Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Head Kidney Primary Cell Culture (HKPCC) Preparation
2.3. In Vitro Immunostimulation
2.4. Total RNA Extraction
2.5. qRT-PCR Analysis of Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Morphology of Head Kidney Culture Cells
3.2. mRNA Gene Expression Changes
3.2.1. TLR-1 Expression
3.2.2. TLR-5 Expression
3.2.3. TLR-8 Expression
3.2.4. IgM Expression
3.2.5. MHC II Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Fisheries and Aquaculture the State of Sustainability in Action; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- FAO. El Estado Mundial de La Pesca y La Acuicultura 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Figueroa, J.; Cárcamo, J.; Yañez, A.; Olavarria, V.; Ruiz, P.; Manríquez, R.; Muñoz, C.; Romero, A.; Avendaño-Herrera, R. Addressing Viral and Bacterial Threats to Salmon Farming in Chile: Historical Contexts and Perspectives for Management and Control. Rev. Aquac. 2019, 11, 299–324. [Google Scholar] [CrossRef]
- Navedo, J.G.; Vargas-Chacoff, L. Salmon Aquaculture Threatens Patagonia. Science 2021, 372, 695–696. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Hemmi, H. Recognition of Pathogen-Associated Molecular Patterns by TLR Family. Immunol. Lett. 2003, 85, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C.A. Decoding the Patterns of Self and Nonself by the Innate Immune System. Science 2002, 296, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansberg, C.; Subramaniam, S.; Collet, B.; Secombes, C.J.; Cunningham, C. Cloning of the Atlantic Salmon (Salmo salar) IL-1 Receptor Associated Protein. Fish Shellfish Immunol. 2005, 19, 53–65. [Google Scholar] [CrossRef]
- Kigerl, K.A.; de Rivero Vaccari, J.P.; Dietrich, W.D.; Popovich, P.G.; Keane, R.W. Pattern Recognition Receptors and Central Nervous System Repair. Exp. Neurol. 2014, 258, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.R. Structure of Fish Toll-like Receptors (TLR) and NOD-like Receptors (NLR). Int. J. Biol. Macromol. 2020, 161, 1602–1617. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [Green Version]
- Fierro-Castro, C.; Barrioluengo, L.; López-Fierro, P.; Razquin, B.E.; Villena, A.J. Fish Cell Cultures as Invitro Models of Inflammatory Responses Elicited by Immunostimulants. Expression of Regulatory Genes of the Innate Immune Response. Fish Shellfish Immunol. 2013, 35, 979–987. [Google Scholar] [CrossRef]
- Martínez-López, A.; Tyrkalska, S.D.; Alcaraz-Pérez, F.; Cabas, I.; Candel, S.; Martínez Morcillo, F.J.; Sepulcre, M.P.; García-Moreno, D.; Cayuela, M.L.; Mulero, V. Evolution of LPS Recognition and Signaling: The Bony Fish Perspective. Dev. Comp. Immunol. 2023, 145, 104710. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Toll-Like Receptors And Innate Immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Duffy, K.E.; San Mateo, L.R.; Amegadzie, B.Y.; Sarisky, R.T.; Mbow, M.L. A Pathway Analysis of Poly(I:C)-Induced Global Gene Expression Change in Human Peripheral Blood Mononuclear Cells. Physiol. Genom. 2006, 26, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Hou, B. The Role of B Cell Antigen Presentation in the Initiation of CD4+ T Cell Response. Immunol. Rev. 2020, 296, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, C.; Chaves-Pozo, E. Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int. J. Mol. Sci. 2022, 23, 4899. [Google Scholar] [CrossRef]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef]
- Mokhtar, D.M.; Zaccone, G.; Alesci, A.; Kuciel, M.; Hussein, M.T.; Sayed, R.K.A. Main Components of Fish Immunity: An Overview of the Fish Immune System. Fishes 2023, 8, 93. [Google Scholar] [CrossRef]
- Turley, S.J.; Inaba, K.; Garrett, W.S.; Ebersold, M.; Unternaehrer, J.; Steinman, R.M.; Mellman, I. Transport of Peptide–MHC Class II Complexes in Developing Dendritic Cells. Science 2000, 288, 522–527. [Google Scholar] [CrossRef]
- Salinas, I.; Zhang, Y.A.; Sunyer, J.O. Mucosal Immunoglobulins and B Cells of Teleost Fish. Dev. Comp. Immunol. 2011, 35, 1346–1365. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Qin, Z.; Liu, H.; Lin, L.; Ye, J.; Li, J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front. Immunol. 2020, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, L.V.G.; Xu, Z.; Takizawa, F.; Parra, D.; Go, D.; Lapatra, S.E.; Sunyer, J.O. Mucosal Immunoglobulins at Respiratory Surfaces Mark an Ancient Association That Predates the Emergence of Tetrapods. Nat. Commun. 2016, 7, 10728. [Google Scholar] [CrossRef] [Green Version]
- Flajnik, M.F.; Kasahara, M. Origin and Evolution of the Adaptive Immune System: Genetic Events and Selective Pressures. Nat. Rev. Genet. 2010, 11, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.G.; Lee, L.E.J.; Fan, L.; Collodi, P.; Holt, S.E.; Bols, N.C. Initiation of a Zebrafish Blastula Cell Line on Rainbow Trout Stromal Cells and Subsequent Development Under Feeder-Free Conditions into a Cell Line, ZEB2J. Zebrafish 2008, 5, 49–63. [Google Scholar] [CrossRef]
- Joerink, M.; Ribeiro, C.M.S.; Stet, R.J.M.; Hermsen, T.; Savelkoul, H.F.J.; Wiegertjes, G.F. Head Kidney-Derived Macrophages of Common Carp (Cyprinus carpio L.) Show Plasticity and Functional Polarization upon Differential Stimulation. J. Immunol. 2006, 177, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Langan, L.M.; Harper, G.M.; Owen, S.F.; Purcell, W.M.; Jackson, S.K.; Jha, A.N. Application of the Rainbow Trout Derived Intestinal Cell Line (RTgutGC) for Ecotoxicological Studies: Molecular and Cellular Responses Following Exposure to Copper. Ecotoxicology 2017, 26, 1117. [Google Scholar] [CrossRef] [Green Version]
- Aarattuthodi, S.; Dharan, V.; Koshy, M.; Alimentos, L.A.S.D.E.L.O.S.; Goswami, M.; Yashwanth, B.S.; Trudeau, V.; Lakra, W.S. Role and Relevance of Fish Cell Lines in Advanced in Vitro Research. J. Aquac. Res. Dev. 2022, 49, 2393–2411. [Google Scholar] [CrossRef]
- Aarattuthodi, S.; Dharan, V.; Koshy, M. Fish Cell Cultures-Uses and Prospects. J. Aquac. Res. Dev. 2021, 13, 667. [Google Scholar] [CrossRef]
- Barlian, N.C.B.A.; Caldwell, S.J. Development of a Cell Line from Primary Cultures of Rainbow Trout, Oncorhynchus mykiss (Walbaum), Gills. J. Fish Dis. 1994, 17, 601–611. [Google Scholar] [CrossRef]
- Langan, L.M.; Owen, S.F.; Jha, A.N. Establishment and Long-Term Maintenance of Primary Intestinal Epithelial Cells Cultured from the Rainbow Trout, Oncorhynchus mykiss. Biol. Open 2018, 7, bio032870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Chacoff, L.; Ortíz, E.; Oyarzún, R.; Martinez, D.; Saavedra, E.; Sá, R.; Olavarría, V.; Nualart, D.; Yáñez, A.; Bertrán, C.; et al. Stocking Density and Piscirickettsia salmonis Infection Effect on Patagonian Blennie (Eleginops maclovinus, Cuvier 1830) Skeletal Muscle Intermediate Metabolism. Fish Physiol. Biochem. 2014, 40, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Schnell, S.; Kawano, A.; Porte, C.; Lee, L.E.J.; Bols, N.C. Effects of Ibuprofen on the Viability and Proliferation of Rainbow Trout Liver Cell Lines and Potential Problems and Interactions in Effects Assessment. Environ. Toxicol. Int. J. 2008, 24, 157–165. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2−ΔΔCTC Method. Methods 2001, 408, 402–408. [Google Scholar] [CrossRef]
- Martínez, D.; Díaz-ibarrola, D.; Vargas-lagos, C.; Oyarzún, R.; Pontigo, J.P. Fish and Shell Fi Sh Immunology Immunological Response of the Sub-Antarctic Notothenioid Fi Sh Eleginops maclovinus Injected with Two Strains of Piscirickettsia salmonis. Fish Shellfish Immunol. 2018, 75, 139–148. [Google Scholar] [CrossRef]
- Ramakers, C.; Ruijter, J.M.; Lekanne Deprez, R.H.; Moorman, A.F.M. Assumption-Free Analysis of Quantitative Real-Time Polymerase Chain Reaction (PCR) Data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Chettri, J.K.; Raida, M.K.; Holten-Andersen, L.; Kania, P.W.; Buchmann, K. PAMP Induced Expression of Immune Relevant Genes in Head Kidney Leukocytes of Rainbow Trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 2011, 35, 476–482. [Google Scholar] [CrossRef]
- Hart, K.M.; Murphy, A.J.; Barrett, K.T.; Wira, C.R.; Guyre, P.M.; Pioli, P.A. Functional Expression of Pattern Recognition Receptors in Tissues of the Human Female Reproductive Tract. J. Reprod. Immunol. 2009, 80, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.T. Efficacy of the Treatments Used for the Control of Caligus rogercresseyi Infecting Atlantic Salmon, Salmo salar L., in a New Fish-Farming Location in Region XI, Chile. J. Fish Dis. 2013, 36, 221–228. [Google Scholar] [CrossRef]
- Ghosh, M.; Shen, Z.; Fahey, J.V.; Crist, S.G.; Patel, M.; Smith, J.M.; Wira, C.R. Pathogen Recognition in the Human Female Reproductive Tract: Expression of Intracellular Cytosolic Sensors NOD1, NOD2, RIG-1, and MDA5 and Response to HIV-1 and Neisseria Gonorrhea. Am. J. Reprod. Immunol. 2013, 69, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.V.; Shen, Z.; Wira, C.R. Poly (I: C) and LPS Induce Distinct Immune Responses by Ovarian Stromal. J. Reprod. Immunol. 2018, 127, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; McFarland-Mancini, M.M.; Funk, H.M.; Husseinzadeh, N.; Mounajjed, T.; Drew, A.F. Toll-like Receptor Expression in Normal Ovary and Ovarian Tumors. Cancer Immunol. Immunother. 2009, 58, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhu, W.; Yu, L.; Li, N.; Zhang, X.; Liu, P.; Chen, Q.; Chen, Y.; Han, D. Toll-like Receptor 3 and RIG-I-like Receptor Activation Induces Innate Antiviral Responses in Mouse Ovarian Granulosa Cells. Mol. Cell. Endocrinol. 2013, 372, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Holen, E.; Lie, K.K.; Araujo, P.; Olsvik, P.A. Fish & Shell Fi Sh Immunology Pathogen Recognition and Mechanisms in Atlantic Cod (Gadus morhua) Head Kidney Cells Bacteria (LPS) and Virus (Poly I: C) Signals through Different Pathways and Affect Distinct Genes. Fish Shellfish Immunol. 2012, 33, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shimada, M.; Richards, J.S. The Involvement of the Toll-like Receptor Family in Ovulation. J. Assist. Reprod. Genet. 2008, 25, 223. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Han, F.; Zhang, Y.; Zhou, T.; Gao, T. Comparative Transcriptomic Analyses Revealed the Effects of Poly (I:C) on the Liver and Spleen of Argyrosomus japonicus. Int. J. Mol. Sci. 2022, 23, 9801. [Google Scholar] [CrossRef]
- Falco, A.; Miest, J.J.; Pionnier, N.; Pietretti, D.; Forlenza, M.; Wiegertjes, G.F.; Hoole, D. β-Glucan-Supplemented Diets Increase Poly(I: C)-Induced Gene Expression of Mx, Possibly via Tlr3-Mediated Recognition Mechanism in Common Carp (Cyprinus carpio). Fish Shellfish Immunol. 2014, 36, 494–502. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, C.; Duan, C.; Hu, L.; Zhang, S. Fish & Shell Fi Sh Immunology Expression of Virus-Responsive Genes and Their Response to Challenge with Poly (I: C) at Different Stages of the Annual Fi Sh Nothobranchius guentheri: Implications for an Asymmetric Decrease in Immunity. Fish Shellfish Immunol. 2015, 46, 493–500. [Google Scholar] [CrossRef]
- Pham, P.H.; Vo, N.T.K.; Tan, E.J.H.; Russell, S.; Jones, G.; Lumsden, J.S.; Bols, N.C. Development of an Atlantic Salmon Heart Endothelial Cell Line (ASHe) That Responds to Lysophosphatidic Acid (LPA). Vitr. Cell. Dev. Biol.-Anim. 2017, 53, 20–32. [Google Scholar] [CrossRef]
- Vargas-Chacoff, L.; Martínez, D.; Oyarzún, R.; Nualart, D.; Olavarría, V.; Yáñez, A.; Bertrán, C.; Ruiz-Jarabo, I.; Mancera, J.M. Combined Effects of High Stocking Density and Piscirickettsia salmonis Treatment on the Immune System, Metabolism and Osmoregulatory Responses of the Sub-Antarctic Notothenioid Fish Eleginops maclovinus. Fish Shellfish Immunol. 2014, 40, 424–434. [Google Scholar] [CrossRef]
Primer | Nucleotide Sequences (5′→3′) | PCR Product Size | Efficiency HK (%) |
---|---|---|---|
MHCII Fw | CTACGAGTTCTACCCCAAACCCAT | 102 bp | 102.91 |
MHCII Rv | CAGTCGCTGTCAGCCAGTTCTT | ||
TLR1 Fw | CAACGCTATCTGATCCCCAAGCAA | 114 bp | 101.6 |
TLR1 Rv | AAAGCCGACGCTCAGTGTTTGT | ||
TLR5 Fw | TGGCTCACTACCAGCTGATGAA | 112 bp | 102.5 |
TLR5 Rv | AGCCGCTCATAAAACCACTC | ||
TLR8 Fw | TCCTGCAGAACTCTCACTTCCT | 122 bp | 101.9 |
TLR8 Rv | TCTGACCACATTCCTCAGGTTT | ||
IgMs Fw | TGAAAGACTTCTACCCGCATGAGG | 124 bp | 102.7 |
IgMs Rv | AACTGGCCATAAGCGGAAAAGG | ||
18s het Fw | GTCCGGGAAACCAAAGTC | 116 bp | 103.1 |
18s het Rv | TTGAGTCAAATTAAGCCGCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nualart, D.P.; Dann, F.; Oyarzún-Salazar, R.; Morera, F.J.; Vargas-Chacoff, L. Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture. Biology 2023, 12, 924. https://doi.org/10.3390/biology12070924
Nualart DP, Dann F, Oyarzún-Salazar R, Morera FJ, Vargas-Chacoff L. Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture. Biology. 2023; 12(7):924. https://doi.org/10.3390/biology12070924
Chicago/Turabian StyleNualart, Daniela P., Francisco Dann, Ricardo Oyarzún-Salazar, Francisco J. Morera, and Luis Vargas-Chacoff. 2023. "Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture" Biology 12, no. 7: 924. https://doi.org/10.3390/biology12070924
APA StyleNualart, D. P., Dann, F., Oyarzún-Salazar, R., Morera, F. J., & Vargas-Chacoff, L. (2023). Immune Transcriptional Response in Head Kidney Primary Cell Cultures Isolated from the Three Most Important Species in Chilean Salmonids Aquaculture. Biology, 12(7), 924. https://doi.org/10.3390/biology12070924