Med. 2020, 30, S11–S28. [Google Scholar] [CrossRef] [PubMed]
- Fino, P.C.; Parrignton, L.; Pitt, W.; Martini, D.N.; Chesnutt, J.C.; Chou, L.S.; King, L.A. Detecting gait abnormalities after concussion on mild traumatic brain injury: A systematic review of single-task, dual-task, and comple gait. Gait Posture 2018, 62, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Howell, D.R.; Lynall, R.C.; Buckley, T.A.; Herman, D.C. Neuromuscular control deficits and the risk of subsequent injury after a concussion: A scoping review. Sports Med. 2018, 48, 1097–1115. [Google Scholar] [CrossRef] [PubMed]
- Lempke, L.B.; Howell, D.R.; Eckner, J.T.; Lynall, R.C. Examination of reaction time deficits following concussion: A systemic review and meta-analysis. Sports Med. 2020, 50, 1341–1359. [Google Scholar] [CrossRef]
- Tiffin, J. Purdue Pegboard Examiner’s Manual; London House: Rosemont, IL, USA, 1968. [Google Scholar]
- Tiffin, J.; Asher, E.J. The Purdue Pegboard: Norms and studies of reliability and validity. J. Appl. Psychol. 1948, 32, 234. [Google Scholar] [CrossRef]
- Shirani, A.; Newton, B.D.; Okuda, D.T. Finger tapping impairments are highly sensitive for evaluating upper motor neuron lesions. BMC Neurol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef]
- Gittoes, M.J.R.; Bezodis, I.N.; Wilson, C. An image-based approach to obtaining anthropometric measurements for inertia modeling. J. Appl. Biomech. 2009, 25, 265–270. [Google Scholar] [CrossRef][Green Version]
- Yeadon, M.R. The simulation of aerial movement—II. A mathematical inertia model of the human body. J. Biomech. 1990, 23, 67–74. [Google Scholar] [CrossRef]
- Brazil, A.; Exell, T.; Wilson, T.; Irwin, G. A biomechanical approach to evaluate overload and specificity characteristics within physical preparatioon exercises. J. Sports Sci. 2020, 38, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Needham, L.; Exell, T.; Bezodis, I.; Irwin, G. Patterns of locomotor regulation during the pole vault approach phase. J. Sports Sci. 2018, 36, 1742–1748. [Google Scholar] [CrossRef] [PubMed]
- de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.F.; Lee, H.C.; Chung, W.S.; Kwong, P.K. Reliability and validity of the Cantonese version of mini-mental state examination-a preliminary study. J. Hong Kong Coll. Psychiatr. 1994, 4, 25–28. [Google Scholar]
- Wong, G.K.C.; Lam, S.W.; Wong, A.; Lai, M.; Siu, D.; Poon, W.S.; Mok, V. Mo CA-assessed cognitive function and excellent outcome after aneurysmal subarachnoid hemorrhage at 1 year. Eur. J. Neurol. 2014, 21, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L. Finger-Tapping Test. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; p. 1296. [Google Scholar]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Reaction Time Task. Available online: https://humanbenchmark.com/tests/reactiontime (accessed on 28 July 2023).
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. 2), S218–S226. [Google Scholar] [CrossRef]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Gabbett, T.J. Influence of the Opposing Team on the Physical Demands of Elite Rugby League Match Play. J. Strength Cond. Res. 2013, 27, 1629–1635. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, S.A.; Teukolsky, S.A.; Vetterline, B.P. Numerical Recipes in C; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
Base Line | Testing Day | ||
---|---|---|---|
Day before Testing Day | Post-Game 1 | Post-Game 2 | Post-Game 3 |
Demographic information: | |||
Standing height, age, sex, total body mass, duration of training, medication use, medical history | |||
Anthropometric Characteristics | |||
Body segment inertia characteristics | |||
Bloods: | Bloods: | Bloods: | Bloods: |
Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. | Serum creatine kinase, cardiac troponin, cortisol; neuron-specific enolase, protein S100B, and brain-derived neurotrophic factor. |
Biomechanics | Biomechanics | Biomechanics | Biomechanics |
Whole body movement and coordination testing | Whole body movement and coordination testing | Whole body movement and coordination testing | Whole body movement and coordination testing |
An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). | An ecologically valid movement task (i. Throwing ask), Balance (ii. mBESS stance), Dynamics balance (iii. tandem gait) and coordination (iv. Finger to nose task). Collected at 0, 24, 48 and 72 h post Game 3 |
Cognitive-motor tasks | Cognitive-motor tasks | Cognitive-motor tasks | Cognitive-motor tasks |
Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE) | Cognitive functioning test using the Mini Mental State Examination (MMSE). Collected at 0, 24, 48 and 72 h post Game 3 |
i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory | i. Pegboard, ii. Tapping Task, iii. Stroop word test, iv. Reaction time task, v. Working memory. Collected at 0, 24, 48 and 72 h post Game 3 |
Notational Analysis | Notational Analysis | Notational Analysis | |
Performance related analysis: to include X, Y, Z | Performance related analysis: to include X, Y, Z | Performance related analysis: to include X, Y, Z |
Zone | Gravitational Force | Description of Impact |
---|---|---|
1 | <5.0–6.0 | Very light impact, hard acceleration/deceleration/change of direction while running |
2 | 6.1–6.5 | Light to moderate impact, minor collision with opposition player, contact with ground |
3 | 6.5–7.0 | Moderate to heavy impact, making tackle or being tackled at moderate velocity |
4 | 7.1–8.0 | Heavy impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at submaximal velocity |
5 | 8.1–10.0 | Very heavy impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at near maximal velocity |
6 | >10.1 | Severe impact, high-intensity collision with opposition player/s, making direct front on tackle on opponent traveling at moderate velocity, being tackled by multiple opposition players when running at maximal velocity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irwin, G.; Rogatzki, M.J.; Wiltshire, H.D.; Williams, G.K.R.; Gu, Y.; Ash, G.I.; Tao, D.; Baker, J.S. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology 2023, 12, 1089. https://doi.org/10.3390/biology12081089
Irwin G, Rogatzki MJ, Wiltshire HD, Williams GKR, Gu Y, Ash GI, Tao D, Baker JS. Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology. 2023; 12(8):1089. https://doi.org/10.3390/biology12081089
Chicago/Turabian StyleIrwin, Gareth, Matthew J. Rogatzki, Huw D. Wiltshire, Genevieve K. R. Williams, Yaodong Gu, Garrett I. Ash, Dan Tao, and Julien S. Baker. 2023. "Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol" Biology 12, no. 8: 1089. https://doi.org/10.3390/biology12081089
APA StyleIrwin, G., Rogatzki, M. J., Wiltshire, H. D., Williams, G. K. R., Gu, Y., Ash, G. I., Tao, D., & Baker, J. S. (2023). Sports-Related Concussion Assessment: A New Physiological, Biomechanical, and Cognitive Methodology Incorporating a Randomized Controlled Trial Study Protocol. Biology, 12(8), 1089. https://doi.org/10.3390/biology12081089