Potential Toxic Elements and Their Carcinogenic and Non-Carcinogenic Risk Assessment in Some Commercially Important Fish Species from a Ramsar Site
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Sample Collection, Preparation and Metal Analyses
2.3. Health Risks and Measuring Contamination Levels in the Study Area
2.4. Assessing the Risk of MeHg from Fish Consumption
2.5. Statistical Methods
3. Results and Discussion
3.1. Concentrations of PTEs in Fish Muscle
Sampling Site | Species | Fe | Cu | Zn | Pb | Hg | Reference |
---|---|---|---|---|---|---|---|
Tanguar Haor, Sunamganj | L. guntea | 88.5 ± 11.1 | 27.2 ± 10 | 73.6 ± 27.4 | 0.5 ± 0.12 | 0.4 ± 0.1 | Present study |
M. pancalus | 104.1 ± 2.8 | 27.1 ± 4.2 | 66.6 ± 9.7 | 0.5 ± 0.03 | 0.4 ± 0.03 | ||
G. giuris | 109.2 ± 8.8 | 25.5 ± 10.3 | 95.1 ± 9.5 | 0.4 ± 0.1 | 0.4 ± 0.1 | ||
N. nandus | 119.8 ± 45.4 | 23.9 ± 7.2 | 86 ± 13.5 | 0.5 ± 0.1 | 0.4 ± 0.02 | ||
Mymensingh | P. hypophthalmus | NA | 0.8 ± 0.01 | NA | 0.4 ± 0.2 | NA | [31] |
Buriganga River | H. fossilis | NA | 8.1 ± 0.4 | 26.7 ± 0.1 | 2 ± 0.03 | NA | [30] |
Dhaleswari River | Trypauchen vagina | NA | 7 ± 1.5 | NA | 6.9 ± 0.6 | NA | [28] |
Buriganga River | Puntius ticto | NA | 11.5 ± 3.3 | 203.6 ± 12.9 | 3.1 ± 0.1 | NA | [29] |
Puntius sophore | NA | 9 ± 1.6 | 248.2 ± 14.6 | 3.2 ± 0.1 | NA | ||
Puntius chola | NA | 6.9 ± 1.1 | 292.1 ± 19.8 | 2.3 ± 0.1 | NA | ||
Labeo rohita | NA | 18.8 ± 2.2 | 251.7 ± 18.2 | 7 ± 0.2 | NA | ||
Glossogobius giuris | NA | 5.9 ± 0.5 | 194.7 ± 12.6 | 1.8 ± 0.1 | NA | ||
Korotoa River | Channa punctata | NA | 0.8 ± 0.4 | NA | 0.5 ± 0.5 | NA | [27] |
Anabas testudineus | NA | 2.1 ± 0.7 | NA | 1.1 ± 0.9 | NA | ||
Batasio batasio | NA | 1 ± 0.7 | NA | 0.3 ± 0.2 | NA | ||
Permissible limit in fish | - | 30 | 30 | 1.5 | 0.5 | [33,34,35] |
3.2. Sources Identification
3.3. Health Implications of Fish Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uysal, K.; Köse, E.; Bülbül, M.; Dönmez, M.; Erdoğan, Y.; Koyun, M.; Özmal, F. The comparison of heavy metal accumulation ratios of some fish species in Enne Dame Lake (Kütahya/Turkey). Environ. Monito. Assess. 2009, 157, 355–362. [Google Scholar] [CrossRef]
- Hossain, K.Z.; Mercier, L. Intraframework Metal Ion Adsorption in Ligand-Functionalized Mesoporous Silica. Adv. Mater. 2002, 14, 1053–1056. [Google Scholar] [CrossRef]
- Sin, S.N.; Chua, H.; Lo, W.; Ng, L.M. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ. Int. 2001, 26, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Hossain, M.B.; Choudhury, T.R.; Yu, J.; Rana, M.S.; Noman, M.A.; Hosen, M.M.; Paray, B.A.; Arai, T. Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics 2022, 10, 175. [Google Scholar] [CrossRef]
- Akoto, O.; Bruce, T.N.; Darko, D. PTEs pollution profiles in streams serving the Owabi reservoir. Afr. J. Environ. Sci. Technol. 2008, 2, 354–359. [Google Scholar]
- Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A.; Lechler, P.J.; Miller, J.R.; Turner, J.N. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 2006, 79, 423–447. [Google Scholar] [CrossRef]
- Martin, C. Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena 2000, 39, 53–68. [Google Scholar] [CrossRef]
- Nouri, J.; Mahvi, A.H.; Jahed, G.R.; Babaei, A.A. Regional distribution pattern of groundwater PTEs resulting from agricultural activities. Environ. Geol. 2008, 55, 1337–1343. [Google Scholar] [CrossRef]
- Reza, R.; Singh, G. Heavy metal contamination and its indexing approach for river water. Int. J. Environ. Sci. Technol. 2010, 7, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Mendil, D.; Uluözlü, Ö.D.; Hasdemir, E.; Tüzen, M.; Sari, H.; Suicmez, M. Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chem. 2005, 90, 175–179. [Google Scholar] [CrossRef]
- Kljaković-Gašpić, Z.; Herceg-Romanić, S.; Kožul, D.; Veža, J. Biomonitoring of organochlorine compounds and trace elements along the Eastern Adriatic coast (Croatia) using Mytilusgalloprovincialis. Mar. Pollut. Bull. 2010, 60, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, M.; Türkmen, A.; Tepe, Y.; Töre, Y.; Ateş, A. Determination of elements in fish species from Aegean and Mediterranean seas. Food Chem. 2009, 113, 233–237. [Google Scholar] [CrossRef]
- Mamun, S.A.; Roy, S.; Rahaman, M.S.; Jahan, M.; Islam, M.S. Status of Fisheries Resources and Water Quality of TanguarHaor. J. Environ. Sci. Nat. Resour. 2013, 6, 103–106. [Google Scholar]
- Bevanger, K.; Datta, A.K.; Eid, A.T.; Shirin, M. Tanguar Haor Wetland Biodiversity Conservation Project- an Appraisal. NINA Proj. Rep. 2001, 16, 37. [Google Scholar]
- Nowreen, S.; Murshed, S.B.; Islam, A.S.; Bhaskaran, B.; Hasan, M.A. Changes of rainfall extremes around the haor basin areas of Bangladesh using multi-member ensemble RCM. Theore. Appl. Clim. 2015, 119, 363–377. [Google Scholar] [CrossRef]
- Parisha, J.T.; Miah, M.R.; Hasan, M.M.; Begum, M. Impact of Environmental Pollution along with Technology for Conserving of Biodiversity. Int. J. Ecosy. 2022, 12, 20–30. [Google Scholar]
- Hossain, M.S.; Nayeem, A.; Majumder, A.K. Impact of flash flood on agriculture land in Tanguar Haor Basin. Int. J. Res. Environ. Sci. 2017, 3, 42–45. [Google Scholar]
- Bhuiyan, M.A.H.; Islam, S.A.M.S.; Kowser, A.; Islam, M.R.; Kakoly, S.A.; Asaduzzaman, K.; Khondker, M. Phytoplankton in relation to water quality of Tanguarhaor ecosystem, Bangladesh: 1. Rauar station. Dhaka Univ. J. Biol. Sci. 2018, 28, 131–138. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Asaduzzaman, K.; Kowser, A.; Islam, S.A.M.S.; Islam, M.R.; Kakoly, S.A.; Begum, M.; Khondker, M. Natural Radioactivity Levels and Radiological Risk Assessment of Surface Water of Wetland Tanguar Haor, Sunamganj District, Bangladesh. J. Rad. Nucl. Appl. 2019, 4, 117–125. [Google Scholar]
- Ahmed, R.S.; Abuarab, M.E.; Ibrahim, M.M.; Baioumy, M.; Mokhtar, A. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. Chemosphere 2023, 318, 137872. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.S.; Hoque, M.E.; Tusher, T.R.; Kabir, M.H. Study on natural resource management in relation with socio-economic status at Tanguar haor in Sunamgonj district of Bangladesh. Bangladesh J. Environ. Sci. 2014, 26, 59–66. [Google Scholar]
- Rakib, M.R.J.; Jolly, Y.N.; Enyoh, C.E.; Khandaker, M.U.; Hossain, M.B.; Akther, S.; Alsubaie, A.; Almalki, A.S.; Bradley, D.A. Levels and health risk assessment of heavy metals in dried fish consumed in Bangladesh. Sci. Rep. 2021, 11, 14642. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual; US Environment Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Hossain, M.B.; Bhuiyan, N.Z.; Kasem, A.; Hossain, M.K.; Sultana, S.; Nur, A.-A.U.; Yu, J.; Albeshr, M.F.; Arai, T. Heavy Metals in Four Marine Fish and Shrimp Species from a Subtropical Coastal Area: Accumulation and Consumer Health Risk Assessment. Biology 2022, 11, 1780. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- Thapa, D.S.; Sharma, C.M.; Kang, S.; Sillanpää, M. The Risk of Mercury Exposure to the People Consuming Fish from Lake Phewa, Nepal. Int. J. Environ. Res. Public Health 2014, 11, 6771–6779. [Google Scholar] [CrossRef] [Green Version]
- Girolametti, F.; Panfili, M.; Colella, S.; Frapiccini, E.; Annibaldi, A.; Illuminati, S.; Marini, M.; Truzzi, C. Mercury levels in Merluccius merluccius muscle tissue in the central Mediterranean Sea: Seasonal variation and human health risk. Mar. Pollut. Bull. 2022, 176, 113461. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Ahamed, S.; Rahman, S.; Haque, M.R.; Islam, M.M. PTEs concentration in water, sediments and their bioaccumulations in some freshwater fishes and mussel in Dhaleshwari River, Bangladesh. Terr. Aquat. Environ. Toxicol. 2009, 3, 33–41. [Google Scholar]
- Ahmed, M.J.K.; Ahmaruzzaman, M.J.J.O.W.P.E. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Begum, A.; Mustafa, A.I.; Amin, M.D.; Chowdhury, T.R.; Quraishi, S.B.; Banu, N. Levels of PTEs in tissues of shingi fish (Heteropneustes fossilis) from Buriganga River, Bangladesh. Environ. Monit. Assess. 2013, 185, 5461–5469. [Google Scholar] [CrossRef]
- Maruf MA, H.; Punom, N.J.; Saha, B.; Moniruzzaman, M.; Suchi, P.D.; Eshik, M.M.E.; Rahman, M.S. Assessment of human health risks associated with heavy metals accumulation in the freshwater fish Pangasianodon hypophthalmus in Bangladesh. Expos. Health 2012, 13, 337–359. [Google Scholar] [CrossRef]
- Qiu, Y.W.; Lin, D.; Liu, J.Q.; Zeng, E.Y. Bioaccumulation of trace elements in farmed fish from South China and potential risk assessment. Ecotoxi. Environ. Saf. 2011, 74, 284–293. [Google Scholar] [CrossRef]
- FAO. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Product. FAO Fish. Circ. 1983, 764, 104. [Google Scholar]
- EC. Commission Regulation N. 1881/2006 of 19 December 2006. Setting maximum levels of certain contaminants in foodstuff. Off. J. Eur. Union: Legis. Ser. 2006, 65, 5–24. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; p. 631. [Google Scholar]
- Suresh, K.P.; Chandrashekara, S. Sample size estimation and power analysis for clinical research studies. J. Hum. Reprod. Sci. 2012, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Rahman, M.; Kabir, M.; Hoq, M.; Meghla, N.T.; Suravi, S.; Sarker, M. Seasonal Dynamics of Heavy Metal Concentrations in Water, Fish and Sediments from Haor Region of Bangladesh. Pollution 2012, 7, 843–857. [Google Scholar]
- Simeonov, V.; Massart, D.L.; Andreev, G.; Tsakovski, S. Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’sediments from the Black Sea. Chemosphere 2000, 41, 1411–1417. [Google Scholar] [CrossRef]
- Cheng, M.C.; You, C.F.; Lin, F.J.; Huang, K.F.; Chung, C.H. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan. Atmos. Environ. 2011, 45, 1919–1928. [Google Scholar] [CrossRef]
- Keeler, G.J.; Landis, M.S.; Norris, G.A.; Christianson, E.M.; Dvonch, J.T. Sources of mercury wet deposition in eastern Ohio, USA. Environ. Sci. Technol. 2006, 40, 5874–5881. [Google Scholar] [CrossRef] [PubMed]
- USEPA (US Environmental Protection Agency). Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA, 2010.
Sample | Habitant | N | Weight (g) ± SD | Length (cm) ± SD |
---|---|---|---|---|
Gutum (L. guntea) | Bottom feeder | 9 | 5 ± 1 | 8.5 ± 0.5 |
Baim (M. pancalus) | Bottom feeder | 9 | 4 ± 1 | 10.6 ± 0.7 |
Baila (G. giuris) | Pelagic feeder | 9 | 4.3 ± 1.6 | 8.53 ± 0.85 |
Meni (N. nandus) | Bottom/column feeder | 9 | 11.6 ± 1.6 | 9.3 ± 0.3 |
Equation | Index | Depiction and Objectives | Principle | Explanation | Pollution Degree Criteria |
---|---|---|---|---|---|
1. | Metal pollution index (MPI) | It is based on a long-term trend evaluation of the current situation. | MPI = CAvg1 × CAvg2 × × CAvgn1/n | M1 = the concentration value of 1st metal, M2 = the value of 2nd concerned metal, and so on. | |
2. | Target hazard quotient (THQ) | This is non-carcinogenic risks measured by the ratio of CDI and reference dose (RfD). | EFr = the exposure frequency (365 days/year), ED = exposure duration (average age of human), FIR = fish ingestion rate (average adult consumption rate: 62.58 g g/person/day), C = the concentration of PTEs (mg/kg), BW is average body weight of human, AT = average exposure time (EFr × ED), RfD = oral reference doses (USEPA, 2020) | THQ < 1, no adverse health effects; for THQ ≥ 1, there could be a likelihood of possible health hazards | |
3. | TTHQ | The TTHQ from THQs is denoted as the total of the hazard | Summation of THQ | TTHQ > 10, high risk for its consumers. | |
4. | Carcinogenic Risk (CR) | It indicates an incremental probability of an individual developing cancer over a lifetime | CSF = the carcinogenic slope factor set by USEPA (2010). | Risk levels for carcinogens range from 10−4 to 10−6 | |
5. | Estimated weekly intake (EWI) | It is calculated by multiplying the respective mean concentration of the metal determined in the targeted fish samples by the weight of fish consumed by an average adult individual in Bangladesh | EWI = | DFC = daily fish consumption (g); and MC = mean concentration of trace elements (μg/g) in fish; BW = the human body weight; 7 is the number of days in a week. (DFC = 62.58 g, BW = 55.2 kg for males, 49.8 kg for females) | The tolerable daily intake by WHO |
Fe | Cu | Zn | Pb | Hg | |
---|---|---|---|---|---|
Fe | 1 | ||||
Cu | 0.79 | 1 | |||
Zn | 0.46 | 0.91 | 1 | ||
Pb | −0.39 | 0.25 | 0.62 | 1 | |
Hg | 0.49 | 0.85 | 0.92 | 0.44 | 1 |
Metals | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Fe | 0.85 | −0.5 | −0.01 |
Cu | 0.03 | 0.02 | 0.1 |
Zn | 0.5 | 0.85 | −0.03 |
Pb | 0.00005 | 0.001 | 0.1 |
Hg | 0.0003 | 0.0004 | −0.15 |
Variability (%) | 75.17 | 24.82 | 0.001 |
Eigenvalues | 2.61 | 1.01 | 0.63 |
Fish Species | Fe | Cu | Zn | Pb | Hg | |
---|---|---|---|---|---|---|
L. guntea | Male | 0.702 | 0.216 | 0.584 | 0.004 | 0.003 |
Female | 0.779 | 0.239 | 0.647 | 0.004 | 0.004 | |
Child | 1.130 | 0.347 | 0.939 | 0.007 | 0.005 | |
M. pancalus | Male | 0.826 | 0.215 | 0.53 | 0.004 | 0.003 |
Female | 0.916 | 0.238 | 0.587 | 0.004 | 0.004 | |
Child | 1.330 | 0.346 | 0.852 | 0.006 | 0.005 | |
G. giuris | Male | 0.867 | 0.202 | 0.755 | 0.003 | 0.003 |
Female | 0.961 | 0.224 | 0.837 | 0.004 | 0.004 | |
Child | 1.395 | 0.325 | 1.215 | 0.005 | 0.005 | |
N. nandus | Male | 0.951 | 0.190 | 0.683 | 0.004 | 0.003 |
Female | 1.054 | 0.210 | 0.757 | 0.004 | 0.003 | |
Child | 1.530 | 0.305 | 1.098 | 0.006 | 0.005 | |
PTWI (µg/person/week) [35] | 392 | 245 | 490 | 1.75 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.B.; Ahmed, M.M.; Jolly, Y.N.; Nur, A.-A.U.; Sultana, S.; Akter, S.; Yu, J.; Paray, B.A.; Arai, T. Potential Toxic Elements and Their Carcinogenic and Non-Carcinogenic Risk Assessment in Some Commercially Important Fish Species from a Ramsar Site. Biology 2023, 12, 1072. https://doi.org/10.3390/biology12081072
Hossain MB, Ahmed MM, Jolly YN, Nur A-AU, Sultana S, Akter S, Yu J, Paray BA, Arai T. Potential Toxic Elements and Their Carcinogenic and Non-Carcinogenic Risk Assessment in Some Commercially Important Fish Species from a Ramsar Site. Biology. 2023; 12(8):1072. https://doi.org/10.3390/biology12081072
Chicago/Turabian StyleHossain, Mohammad Belal, Md Moudud Ahmed, Yeasmin Nahar Jolly, As-Ad Ujjaman Nur, Salma Sultana, Shirin Akter, Jimmy Yu, Bilal Ahamad Paray, and Takaomi Arai. 2023. "Potential Toxic Elements and Their Carcinogenic and Non-Carcinogenic Risk Assessment in Some Commercially Important Fish Species from a Ramsar Site" Biology 12, no. 8: 1072. https://doi.org/10.3390/biology12081072
APA StyleHossain, M. B., Ahmed, M. M., Jolly, Y. N., Nur, A. -A. U., Sultana, S., Akter, S., Yu, J., Paray, B. A., & Arai, T. (2023). Potential Toxic Elements and Their Carcinogenic and Non-Carcinogenic Risk Assessment in Some Commercially Important Fish Species from a Ramsar Site. Biology, 12(8), 1072. https://doi.org/10.3390/biology12081072