Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Complexities of MIA Biosynthetic Pathway
3. Engineering of MIA Pathway in Microbial Hosts
4. Engineering of the MIA Pathway in Heterologous Plant Hosts
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabó, L. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine. Molecules 2008, 13, 1875–1896. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Salim, V.; Levac, D.; Atsumi, S.M.; Yu, F. Discovery and functional analysis of monoterpenoid indole alkaloids. Meth. Enzymol. 2012, 515, 207–229. [Google Scholar]
- O’Connor, S.E.; Maresh, J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 2006, 23, 532–547. [Google Scholar] [CrossRef]
- Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emra, T.B.; Simal-Gandara, J. Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 2021, 26, 2297. [Google Scholar]
- Glenn, W.S.; Runguphan, W.; O’Connor, S.E. Recent progress in the metabolic engineering of alkaloids in plant systems. Curr. Opin. Biotechnol. 2013, 24, 354–365. [Google Scholar] [CrossRef] [Green Version]
- van Der Heijden, R.; Jacobs, D.I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr. Med. Chem. 2004, 11, 607–628. [Google Scholar]
- Jeong, W.T.; Lim, H.B. A UPLC-ESI-Q-TOF method for rapid and reliable identification and quantification of major indole alkaloids in Catharanthus roseus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1080, 27–36. [Google Scholar]
- Verma, A.; Laakso, I.; Seppänen-Laakso, T.; Huhtikangas, A.; Riekkola, M.-L. A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecules 2007, 12, 1307–1315. [Google Scholar]
- Fox, E.R.; Unguru, Y. Oncology drug shortages in the USA—Business as usual. Nat. Rev. Clin. Onc. 2020, 17, 128–129. [Google Scholar]
- McBride, A.; Hudson-DiSalle, S.; Pilz, J.; Hamm, M.; Boring, B.; Buie, L.W.; DeRemer, D.L. National survey on the effect of oncology drug shortages in clinical practice: A hematology oncology pharmacy association survey. JCO Oncol. Pract. 2022, 18, 1289–1296. [Google Scholar]
- De Luca, V.; Salim, V.; Thamm, A.; Masada, S.A.; Yu, F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: Progress on pathway elucidation. Curr. Opi. Plant Biol. 2014, 19, 35–42. [Google Scholar]
- Qu, Y.; Easson, M.E.A.; Froese, J.; Simionescu, R.; Hudlicky, T.; De Luca, V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, 6224–6229. [Google Scholar]
- Qu, Y.; Easson, M.E.A.; Simionescu, R.; Hajicek, J.; Thamm, A.M.K.; Salim, V.; De Luca, V. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc. Natl. Acad. Sci. USA 2018, 115, 3180–3185. [Google Scholar] [CrossRef] [Green Version]
- Caputi, L.; Franke, J.; Farrow, S.C.; Chung, K.; Payne, R.M.E.; Nguyen, T.-D.; Dag, T.-T.T.; Carqueijeiro, I.S.T.; Koudounas, K.; de Bernonville, T.D.; et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018, 360, 1235–1239. [Google Scholar]
- Qu, Y.; Safonova, O.; De Luca, V. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. Plant J. 2019, 97, 257–266. [Google Scholar]
- Gao, J.; Jiang, L.; Lian, J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth. Syst. Biol. 2021, 6, 110–119. [Google Scholar]
- Birchfield, A.S.; McIntosh, C.A. Metabolic engineering and synthetic biology of plant natural products—A minireview. Curr. Plant Biol. 2020, 24, 10063. [Google Scholar]
- Brown, S.; Clastre, M.; Courdavault, V.; O’Connor, S.E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, 3205–3210. [Google Scholar]
- Simkin, A.J.; Miettinen, K.; Claudel, P.; Burlat, V.; Guirimand, G.; Courdavault, V.; Papon, N.; Meyer, S.; Godet, S.; St-Pierre, B.; et al. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 2013, 85, 36–43. [Google Scholar]
- Collu, G.; Unver, N.; Peltenburg-Looman, A.M.G.G.; Van der Heijden, R.; Verpoorte, R.; Memelink, J. Geraniol 10-hydroxylase, a cytochrome p450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001, 508, 215–220. [Google Scholar]
- Geu-Flores, F.; Sherden, N.H.; Glenn, W.S.; O’Connor, S.E.; Courdavault, V.; Burlat, V.; Nims, E.; Wu, C.; Cui, Y. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012, 492, 138–142. [Google Scholar] [PubMed]
- Lichman, B.R.; Kamileen, M.O.; Titchiner, G.R.; Saalbach, G.; Stevenson, C.E.M.M.; Lawson, D.M.; O’Connor, S.E. Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat. Chem. Biol. 2019, 15, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichman, B.R.; Godden, G.T.; Hamilton, J.P.; Palmer, L.; Kamileen, M.O.; Zhao, D.; Vaillancourt, B.; Wood, J.C.; Sun, M.; Kinser, T.J.; et al. The evolutionary origins of the cat attractant nepetalactone in catnip. Sci. Adv. 2020, 6, e0721. [Google Scholar]
- Salim, V.; Wiens, B.; Masada-Atsumi, S.; Yu, F.; De Luca, V. 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 2014, 101, 23–31. [Google Scholar] [CrossRef]
- Miettinen, K.; Dong, L.; Navrot, N.; Schneider, T.; Burlat, V.; Pollier, J.; Woittiez, L.; van der Krol, S.; Lugan, R.; Ilc, T.; et al. The seco-iridoid pathway from Catharanthus roseus. Nat. Commun. 2014, 5, 3606. [Google Scholar]
- Asada, K.; Salim, V.; Masada-Atsumi, S.; Edmunds, E.; Nagatoshi, M.; Terasaka, K.; Mizukami, H.; De Luca, V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 2013, 25, 4123–4134. [Google Scholar] [CrossRef] [Green Version]
- Salim, V.; Yu, F.; Altarejos, J.; De Luca, V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J. 2013, 76, 754–765. [Google Scholar]
- Murata, J.; Roepke, J.; Gordon, H.; De Luca, V. The leaf epidermome of Catharanthus Roseus reveals its biochemical specialization. Plant Cell 2008, 20, 524–542. [Google Scholar] [CrossRef] [Green Version]
- Irmler, S.; Schröder, G.; St-Pierre, B.; Crouch, N.P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schröder, J. Indole alkaloid biosynthesis in Catharanthus Roseus: New enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 2000, 24, 797–804. [Google Scholar]
- Kutchan, T.M.; Hampp, N.; Lottspeich, F.; Beyreuther, K.; Zenk, M.H. The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli. FEBS Lett. 1988, 237, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Tatsis, E.C.; Carqueijeiro, I.; de Bournonville, T.D.; Franke, J.; Dang, T.-T.T.; Oudin, A.; Lanoue, A.; Lafontaine, F.; Stavrinides, A.K.; Lastre, M.; et al. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat. Commun. 2017, 8, 316. [Google Scholar] [PubMed] [Green Version]
- Stavrinides, A.; Tatsis, E.C.; Caputi, L.; Foureau, E.; Stevenson, C.E.M.; Lawson, D.M.; Courdavault, V.; O’Connor, S.E. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nat. Commun. 2016, 7, 12116. [Google Scholar] [PubMed] [Green Version]
- Costa, M.M.R.; Hilliou, F.; Duarte, P.; Pereira, L.G.; Almeida, I.; Leech, M.; Memelink, J.; Barcelo, A.R.; Sottomayor, M. Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol. 2008, 146, 403–417. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Balsevich, J.; Kurz, W.G.W. Acetyl coenzyme A: Deacetylvindoline O-acetyltransferase, a novel enzyme from Catharanthus roseus. J. Plant Physiol. 1985, 121, 417–428. [Google Scholar]
- De Carolis, E.; De Luca, V. Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J. Biol. Chem. 1993, 268, 5504–5511. [Google Scholar]
- Levac, D.; Murata, J.; Kim, W.S.; De Luca, V. Application of carborundum abrasion for investigating the leaf epidermis: Molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J. 2008, 53, 225–236. [Google Scholar]
- Liscombe, D.K.; Usera, A.R.; O’Connor, S.E. Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 18793–18798. [Google Scholar] [CrossRef]
- Besseau, S.; Kellner, F.; Lanoue, A.; Thamm, A.M.K.; Salim, V.; Schneider, B.; Geu-Flores, F.; Höfer, R.; Guirimand, G.; Guihur, A.; et al. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol. 2013, 163, 1792–1803. [Google Scholar]
- Li, C.; Wood, J.C.; Vu, A.H.; Hamilton, J.P.; Lopez, C.E.R.; Payne, R.M.E.; Guerrero, D.A.S.; Gase, K.; Yamamoto, K.; Vaillancourt, B.; et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 2023, 19, 1031–1041. [Google Scholar]
- Geerlings, A.; Ibañez, M.M.-L.; Memelink, J.; van der Heijdent, R.; Verpoorte, R. Molecular cloning and analysis of strictosidine β-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J. Biol. Chem. 2000, 275, 3051–3056. [Google Scholar]
- Guirimand, G.; Courdavault, V.; Lanoue, A.; Mahroug, S.; Guihur, A.; Blanc, N.; Giglio-Guivarc’h, N.; St-Pierre, B.; Burlat, V. Strictosidine activation in Apocynaceae: Towards a ‘nuclear time bomb’? BMC Plant Biol. 2010, 10, 182. [Google Scholar]
- Courdavault, V.; Papon, N.; Clastre, M.; Giglio-Guivarc’h, N.; St-Pierre, B.; Burlat, V. A look inside an alkaloid multisite plant: The Catharanthus logistics. Curr. Opin. Plant Biol. 2014, 19, 43–50. [Google Scholar] [PubMed]
- Sharma, A.; Amin, D.; Sankaranarayanan, A.; Arora, R.; Mathur, A.K. Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems. Biotechnol. Lett. 2020, 42, 11–23. [Google Scholar] [CrossRef]
- Cui, L.; Ni, X.; Ji, Q.; Teng, X.; Yang, Y.; Wu, C.; Zekria, D.; Zhang, D.; Kai, G. Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci. Rep. 2015, 5, 8227–8236. [Google Scholar] [PubMed] [Green Version]
- Morey, K.J.; Peebles, C.A.M. Hairy roots: An untapped potential for production of plant products. Front. Plant Sci. 2020, 13, 937095. [Google Scholar]
- Runguphan, W.; O’Connor, S.E. Metabolic reprogramming of periwinkle plant culture. Nat. Chem. Biol. 2009, 5, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Misa, J.; Billingsley, J.M.; Niwa, K.; Yu, R.K.; Tang, Y. Engineered production of strictosidine and analogues in yeast. ACS Synth. Biol. 2022, 11, 1639–1649. [Google Scholar] [CrossRef]
- Shahsavarani, M.; Utomo, J.C.; Kumar, R.; Paz-Galeano, M.; Garza-García, J.J.O.; Mai, Z.; Ro, D.K.; Qu, Y. Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast. Metab. Eng. Commun. 2022, 16, e00215. [Google Scholar]
- Boccia, M.; Grzech, D.; Lopes, A.A.; O’Connor, S.E.; Caputi, L. Directed biosynthesis of new to nature alkaloids in a heterologous Nicotiana benthamiana expression host. Front. Plant Sci. 2022, 13, 919443. [Google Scholar]
- Reed, J.; Stephenson, M.J.; Miettinen, K.; Brouwer, B.; Leveau, A.; Brett, P.; Goss, R.J.M.; Goossens, A.; O’Connell, M.A.; Osbourn, A. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab. Eng. 2017, 42, 185–193. [Google Scholar]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528–532. [Google Scholar]
- Pyne, E.; Narcross, L.; Martin, V.J.J. Engineering plant secondary metabolism in microbial systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, P.; Smolke, C.D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat. Commun. 2019, 10, 3634. [Google Scholar] [PubMed] [Green Version]
- Reed, J.; Osbourn, A. Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Rep. 2018, 37, 1431–1441. [Google Scholar] [PubMed]
- Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA 2012, 109, 111–118. [Google Scholar]
- Galanie, S.; Thodey, K.; Trenchard, I.J.; Interrante, M.F.; Smolke, C.D. Complete biosynthesis of opioids in yeast. Science 2015, 349, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA 2018, 115, 3922–3931. [Google Scholar]
- Geerlings, A.; Redondo, F.J.; Contin, A.; Memelink, J.; van der Heijden, R.; Verpoorte, R. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl. Microbiol. Biotechnol. 2001, 56, 420–424. [Google Scholar] [CrossRef]
- Lemos Cruz, P.; Kulagina, N.; Guirimand, G.; De Craene, J.O.; Besseau, S.; Lanoue, A.; Oudin, A.; Giglioli-Guivarc’h, N.; Papon, N.; Clastre, M.; et al. Optimization of tabersonine methoxylation to increase vindoline precursor synthesis in yeast cell factories. Molecules 2021, 26, 3596. [Google Scholar]
- Kries, H.; O’Connor, S.E. Biocatalysts from alkaloid producing plants. Curr. Opin. Chem. Biol. 2016, 31, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.; Bauchart, B.; Gold, N.D.; Zhu, Y.; De Luca, V.; Martin, V.J.J. Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids. ACS Synth. Biol. 2016, 5, 405–414. [Google Scholar] [CrossRef]
- Yee, D.A.; DeNicol, A.B.; Billingsley, J.M.; Creso, J.G.; Subrahmanyam, V.; Tang, Y. Engineered mitochondrial production monoterpenes in Saccharomyces cerevisiae. Metab. Eng. 2019, 55, 76–84. [Google Scholar] [CrossRef]
- Billingsley, J.M.; DeNicola, A.B.; Barber, J.S.; Tang, M.-C.; Horecka, J.; Chu, A.; Garg, N.K.; Tang, Y. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab. Eng. 2017, 44, 117–125. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Y.; Jiang, L.; Dong, C.; Gou, Y.; Lian, J. Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Commun. Biol. 2021, 4, 1089. [Google Scholar] [CrossRef]
- Kulagina, N.; Guirimand, G.; Melin, C.; Lemos-Cruz, P.; Carquejeiro, I.; De Craene, J.-O.; Oudin, A.; Heredia, V.; Koudounas, K.; Unlubayir, M.; et al. Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microb. Biotechnol. 2021, 14, 2693–2699. [Google Scholar] [CrossRef]
- Zhang, J.; Hansen, L.G.; Gudich, O.; Viehrig, K.; Lassen, L.M.M.; Schrübbers, L.; Adhikari, K.B.; Rubaszka, P.; Carrasquer-Alvarez, E.; Chen, L.; et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022, 609, 341–347. [Google Scholar]
- Huang, J.; Huang, S. Bioproduction of monoterpene indole alkaloids in a single cell factory. Eng. Microbiol. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Gao, D.; Liu, T.; Gao, J.; Xu, J.; Gou, Y.; Pan, Y.; Li, D.; Ye, C.; Pan, R.; Huang, L.; et al. De novo biosynthesis of vindoline and catharanthine in Saccharomyces cerevisiae. BioDesign Res. 2022, 2022, 0002. [Google Scholar] [CrossRef]
- Liu, T.; Gou, Y.; Zhang, B.; Gao, R.; Dong, C.; Qi, M.; Jiang, L.; Ding, X.; Li, C.; Lian, J. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotech. Bioeng. 2022, 119, 1314–1326. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, X.; Song, L.; Liu, H.; Zhou, X.; Wang, Q.; Zhang, Y.; Cai, M. CRISPR–Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb. Cell Factories 2019, 18, 144. [Google Scholar] [CrossRef] [Green Version]
- Cai, P.; Duan, X.; Wu, X.; Gao, L.; Ye, M.; Zhou, Y.J. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res. 2021, 49, 7791–7805. [Google Scholar] [CrossRef]
- Gao, J.; Xu, J.; Zuo, Y.; Ye, C.; Jiang, L.; Feng, L.; Huang, L.; Xu, Z.; Lian, J. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into Pichia pastoris via CRISPR/Cas9. ACS Synth. Biol. 2022, 11, 623–633. [Google Scholar] [CrossRef]
- Yu, J.; Lv, D.; Zhang, L. De novo biosynthesis of a vinblastine precursor in Pichia pastoris. Synth. Syst. Biotechnol. 2023, 8, 300–301. [Google Scholar] [CrossRef]
- Gao, J.; Zuo, Y.; Xiao, F.; Wang, Y.; Li, D.; Junhao, X.; Ye, C.; Feng, L.; Jiang, L.; Liu, T.; et al. Biosynthesis of catharanthine in engineered Pichia pastoris. Nat. Synth. 2023, 2, 231–242. [Google Scholar]
- Lau, W.; Satterly, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 2015, 349, 1224–1228. [Google Scholar] [CrossRef] [Green Version]
- Polturak, G.; Breitel, D.; Grossman, N.; Sarrion-Perdigones, A.; Weithorn, E.; Pliner, M.; Orzaez, D.; Granell, A.; Rogachev, I.; Aharoni, A. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol. 2016, 210, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Anderson-Ranberg, J.; Kongstad, K.T.; Nafisi, M.; Staerk, D.; Okkels, F.T.; Mortensen, U.H.; Moller, B.L.; Frandsen, R.J.N.; Kannangara, R. Synthesis of C-glucosylated octaketide anthraquinones in Nicotiana benthamiana by using a multispecies-based biosynthetic pathway. ChemBioChem 2017, 18, 1893–1897. [Google Scholar]
- Habib, A.; Islam, M.; Islam, M.; Hasan, M.; Baek, K.-H. Current status and de novo synthesis of anti-tumor alkaloids in Nicotiana. Metabolites 2023, 13, 623. [Google Scholar]
- Forestier, E.C.; Brown, G.D.; Harvey, D.; Larson, T.R.; Graham, I.A. Engineering production of a novel diterpene synthase precursor in Nicotiana benthamiana. Front. Plant Sci. 2021, 12, 3389. [Google Scholar] [CrossRef]
- Dong, L.; Jongedijk, E.; Bouwmeester, H.; Van Der Krol, A. Monoterpene biosynthesis potential of plant subcellular compartments. New Phytol. 2015, 209, 679–690. [Google Scholar] [CrossRef]
- Dudley, Q.M.; Jo, S.; Guerrero, D.A.S.; Chhetry, M.; Smedley, M.A.; Harwood, W.A.; Sherden, N.H.; O’Connor, S.E.; Caputi, L.; Patron, N.J. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Commun. Biol. 2022, 5, 949. [Google Scholar] [PubMed]
- Höfer, R.; Dong, L.; Andre, F.; Ginglinger, J.-F.; Lugan, R.; Gavira, C.; Grec, S.; Lang, G.; Memelink, J.; Van der Krol, S.; et al. Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metab. Eng. 2013, 20, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Grzech, D.; Hong, B.; Caputi, L.; Sonawane, P.D.; O’Connor, S.E. Engineering the biosynthesis of late-stage vinblastine precursors precondylocarpine acetate, catharanthine, tabersonine in Nicotiana benthamiana. ACS Synth. Biol. 2023, 12, 27–34. [Google Scholar] [CrossRef] [PubMed]
Host Species | Targeted Metabolite | Key Steps of Engineering | Yield | Ref |
---|---|---|---|---|
DE NOVO PRODUCTION IN MICROBIAL SYSTEMS | ||||
Saccharomyces cerevisiae | Strictosidine | Incorporation of iridoid biosynthetic genes, 15 plant-derived genes, 1 avian gene, 5 yeast genes, 3 gene deletions | 0.5 mg/L strictosidine from optimized pathway Detection of 0.8 mg/L loganin | [18] |
Saccharomyces cerevisiae | Nepetalactol | Mevalonate pathway optimization overexpression genes, integration of monoterpene biosynthetic genes | 11.4 mg/L geraniol 5.3 mg/L 8-hydroxygeraniol No significant yield of nepetalactol reported | [61] |
Saccharomyces cerevisiae | Nepetalactol | Iridoid pathway optimization, targeting the geraniol biosynthetic pathway to the mitochondria | 7 mg/L geraniol 227 mg/L 8-hydroxygeraniol from geraniol, 5.9 mg/L of nepetalactol (11% conversion from 8-hydroxygeraniol) | [62] |
Saccharomyces cerevisiae | Ajmalicine | Stable integration in the genome, construction of ajmalicine (29 expression cassettes) and sanguinarine (24 expression cassettes), multiplex genome integration | 119.2 mg/L heteroyohimbine alkaloids containing 61.4 mg/L ajmalicine | [69] |
Saccharomyces cerevisiae | Catharanthine, vindoline, vinblastine | Optimization of iridoid pathway to produce strictosidine, testing the full length of STR, testing hybrids of SGD domains, incorporating extra copies of vindoline biosynthetic genes | 0.0132 mg/L vindoline 0.0914 mg/L catharanthine Semi-synthesis of vinblastine | [66] |
Saccharomyces cerevisiae | Catharanthine, vindoline | Optimization of vindoline and catharanthine biosynthetic pathways, incorporating extra copies of rate-limiting enzymes | 0.527 mg/L catharanthine 0.305 mg/L vindoline | [68] |
Pichia pastoris | Catharanthine | CRISPR/Cas9-based genome integration; optimization of de novo biosynthesis of nepetalactol, strictosidine, and catharanthine pathways | 2.57 mg/L catharanthine | [74] |
FEEDING WITH PRECURSORS IN MICROBIAL SYSTEMS | ||||
Saccharomyces cerevisiae | Vindoline | Vindoline biosynthetic genes from tabersonine, incorporation of 8 genes including all vindoline pathway genes and Cytochrome P450 Reductase (CPR) | 1.1 mg/L vindoline from 17 mg/L of tabersonine | [12] |
Saccharomyces cerevisiae | Nepetalactol | Deletion of old yellow enzymes (OYEs), synthesis of iridoid scaffold | 45 mg/L iridoid (8-oxogeraniol, nepetalactol detected without specific yield for each iridoid) | [63] |
Saccharomyces cerevisiae | Vindoline | Increase flux of vindoline pathway | 266 mg/L vindoline (88% yield) from tabersonine 4.7 mg/L vindorosine from tabersonine | [65] |
Saccharomyces cerevisiae | Vindoline | Integration of multiple copies of vindoline biosynthetic genes, CRISPR/Cas9 mediated multiplex integration technology to increase yield of vindoline | 16.5 mg/L vindoline converted from total of 100 mg/L of tabersonine | [64] |
Saccharomyces cerevisiae | Strictosidine | Iridoid pathway optimization, feeding modified tryptamine for the synthesis of halogenated strictosidine | 56.2 mg/L strictosidine from 336.5 mg/L of nepetalactol and 320.4 mg/L of tryptamine | [47] |
Saccharomyces cerevisiae | Catharanthine, tabersonine | Signal peptide modification of O-acetylstemmadenine oxidase to improve protein N-glycosylation, feeding with strictosidine analogs to produce fluorinated and hydroxylated catharanthine and tabersonine | 0.021 mg/L of catharanthine from 15 mg/L of strictosidine aglycone, 0.128 mg/L of catharanthine from 15 mg/L of 19E-geissoschizine | [48] |
HETEROLOGOUS PLANT SYSTEMS | ||||
Nicotiana benthamiana | Strictosidine | Functional characterization of iridoid biosynthetic genes, incorporation of multiple iridoid pathway genes in heterologous plant systems | No yield reported | [25] |
Nicotiana benthamiana | Strictosidine | De novo production of strictosidine, expression of 14 enzymes, amplification of iridoid pathway genes, incorporation of the major latex protein-like (MLPL) enzyme to improve the flux of the iridoid pathway | 0.23 mg strictosidine per g dry weight | [81] |
Nicotiana benthamiana | Precondylocarpine acetate, catharanthine, tabersonine | Use of modular vector assembly system for the optimization of six biosynthetic steps to produce precondylocarpine acetate from strictosidine, and reconstitution of catharanthine and tabersonine pathways | 2.7 mg precondylocarpine acetate, 60 ng catharanthine, 10 ng tabersonine per g frozen tissue, leaves were infiltrated with 1 mL of 200 µM strictosidine | [83] |
Nicotiana benthamiana | Alstonine, stemmadenine analogs | Chemical derivatization of MIAs by incorporating six individual biosynthetic pathway genes from strictosidine to alstonine and stemmadenine acetate | 28 ng of 4-fluoroalstonine per g of plant fresh weight, 155 ng of 5-fluoroalstonine per g of plant fresh weight, 190 ng of 6-fluoroalstonine per g of plant fresh weight, 122 ng of 7-fluoroalstonine per g of plant fresh weight, 27 ng of 7-chloroalstonine per g of plant fresh weight when plants were infiltrated with each strictosidine analog, 25 ng of alstonine per g of plant fresh weight when plants were infiltrated with natural strictosidine (2 mL per leaf of 200 µM of the desired strictosidine analog) | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, V.; Jarecki, S.-A.; Vick, M.; Miller, R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. Biology 2023, 12, 1056. https://doi.org/10.3390/biology12081056
Salim V, Jarecki S-A, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. Biology. 2023; 12(8):1056. https://doi.org/10.3390/biology12081056
Chicago/Turabian StyleSalim, Vonny, Sara-Alexis Jarecki, Marshall Vick, and Ryan Miller. 2023. "Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids" Biology 12, no. 8: 1056. https://doi.org/10.3390/biology12081056
APA StyleSalim, V., Jarecki, S. -A., Vick, M., & Miller, R. (2023). Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. Biology, 12(8), 1056. https://doi.org/10.3390/biology12081056