Motility Subpopulations with Distinct Motility Characteristics Using Swim-Up-Selected Sperm Cells from Norwegian Red Bulls: Effects of Freezing–Thawing and Between-Bull Variation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Semen Processing and Freezing
2.2. Experimental Setup
2.3. Computer-Assisted Sperm Analysis (CASA)
2.4. Statistical Analyses
3. Results
3.1. Changes in the Mean Motility Parameters after Selection of Frozen–Thawed Spermatozoa by Swim-Up
3.2. Characterization of Motile Sperm Subpopulations Selected by Swim-Up
3.3. Changes in Motile Sperm Kinematic Parameters after Incubation and Post-Freezing–Thawing
3.4. Characterization of Motile Sperm Subpopulations in Fresh Semen
3.5. Changes in Motile Sperm Subpopulations after Incubation and Post-Freezing–Thawing
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 2000, 60–61, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.S.; Pacey, A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.; Labouriau, R.; Birck, A.; Boe-Hansen, G.; Pedersen, J.; Borchersen, S. Relationship among seminal quality measures and field fertility of young dairy bulls using low-dose inseminations. J. Dairy Sci. 2011, 94, 1744–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gliozzi, T.M.; Turri, F.; Manes, S.; Cassinelli, C.; Pizzi, F. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. Animal 2017, 11, 1975–1982. [Google Scholar] [CrossRef]
- Januskauskas, A.; Johannisson, A.; Rodriguez-Martinez, H. Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology 2003, 60, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.Z.; de Arruda, R.P.; de Andrade, A.F.C.; Celeghini, E.C.C.; Reeb, P.D.; Martins, J.P.N.; dos Santos, R.M.; Beletti, M.E.; Peres, R.F.G.; Monteiro, F.M.; et al. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim. Reprod. Sci. 2013, 137, 145–155. [Google Scholar] [CrossRef]
- Farrell, P.B.; Presicce, G.; Brockett, C.; Foote, R. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 1998, 49, 871–879. [Google Scholar] [CrossRef]
- Puglisi, R.; Pozzi, A.; Foglio, L.; Spanò, M.; Eleuteri, P.; Grollino, M.G.; Bongioni, G.; Galli, A. The usefulness of combining traditional sperm assessments with in vitro heterospermic insemination to identify bulls of low fertility as estimated in vivo. Anim. Reprod. Sci. 2012, 132, 17–28. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Tizado, E.J.; Garde, J.J.; Anel, L.; de Paz, P. Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 2011, 75, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Flores, E.; Taberner, E.; Rivera, M.; Peña, A.; Rigau, T.; Miró, J.; Rodríguez-Gil, J. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. Theriogenology 2008, 70, 936–945. [Google Scholar] [CrossRef]
- Muiño, R.; Tamargo, C.; Hidalgo, C.; Peña, A. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: Effects of cryopreservation and between-bull variation. Anim. Reprod. Sci. 2008, 109, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Pastor, F.; Garcia-Macias, V.; Alvarez, M.; Herraez, P.; Anel, L.; de Paz, P. Sperm subpopulations in Iberian red deer epididymal sperm and their changes through the cryopreservation process. Biol. Reprod. 2005, 72, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Waberski, D.; Suarez, S.S.; Henning, H. Assessment of sperm motility in livestock: Perspectives based on sperm swimming conditions in vivo. Anim. Reprod. Sci. 2022, 246, 106849. [Google Scholar] [CrossRef]
- Coy, P.; García-Vázquez, F.A.; Visconti, P.E.; Avilés, M. Roles of the oviduct in mammalian fertilization. Reproduction 2012, 144, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, J.J. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 2014, 81, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Parrish, J.J.; Foote, R.H. Quantification of bovine sperm separation by a swim-up method. Relationship to sperm motility, integrity of acrosomes, sperm migration in polyacrylamide gel and fertility. J. Androl. 1987, 8, 259–266. [Google Scholar] [CrossRef]
- Zhang, B.R.; Larsson, B.; Lundeheim, N.; Martinez, R. Sperm characteristics and zona pellucida binding in relation to field fertility of frozen-thawed semen from dairy AI bulls. Int. J. Androl. 1998, 21, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Alm-Kristiansen, A.; Dalen, G.; Klinkenberg, G.; Bekk, L.; Thorkildsen, L.; Waterhouse, K.; Kommisrud, E. Reproductive performance of immobilized cryopreserved bovine semen used for timed artificial insemination. Reprod. Domest. Anim. 2017, 52, 1019–1024. [Google Scholar] [CrossRef]
- Parrish, J.J.; Susko-Parrish, J.; Winer, M.A.; First, N.L. Capacitation of bovine sperm by heparin. Biol. Reprod. 1988, 38, 1171–1180. [Google Scholar] [CrossRef]
- Muiño, R.; Peña, A.; Rodríguez, A.; Tamargo, C.; Hidalgo, C. Effects of cryopreservation on the motile sperm subpopulations in semen from Asturiana de los Valles bulls. Theriogenology 2009, 72, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Yániz, J.; Palacín, I.; Vicente-Fiel, S.; Sánchez-Nadal, J.; Santolaria, P. Sperm population structure in high and low field fertility rams. Anim. Reprod. Sci. 2015, 156, 128–134. [Google Scholar] [CrossRef]
- Ahmed, H.; Andrabi, S.M.H.; Jahan, S. Semen quality parameters as fertility predictors of water buffalo bull spermatozoa during low-breeding season. Theriogenology 2016, 86, 1516–1522. [Google Scholar] [CrossRef]
- Peña, A.I.; Adán, S.; Quintela, L.A.; Becerra, J.J.; Herradón, P.G. Relationship between motile sperm subpopulations identified in frozen-thawed dog semen samples and their ability to bind to the zona pellucida of canine oocytes. Reprod. Domest. Anim. 2018, 53 (Suppl. S3), 14–22. [Google Scholar] [CrossRef]
- Dorado, J.; Alcaráz, L.; Duarte, N.; Portero, J.; Acha, D.; Hidalgo, M. Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm(®) gradient. Anim. Reprod. Sci. 2011, 125, 211–218. [Google Scholar] [CrossRef]
- Cormier, N.; Sirard, M.A.; Bailey, J.L. Premature capacitation of bovine spermatozoa is initiated by cryopreservation. J. Androl. 1997, 18, 461–468. [Google Scholar]
- Naresh, S.; Atreja, S.K. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology 2015, 70, 211–216. [Google Scholar] [CrossRef]
- Aitken, R.J.; Baker, M.A.; Nixon, B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J. Androl. 2015, 17, 633–639. [Google Scholar] [CrossRef]
- Aitken, R.J.; Drevet, J.R. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Drevet, J.R.; Moazamian, A.; Gharagozloo, P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants 2022, 11, 306. [Google Scholar] [CrossRef]
- Bollwein, H.; Bittner, L. Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 2018, 15 (Suppl. S1), 703–710. [Google Scholar] [CrossRef]
- Kurkowska, W.; Bogacz, A.; Janiszewska, M.; Gabryś, E.; Tiszler, M.; Bellanti, F.; Kasperczyk, S.; Machoń-Grecka, A.; Dobrakowski, M.; Kasperczyk, A. Oxidative Stress is Associated with Reduced Sperm Motility in Normal Semen. Am. J. Mens. Health 2020, 14, 1557988320939731. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Lambourne, S.R.; Curry, B.J.; Hall, S.E.; Aitken, R.J. Aldehyde Dehydrogenase Plays a Pivotal Role in the Maintenance of Stallion Sperm Motility. Biol. Reprod. 2016, 94, 133. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Esposito, M.C.; Tosti, E.; Boni, R. Sperm Motility, Oxidative Status, and Mitochondrial Activity: Exploring Correlation in Different Species. Antioxidants 2021, 10, 1131. [Google Scholar] [CrossRef]
- Arias, M.E.; Andara, K.; Briones, E.; Felmer, R. Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): Effect on sperm quality, function and gene expression. Reprod. Biol. 2017, 17, 126–132. [Google Scholar] [CrossRef]
- Storey, B.T. Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008, 52, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Alm-Kristiansen, A.H.; Standerholen, F.B.; Bai, G.; Waterhouse, K.E.; Kommisrud, E.; Sanderholen, F.B. Relationship between post-thaw adenosine triphosphate content, motility and viability in cryopreserved bovine semen applying two different preservation methods. Reprod. Domest. Anim. 2018, 53, 1448–1455. [Google Scholar] [CrossRef]
- Shojaei, H.; Kroetsch, T.; Wilde, R.; Blondin, P.; Kastelic, J.; Thundathil, J. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in Holstein AI bulls. Theriogenology 2012, 77, 940–951. [Google Scholar] [CrossRef]
- Ferraz, M.A.; Morató, R.; Yeste, M.; Arcarons, N.; Pena, A.I.; Tamargo, C.; Hidalgo, C.O.; Muiño, R.; Mogas, T. Evaluation of sperm subpopulation structure in relation to in vitro sperm-oocyte interaction of frozen-thawed semen from Holstein bulls. Theriogenology 2014, 81, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.M.T.; de Almeida, A.B.M.; de Moraes, F.L.Z.; Marubayashi, R.Y.P.; de Souza, F.F.; Barreiros, T.R.R.; Martins, M.I.M. Sperm subpopulations influence the pregnancy rates in cattle. Reprod. Domest. Anim. 2021, 56, 1117–1127. [Google Scholar] [CrossRef]
- Lopez-Garcia, M.D.; Monson, R.L.; Haubert, K.; Wheeler, M.B.; Beebe, D.J. Sperm motion in a microfluidic fertilization device. Biomed. Microdevices 2008, 10, 709–741. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Azizi, M.; Mokhtare, A.; Abbaspourrad, A. Progressive bovine sperm separation using parallelized microchamber-based microfluidics. Lab Chip 2021, 21, 2791–2804. [Google Scholar] [CrossRef] [PubMed]
- Vega-Hidalgo, J.; Rodriguez, M.; Dipaz-Berrocal, D.; Rivas, J.; Huayhua, C.; Mellisho, E. Sperm selection techniques in cattle: Microfilter device versus conventional methods. Andrologia 2022, 54, e14585. [Google Scholar] [CrossRef]
Parameter | RapidNP | RapidP | Slow | |
---|---|---|---|---|
VCL (µm/s) | Mean | 140.3 a | 174.6 b | 30.0 c |
SD | 56.5 | 42.4 | 10.4 | |
CI-L | 136.0 | 173.2 | 29.0 | |
CI-U | 145.0 | 175.9 | 30.9 | |
VSL (µm/s) | Mean | 34.0 a | 113.1 b | 6.36 c |
SD | 23.4 | 33.5 | 8.29 | |
CI-L | 32.2 | 112.0 | 5.61 | |
CI-U | 35.8 | 114.2 | 7.11 | |
VAP (µm/s) | Mean | 71.0 a | 120.7 b | 12.0 c |
SD | 39.2 | 31.9 | 8.81 | |
CI-L | 68.0 | 119.6 | 11.2 | |
CI-U | 73.9 | 121.7 | 12.8 | |
LIN (%) | Mean | 22.9 a | 64.9 b | 19.8 c |
SD | 12.5 | 12.9 | 21.3 | |
CI-L | 21.9 | 64.5 | 17.8 | |
CI-U | 23.8 | 65.3 | 21.7 | |
STR (%) | Mean | 45.7 a | 92.9b b | 45.1 a |
SD | 17.9 | 6.7 | 32.9 | |
CI-L | 44.3 | 92.7 | 42.1 | |
CI-U | 47.0 | 93.1 | 48.1 | |
WOB (%) | Mean | 48.0 a | 69.5 b | 38.6 c |
SD | 15.7 | 11.0 | 22.0 | |
CI-L | 46.8 | 69.1 | 36.6 | |
CI-U | 49.2 | 69.8 | 40.6 | |
ALH (µm) | Mean | 4.26 a | 3.58 b | 1.32 c |
SD | 1.60 | 1.12 | 0.41 | |
CI-L | 4.14 | 3.55 | 1.29 | |
CI-U | 4.38 | 3.62 | 1.36 | |
BCF (Hz) | Mean | 19.9 a | 28.0 b | 8.90 c |
SD | 6.52 | 7.16 | 7.56 | |
CI-L | 19.4 | 27.8 | 8.21 | |
CI-U | 20.4 | 28.2 | 9.59 |
Parameter | RapidNP | RapidP | Slow | |
---|---|---|---|---|
VCL (µm/s) | Mean | 121.1 a | 175.2 b | 26.4 c |
SD | 65.3 | 38.6 | 10.2 | |
CI-L | 110.3 | 172.8 | 25.2 | |
CI-U | 131.9 | 177.6 | 27.6 | |
VSL (µm/s) | Mean | 26.7 a | 110.3 b | 4.94 c |
SD | 23.3 | 29.1 | 7.19 | |
CI-L | 22.9 | 108.5 | 4.08 | |
CI-U | 30.6 | 112.1 | 5.80 | |
VAP (µm/s) | Mean | 53.4 a | 117.1 b | 9.57 c |
SD | 36.9 | 27.1 | 8.20 | |
CI-L | 47.3 | 115.5 | 8.59 | |
CI-U | 59.5 | 118.8 | 10.6 | |
LIN (%) | Mean | 20.0 a | 63.1 b | 17.6 a |
SD | 12.7 | 12.3 | 20.1 | |
CI-L | 17.9 | 62.3 | 15.2 | |
CI-U | 22.0 | 63.8 | 20.0 | |
STR (%) | Mean | 45.2 a | 93.2 b | 44.3 a |
SD | 20.0 | 6.6 | 33.6 | |
CI-L | 41.9 | 92.8 | 40.3 | |
CI-U | 48.5 | 93.6 | 48.4 | |
WOB (%) | Mean | 41.8 a | 67.3 b | 34.8 c |
SD | 16.6 | 10.5 | 22.3 | |
CI-L | 39.1 | 66.6 | 32.1 | |
CI-U | 44.6 | 67.9 | 37.5 | |
ALH (µm) | Mean | 3.83 a | 3.67 a | 1.24 b |
SD | 1.92 | 1.04 | 0.43 | |
CI-L | 3.52 | 3.61 | 1.19 | |
CI-U | 4.15 | 3.74 | 1.29 | |
BCF (Hz) | Mean | 18.1 a | 28.4 b | 7.16 c |
SD | 7.18 | 6.49 | 6.03 | |
CI-L | 16.9 | 28.0 | 6.44 | |
CI-U | 19.3 | 28.8 | 7.88 |
Parameter | RapidNP | RapidP | Slow | |
---|---|---|---|---|
VCL (µm/s) | Mean | 154.1 a | 173.0 b | 28.6 c |
SD | 77.1 | 61.1 | 10.1 | |
CI-L | 149.5 | 171.8 | 28.1 | |
CI-U | 158.6 | 174.3 | 29.1 | |
VSL (µm/s) | Mean | 41.6 a | 119.1 b | 5.41 c |
SD | 31.1 | 38.7 | 7.78 | |
CI-L | 39.8 | 118.3 | 5.03 | |
CI-U | 43.4 | 119.8 | 5.80 | |
VAP (µm/s) | Mean | 83.0 a | 126.7 b | 10.7 c |
SD | 49.7 | 38.9 | 8.53 | |
CI-L | 80.1 | 125.9 | 10.3 | |
CI-U | 85.9 | 127.5 | 11.1 | |
LIN (%) | Mean | 24.8 a | 70.8 b | 18.0 c |
SD | 14.4 | 13.9 | 21.6 | |
CI-L | 24.0 | 70.5 | 17.0 | |
CI-U | 25.7 | 71.1 | 19.1 | |
STR (%) | Mean | 45.6 a | 93.5 b | 42.6 c |
SD | 19.4 | 6.16 | 33.6 | |
CI-L | 44.5 | 93.3 | 40.9 | |
CI-U | 46.7 | 93.6 | 44.3 | |
WOB (%) | Mean | 50.9 a | 75.4 b | 36.1 c |
SD | 18.1 | 12.6 | 23.2 | |
CI-L | 49.9 | 75.1 | 35.1 | |
CI-U | 52.0 | 75.6 | 37.4 | |
ALH (µm) | Mean | 4.22 a | 3.22 b | 1.28 c |
SD | 1.74 | 1.40 | 0.43 | |
CI-L | 4.12 | 3.19 | 1.26 | |
CI-U | 4.32 | 3.25 | 1.31 | |
BCF (Hz) | Mean | 20.5 a | 29.2 b | 7.81 c |
SD | 7.57 | 7.35 | 6.70 | |
CI-L | 20.0 | 29.1 | 7.47 | |
CI-U | 20.9 | 29.4 | 8.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alm-Kristiansen, A.H. Motility Subpopulations with Distinct Motility Characteristics Using Swim-Up-Selected Sperm Cells from Norwegian Red Bulls: Effects of Freezing–Thawing and Between-Bull Variation. Biology 2023, 12, 1086. https://doi.org/10.3390/biology12081086
Alm-Kristiansen AH. Motility Subpopulations with Distinct Motility Characteristics Using Swim-Up-Selected Sperm Cells from Norwegian Red Bulls: Effects of Freezing–Thawing and Between-Bull Variation. Biology. 2023; 12(8):1086. https://doi.org/10.3390/biology12081086
Chicago/Turabian StyleAlm-Kristiansen, Anne Hege. 2023. "Motility Subpopulations with Distinct Motility Characteristics Using Swim-Up-Selected Sperm Cells from Norwegian Red Bulls: Effects of Freezing–Thawing and Between-Bull Variation" Biology 12, no. 8: 1086. https://doi.org/10.3390/biology12081086
APA StyleAlm-Kristiansen, A. H. (2023). Motility Subpopulations with Distinct Motility Characteristics Using Swim-Up-Selected Sperm Cells from Norwegian Red Bulls: Effects of Freezing–Thawing and Between-Bull Variation. Biology, 12(8), 1086. https://doi.org/10.3390/biology12081086