hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley–Salih–Alorainy Syndrome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish Husbandry
2.2. gRNA Synthesis
2.3. Microinjection and T7 Endonuclease I Assay
2.4. Protein 3D Structure Prediction
2.5. Visualization and Imaging
2.6. Whole-Mount In Situ Hybridization (WISH)
2.7. Paraffin Section and Hematoxylin-Eosin (H&E) Staining
2.8. Cartilage and Skeleton Staining
2.9. Behavior Analysis
2.10. In Vivo ECG for Adult Fish
2.11. Quantitative Real-Time PCR
2.12. Statistical Analysis
3. Results
3.1. Construction and Identification of hoxa1a Mutants
3.2. Abnormal Heart Pumping and Reduced FAC in hoxa1a Homozygous Mutants
3.3. Multiple Heart Malformation Detected in hoxa1a-null Zebrafish
3.4. Prolonged QRS Wavelength and Reduced PR Interval and QTc in hoxa1a Homozygotes
3.5. Tail Fin Malformation, Behavior Sluggishness and Craniofacial Defect in hoxa1a−/− Mutants
3.6. hoxa1a Homozygotes Occurred in Gene Compensation and Upregulated Paralogous hox Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boogerd, C.J.J.; Moorman, A.F.M.; Barnett, P. Protein Interactions at the Heart of Cardiac Chamber Formation. Ann. Anat. Anat. Anz. 2009, 191, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Lescroart, F.; Zaffran, S. Hox and Tale Transcription Factors in Heart Development and Disease. Int. J. Dev. Biol. 2018, 62, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.; Giacomello, S.; Larsson, L.; Wu, C.; Fürth, D.; Qian, X.; Wärdell, E.; Custodio, J.; Reimegård, J.; Salmén, F.; et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 2019, 179, 1647–1660.e19. [Google Scholar] [CrossRef]
- Mallo, M.; Alonso, C.R. The Regulation of Hox Gene Expression during Animal Development. Development 2013, 140, 3951–3963. [Google Scholar] [CrossRef] [Green Version]
- Roux, M.; Laforest, B.; Eudes, N.; Bertrand, N.; Stefanovic, S.; Zaffran, S. Hoxa1 and Hoxb1 Are Required for Pharyngeal Arch Artery Development. Mech. Dev. 2017, 143, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, S.; Laforest, B.; Desvignes, J.-P.; Lescroart, F.; Argiro, L.; Maurel-Zaffran, C.; Salgado, D.; Plaindoux, E.; De Bono, C.; Pazur, K.; et al. Hox-Dependent Coordination of Mouse Cardiac Progenitor Cell Patterning and Differentiation. eLife 2020, 9, e55124. [Google Scholar] [CrossRef]
- Tischfield, M.A.; Bosley, T.M.; Salih, M.A.M.; Alorainy, I.A.; Sener, E.C.; Nester, M.J.; Oystreck, D.T.; Chan, W.-M.; Andrews, C.; Erickson, R.P.; et al. Homozygous HOXA1 Mutations Disrupt Human Brainstem, Inner Ear, Cardiovascular and Cognitive Development. Nat. Genet. 2005, 37, 1035–1037. [Google Scholar] [CrossRef]
- Patil, S.J.; Karthik, G.A.; Bhavani, G.S.; Bhat, V.; Matalia, J.; Shah, J.; Shukla, A.; Girisha, K.M. Bosley–Salih–Alorainy Syndrome in Patients from India. Am. J. Med. Genet. 2020, 182, 2699–2703. [Google Scholar] [CrossRef]
- Holve, S.; Friedman, B.; Hoyme, H.E.; Tarby, T.J.; Johnstone, S.J.; Erickson, R.P.; Clericuzio, C.L.; Cunniff, C. Athabascan Brainstem Dysgenesis Syndrome. Am. J. Med. Genet. 2003, 120A, 169–173. [Google Scholar] [CrossRef]
- Makki, N.; Capecchi, M.R. Cardiovascular Defects in a Mouse Model of HOXA1 Syndrome. Hum. Mol. Genet. 2012, 21, 26–31. [Google Scholar] [CrossRef] [Green Version]
- De Kumar, B.; Parker, H.J.; Paulson, A.; Parrish, M.E.; Zeitlinger, J.; Krumlauf, R. Hoxa1 Targets Signaling Pathways during Neural Differentiation of ES Cells and Mouse Embryogenesis. Dev. Biol. 2017, 432, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Soshnikova, N.; Dewaele, R.; Janvier, P.; Krumlauf, R.; Duboule, D. Duplications of Hox Gene Clusters and the Emergence of Vertebrates. Dev. Biol. 2013, 378, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, J.R.; Capecchi, M.R. Compensatory Defects Associated with Mutations in Hoxa1 Restore Normal Palatogenesis to Hoxa2 Mutants. Development 1999, 126, 5011–5026. [Google Scholar] [CrossRef] [PubMed]
- Odelin, G.; Faucherre, A.; Marchese, D.; Pinard, A.; Jaouadi, H.; Le Scouarnec, S.; FranceGenRef Consortium; Deleuze, J.-F.; Génin, E.; Lindenbaum, P.; et al. Variations in the Poly-Histidine Repeat Motif of HOXA1 Contribute to Bicuspid Aortic Valve in Mouse and Zebrafish. Nat. Commun. 2023, 14, 1543. [Google Scholar] [CrossRef]
- Bakkers, J. Zebrafish as a Model to Study Cardiac Development and Human Cardiac Disease. Cardiovasc. Res. 2011, 91, 279–288. [Google Scholar] [CrossRef] [Green Version]
- MacRae, C.A.; Peterson, R.T. Zebrafish as Tools for Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Zhao, Y.; Yun, M.; Nguyen, S.A.; Tran, M.; Nguyen, T.P. In Vivo Surface Electrocardiography for Adult Zebrafish. JoVE 2019, 150, e60011. [Google Scholar]
- Labun, K.; Montague, T.G.; Krause, M.; Torres Cleuren, Y.N.; Tjeldnes, H.; Valen, E. CHOPCHOP v3: Expanding the CRISPR Web Toolbox beyond Genome Editing. Nucleic Acids Res. 2019, 47, W171–W174. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Zhao, X.; Zhang, Q.; Li, W.; Zu, Y. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 MRNA for Genome Editing in Zebrafish. G3 Genes Genom. Genet. 2018, 8, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Zu, Y.; Zhang, X.; Ren, J.; Dong, X.; Zhu, Z.; Jia, L.; Zhang, Q.; Li, W. Biallelic Editing of a Lamprey Genome Using the CRISPR/Cas9 System. Sci. Rep. 2016, 6, 23496. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benslimane, F.M.; Zakaria, Z.Z.; Shurbaji, S.; Abdelrasool, M.K.A.; Al-Badr, M.A.H.I.; Al Absi, E.S.K.; Yalcin, H.C. Cardiac Function and Blood Flow Hemodynamics Assessment of Zebrafish (Danio Rerio) Using High-Speed Video Microscopy. Micron 2020, 136, 102876. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, B.; Jin, D.; Liu, K.; Wang, H.; Chen, L.; Zu, Y. Precise Dose of Folic Acid Supplementation Is Essential for Embryonic Heart Development in Zebrafish. Biology 2021, 11, 28. [Google Scholar] [CrossRef]
- Tong, X.; Zu, Y.; Li, Z.; Li, W.; Ying, L.; Yang, J.; Wang, X.; He, S.; Liu, D.; Zhu, Z.; et al. Kctd10 Regulates Heart Morphogenesis by Repressing the Transcriptional Activity of Tbx5a in Zebrafish. Nat. Commun. 2014, 5, 3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.C.; Li, L.; Lam, Y.W.; Siu, C.W.; Cheng, S.H. Improvement of Surface ECG Recording in Adult Zebrafish Reveals That the Value of This Model Exceeds Our Expectation. Sci. Rep. 2016, 6, 25073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milan, D.J.; Jones, I.L.; Ellinor, P.T.; MacRae, C.A. In Vivo Recording of Adult Zebrafish Electrocardiogram and Assessment of Drug-Induced QT Prolongation. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H269–H273. [Google Scholar] [CrossRef]
- Krumlauf, R. Hox Genes, Clusters and Collinearity. Int. J. Dev. Biol. 2018, 62, 659–663. [Google Scholar] [CrossRef]
- Leung, C.; Engineer, A.; Kim, M.Y.; Lu, X.; Feng, Q. Myocardium-Specific Deletion of Rac1 Causes Ventricular Noncompaction and Outflow Tract Defects. JCDD 2021, 8, 29. [Google Scholar] [CrossRef]
- Giammona, F.F. Form and Function of the Caudal Fin Throughout the Phylogeny of Fishes. Integr. Comp. Biol. 2021, 61, 550–572. [Google Scholar] [CrossRef]
- Glasauer, S.M.K.; Neuhauss, S.C.F. Whole-Genome Duplication in Teleost Fishes and Its Evolutionary Consequences. Mol. Genet. Genom. 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, J.; Han, X.; Wu, X.; Ye, X.; Lv, W.; Zu, Y. hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley–Salih–Alorainy Syndrome. Biology 2023, 12, 899. https://doi.org/10.3390/biology12070899
Wang H, He J, Han X, Wu X, Ye X, Lv W, Zu Y. hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley–Salih–Alorainy Syndrome. Biology. 2023; 12(7):899. https://doi.org/10.3390/biology12070899
Chicago/Turabian StyleWang, Hongjie, Jingwei He, Xuemei Han, Xiuzhi Wu, Xuebin Ye, Wenchao Lv, and Yao Zu. 2023. "hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley–Salih–Alorainy Syndrome" Biology 12, no. 7: 899. https://doi.org/10.3390/biology12070899
APA StyleWang, H., He, J., Han, X., Wu, X., Ye, X., Lv, W., & Zu, Y. (2023). hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley–Salih–Alorainy Syndrome. Biology, 12(7), 899. https://doi.org/10.3390/biology12070899