Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. From Field to Extract Chain
2.1.1. Agroecological Field Cultivation and Biomass Harvesting
2.1.2. Preparation of the Material
2.1.3. Preparation of Extracts
2.1.4. Recovery of Residual Waters from Steam Distillation
2.1.5. Lyophilization of Extracts
2.2. Antigermination Assay
2.3. Pathogen Isolation, Identification, and Maintenance
2.4. In Vitro Antifungal Assay
2.5. In Planta Disease-Control Assay
2.6. UHPLC-HRMS/MS Analysis
2.7. Statistical Analyses
3. Results
3.1. Field Biomass Yield
3.2. Germination Assay
3.3. Pathogen Morphological and Molecular Identification
3.4. In Vitro Antifungal Activity of the D. viscosa Extracts
3.5. Control of Alternaria Leaf Spot by the D. viscosa Extracts
3.6. HPLC-UV-HRMS/MS Analysis of D. viscosa Extracts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sladonja, B.; Poljuha, D.; Krapac, M.; Uzelac, M.; Mikulic-Petkovsek, M. Dittrichia viscosa: Native-non native invader. Diversity 2021, 13, 380. [Google Scholar] [CrossRef]
- Sevgi, E.; Dag, A.; Kızılarslan-Hançer, Ç.; Atasoy, S.; Kurt, B.Z.; Aksakal, Ö. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. J. Ethnopharmacol. 2021, 276, 114211. [Google Scholar] [CrossRef] [PubMed]
- Parolin, P.; Scotta, M.I.; Bresch, C. Biology of Dittrichia viscosa, a Mediterranean ruderal plant: A review. Phyton Int. J. Exp. Bot. 2014, 83, 251–262. [Google Scholar]
- Nogales, R.; Benítez, E. Absorption of zinc and lead by Dittrichia viscosa grown in a contaminated soil amended with olive-derived wastes. Bull. Environ. Contam. Toxicol. 2006, 76, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.; Karakas, F.P.; Yildirim, A.B.; Tas, I.; Eker, I.; Yavuz, M.Z.; Turker, A.U. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr. 2019, 21, 652–661. [Google Scholar]
- Prisa, D.; Attanasio, F. Biostimulant derived from the fermentation of Inula viscosa (Inort) in the Germination and growth of Amaranthus hypochondriacus. World J. Adv. Res. Rev. 2022, 16, 027–033. [Google Scholar] [CrossRef]
- Vuko, E.; Dunkić, V.; Maravić, A.; Ruščić, M.; Nazlić, M.; Radan, M.; Ljubenkov, I.; Soldo, B.; Fredotović, Ž. Not only a weed plant—Biological activities of essential oil and hydrosol of Dittrichia viscosa (L.) Greuter. Plants 2021, 10, 1837. [Google Scholar] [CrossRef]
- Aşkin Çelik, T.; Aslantürk, Ö.S. Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with allium test. J. Biomed. Biotechnol. 2010, 2010, 189252. [Google Scholar] [CrossRef]
- Araniti, F.; Lupini, A.; Sunseri, F.; Abenavoli, M.R. Allelopatic potential of Dittrichia viscosa (L.) W. Greuter mediated by VOCs: A physiological and metabolomic approach. PLoS ONE 2017, 12, e0170161. [Google Scholar] [CrossRef]
- Boari, A.; Vurro, M.; Calabrese, G.J.; Mahmoud, M.N.Z.; Cazzato, E.; Fracchiolla, M. Evaluation of Dittrichia viscosa (L.) Greuter dried biomass for weed management. Plants 2021, 10, 147. [Google Scholar] [CrossRef]
- Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter phytochemical diversity to explain its antimicrobial, nematicidal and insecticidal activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
- Borges, R.M. The galling truth: Limited knowledge of gall-associated volatiles in multitrophic interactions. Front. Plant Sci. 2018, 9, 1139. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ben-Daniel, B.H.; Cohen, Y. Control of plant diseases by extracts of Inula viscosa. Phytopathology 2004, 94, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Wang, W.; Ben-Daniel, B.-H.; Ben-Daniel, Y. Extracts of Inula viscosa control downy mildew of grapes caused by Plasmopara viticola. Phytopathology 2006, 96, 417–424. [Google Scholar] [CrossRef]
- Al-Masri, M.I.; Sharawi, S.M.; Barakat, R.M. Effect of Clammy Inula (Inula viscose) plant extract in combination with a low dose of the fungicide iprodione on Botrytis cinerea in vitro and in vivo. Am. J. Plant Sci. 2015, 6, 1519–1526. [Google Scholar] [CrossRef]
- McGinley, J.; Healy, M.G.; Ryan, P.C.; O’Driscoll, H.; Mellander, P.-E.; Morrison, L.; Siggins, A. Impact of historical legacy pesticides on achieving legislative goals in Europe. Sci. Total Environ. 2023, 873, 162312. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Wei, Q. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Kipkogei, K.E.; Kiptui, K.P.; Kiprop, E. Antifungal potential of Curcuma longa (Turmeric) and Zingiber officinale (Ginger) against Alternaria alternata infecting spinach in Kenya. World J. Agric. Res. 2019, 7, 124–131. [Google Scholar]
- De Falco, E.; Pergola, M.; Vece, A.; Angiuoni, C.; Celano, G. Application of the environmental impact assessment to medicinal plants cultivation and drying in a hilly area of Campania Region (Southern Italy). Ital. J. Agron. 2020, 15, 48–56. [Google Scholar] [CrossRef]
- De Falco, E.; Rigano, D.; Fico, V.; Vitti, A.; Barile, G.; Pergola, M. Spontaneous officinal plants in the Cilento, Vallo di Diano and Alburni National Park: Tradition, protection, enhancement, and recovery. Plants 2023, 12, 465. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Health Care. European Pharmacopoeia, 8th ed.; European Directorate for the Quality of Medicines & Health Care: Strasbourg, France, 2014. [Google Scholar]
- Zaccardelli, M.; Roscigno, G.; Pane, C.; Celano, G.; Di Matteo, M.; Mainente, M.; Vuotto, A.; Mencherini, T.; Esposito, T.; Vitti, A.; et al. Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Ind. Crops Prod. 2021, 162, 113255. [Google Scholar] [CrossRef]
- De Falco, E.; Vitti, A.; Celano, G.; Ronga, D. Suitability of On-farm green compost for the production of baby leaf species. Horticulturae 2021, 7, 512. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; D’Adamo, C.; De Falco, E.; Celano, G. Sustainability assessment of the green compost production chain from agricultural waste: A case study in Southern Italy. Agronomy 2020, 10, 230. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi; Academic Press: London, UK, 1980. [Google Scholar]
- Kheyar-Kraouche, N.; Bento da Silva, A.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by liquid chromatography–mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of Dicaffeoylquinic Acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.; Piera, F.; Cuenca, A.; Torres, P.; Bellido, I.S. Flavonoids from Inula viscosa. Planta Med. 1985, 51, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Fontana, G.; La Rocca, S.; Passannanti, S.; Paternostro, M.P. Sesquiterpene compounds from Inula viscosa. Nat. Prod. Res. 2007, 21, 824–827. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Mrid, R.B.; Bouchmaa, N.; Kabach, I.; Zouaoui, Z.; Chtibi, H.; Maadoudi, M.E.; Kounnoun, A.; Cacciola, F.; Majdoub, Y.O.E.; Mondello, L.; et al. Dittrichia viscosa L. Leaves: A valuable source of bioactive compounds with multiple pharmacological effects. Molecules 2022, 27, 2108. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, H.; Hosni, K.; Zaouali, W.; Amri, I.; Zargouni, H.; Hamida, N.B.; Kaddour, R.; Hamrouni, L.; Nasri, M.B.; Ouerghi, Z. Comprehensive phytochemical analysis, antioxidant and antifungal activities of Inula viscosa aiton leaves. J. Food Saf. 2016, 36, 77–88. [Google Scholar] [CrossRef]
- Brahmi-Chendouh, N.; Piccolella, S.; Crescente, G.; Pacifico, F.; Boulekbache, L.; Hamri-Zeghichi, S.; Akkal, S.; Madani, K.; Pacifico, S. A nutraceutical extract from Inula viscosa leaves: UHPLC-HR-MS/MS based polyphenol profile, and antioxidant and cytotoxic activities. J. Food Drug. Anal. 2019, 27, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Asraoui, F.; Kounnoun, A.; Cacciola, F.; El Mansouri, F.; Kabach, I.; Oulad El Majdoub, Y.; Alibrando, F.; Arena, K.; Trovato, E.; Mondello, L.; et al. Phytochemical profile, antioxidant capacity, α-Amylase and α-Glucosidase inhibitory potential of wild moroccan Inula viscosa (L.) aiton leaves. Molecules 2021, 26, 3134. [Google Scholar] [CrossRef] [PubMed]
- Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, W.; Ben Salem, I.; Immediato, D.; Saidi, M.; Boulila, A.; Cafarchia, C. Chemical composition, antibacterial and antifungal activities of crude Dittrichia viscosa (L.) Greuter leaf extracts. Molecules 2017, 22, 942. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Slighoua, M.; Tourabi, M.; Nouioura, G.; Lyoussi, B.; Derwich, E. Phytochemical characterization, antioxidant activity, and in vitro investigation of antimicrobial potential of Dittrichia viscosa L. leaf extracts against nosocomial infections. Acta Ecol. Sin. 2022, 42, 661–669. [Google Scholar] [CrossRef]
- Qneibi, M.; Hanania, M.; Jaradat, N.; Emwas, N.; Radwan, S. Inula viscosa (L.) Greuter, phytochemical composition, antioxidant, total phenolic content, total flavonoids content and neuroprotective effects. Eur. J. Integr. Med. 2021, 42, 101291. [Google Scholar] [CrossRef]
- Zeouk, I.; Sifaoui, I.; Ben Jalloul, A.; Bekhti, K.; Bazzocchi, I.L.; Piñero, J.E.; Jiménez, I.A.; Lorenzo-Morales, J. Isolation, identification, and activity evaluation of antioxidant components from Inula viscosa: A bioguided approach. Bioorg. Chem. 2022, 119, 105551. [Google Scholar] [CrossRef]
- Martino, L.D.; Mancini, E.; Almeida, L.F.R.d.; Feo, V.D. The antigerminative activity of twenty-seven monoterpenes. Molecules 2010, 15, 6630–6637. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef]
- Castillo, F.; Hernández, D.; Gallegos, G.; Mendez, M.; Rodríguez, R.; Reyes, A.; Aguilar, C.N. In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Ind. Crops Prod. 2010, 32, 324–328. [Google Scholar] [CrossRef]
- Esposito, T.; Celano, R.; Pane, C.; Piccinelli, A.L.; Sansone, F.; Picerno, P.; Zaccardelli, M.; Aquino, R.P.; Mencherini, T. Chestnut (Castanea sativa Miller.) burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on phytopathogenic fungi. Molecules 2019, 24, 302. [Google Scholar] [CrossRef] [PubMed]
- Pane, C.; Francese, G.; Raimo, F.; Mennella, G.; Zaccardelli, M. Activity of foliar extracts of cultivated eggplants against Sclerotinia lettuce drop disease and their phytochemical profiles. Eur. J. Plant Pathol. 2017, 148, 687–697. [Google Scholar] [CrossRef]
- Pane, C.; Caputo, M.; Francese, G.; Manganiello, G.; Lo Scalzo, R.; Mennella, G.; Zaccardelli, M. Managing Rhizoctonia damping-off of rocket (Eruca sativa) seedlings by drench application of bioactive potato leaf phytochemical extracts. Biology 2020, 9, 270. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Salem, M.Z.M.; Kordy, A.M.; Salem, A.Z.M.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef]
- Liu, Y.; Benohoud, M.; Galani, J.H.Y.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem. X 2021, 12, 100144. [Google Scholar] [CrossRef]
- Deharo, E.; Ginsburg, H. Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar. J. 2011, 10, S5. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Sadd, B.M.; Irwin, R.E.; Adler, L.S. Synergistic effects of floral phytochemicals against a bumble bee parasite. Ecol. Evol. 2017, 7, 1836–1849. [Google Scholar] [CrossRef]
- Chtioui, W.; Balmas, V.; Delogu, G.; Migheli, Q.; Oufensou, S. Bioprospecting phenols as inhibitors of trichothecene-producing Fusarium: Sustainable approaches to the management of wheat pathogens. Toxins 2022, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Jin, Y.-S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorganic. Med. Chem. Lett. 2019, 29, 126589. [Google Scholar] [CrossRef]
- Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem. 2014, 78, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; Matic, S.; Gullino, M.L.; Garibaldi, A. First report of Alternaria alternata causing leaf spot on spinach (Spinacia oleracea) in Italy. Plant Dis. 2019, 103, 8. [Google Scholar] [CrossRef]
- Rizwana, H. Exploiting antifungal potential of ginger for the management of Alternaria alternata, the cause of leaf spot disease of spinach. Mycopath 2015, 13, 97–104. [Google Scholar]
- Pane, C.; Fratianni, F.; Raimo, F.; Nazzaro, F.; Zaccardelli, M. Efficacy of phenolic-rich extracts from leaves of pepper landraces against Alternaria leaf blight of tomato. J. Plant Pathol. 2017, 99, 239–244. [Google Scholar]
- Pane, C.; Fratianni, F.; Parisi, M.; Nazzaro, F.; Zaccardelli, M. Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Prot. 2016, 84, 81–87. [Google Scholar] [CrossRef]
- Omezzine, F.; Rinez, A.; Ladhari, A.; Farooq, M.; Haouala, R. Allelopathic potential of Inula viscosa against crops and weeds. Int. J. Agric. Biol. 2011, 13, 841–849. [Google Scholar]
- Andolfi, A.; Zermane, N.; Cimmino, A.; Avolio, F.; Boari, A.; Vurro, M.; Evidente, A. Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: Potential for broomrapes and field dodder management. Phytochemistry 2013, 86, 112–120. [Google Scholar] [CrossRef]
- Dor, E.; Hershenhorn, J. Allelopathic effects of Inula viscosa leaf extracts on weeds. Allelopath. J. 2012, 30, 281–289. [Google Scholar]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J. Proving the mode of action of phytotoxic phytochemicals. Plants 2020, 9, 1756. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Arroussi, J.; Ouerfelli, M.; Smaoui, A.; Ahmed, H.B.; Kaâb, S.B.; Kaâb, L.B.B. Antioxidant activity of seven plant extracts collected from Tunisia and their allelopathic potential on Lactuca sativa L. and Phalaris minor L. S. Afr. J. Bot. 2022, 148, 135–143. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Manes, F.; Blasi, C. Analysis of a pioneer community of Dittrichia viscosa (L.) Greuter in a mediterranean environment in southern Italy. G. Bot. Ital. 1990, 124, 321–329. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef]
- Domínguez, M.T.; Montiel-Rozas, M.M.; Madejón, P.; Diaz, M.J.; Madejón, E. The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Sci. Total Environ. 2017, 590–591, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, T.; De Falco, E.; Amato, M. Mechanical properties of plant species of the Cilento and Vallo di Diano Geopark flora relevant for slope stability. Rend. Online Soc. Geol. It. 2013, 28, 45–48. [Google Scholar]
- De Falco, E.; Salerno, G.; Marmo, A.; Ronga, D.; Celano, G. Application of micro-scale devices for the study of spontaneous vegetation and erosion in the National Park of Cilento, Vallo di Diano, Alburni. First Results. In Proceedings of the 50th Conference of the Italian Society of Agronomy, Udine, Italy, 15–17 September 2021; ISBN 978-88-908499-4-7. [Google Scholar]
Extract | Process/Source |
---|---|
E1 | Water extraction at 100 °C for 2 h of dried green parts 1:5 (w/v) |
E2 | Water extraction at 100 °C for 2 h of dried inflorescences 1:5 (w/v) |
E3 | Water extraction at 100 °C for 2 h of fresh inflorescences 1:5 (w/v) |
E4 | Residual waters from 3 h distillation of fresh inflorescences 1:2 (w/v) |
Period | Phenological Stage | Height | Leaves + Stem | Stem > 9 mm | Brown Leaves | Inflorescences |
---|---|---|---|---|---|---|
(Decade) | (cm) | (%) | (%) | (%) | (%) | |
III May | Vegetative | 69.1 ± 1.2c | 93.6 ± 4.9a | - | 6.4 ± 1.5a | - |
II Aug | Vegetative | 108.7 ± 5.3b | 78.4 ± 13.7b | 12.9 ± 1.3b | 8.7 ± 0.8a | - |
III Oct | Flowering | 137.1 ± 11.7a | 32.0 ± 13.5c | 52.6 ± 11.4a | 5.6 ± 1.5a | 9.7 ± 2.0a |
Treatments | Germination (%) | Root Length (mm) | Germination Index (%) | |||
---|---|---|---|---|---|---|
Cress | Radish | Cress | Radish | Cress | Radish | |
CTRL | 96.7 ± 4.7a | 80.0 ± 8.1a | 30.5 ± 4.9a | 16.0 ± 0.3a | - | - |
E1 | 3.3 ± 2.3c | 3.3 ± 2.3b | 1.2 ± 0.7b | 4.7 ± 3.1b | 0.2 ± 0.1b | 1.6 ± 1.1a |
E2 | 3.3 ± 2.3c | 3.3 ± 2.3b | 0.8 ± 0.5b | 1.7 ± 1.1b | 0.1 ± 0.1b | 0.6 ± 0.4b |
E3 | 6.7 ± 2.3c | 3.3 ± 2.3b | 0.5 ± 0.3b | 4.6 ± 3.0b | 0.1 ± 0.1b | 1.6 ± 1.1a |
E4 | 25.0 ± 4.0b | 5.0 ± 4.0b | 2.0 ± 1.6b | 3.5 ± 0.3b | 1.6 ± 1.1a | 1.4 ± 1.2a |
Source of Variation | % of Total Variation | p-Value |
---|---|---|
Interaction | 15.94 | <0.0001 |
Concentration | 55.98 | <0.0001 |
Extract | 25.66 | <0.0001 |
Source of Variation | % of Total Variation | p-Value |
---|---|---|
Interaction | 5.531 | 0.0779 |
Concentration | 5.286 | 0.0004 |
Extract | 1.760 | 0.1816 |
Peak N. | RTMS (Min) | Measured (m/z) [M−H]− (m/z) | Molecular Formula | Error (ppm) | Product Ion MS/MS | Proposed Metabolite a |
---|---|---|---|---|---|---|
1 | 2.9 | 153.0182 | C7H6O4 | −0.1 | 109 | Protocatechuic acid a |
2 | 3.9 | 353.0878 | C16H18O9 | 3.0 | 191 | 1-Caffeoylquinic acid |
3 | 5.6 | 353.0875 | C16H18O9 | 2.1 | 191, 179, 135 | 3-Caffeoylquinic acid |
4 | 5.8 | 189.0759 | C8H14O5 | 1.0 | 127, 115, 99 | Hydroxysuberic-acid isomer |
5 | 6.1 | 189.0758 | C8H14O5 | 0.4 | 127, 101, 99, 87 | Hydroxysuberic-acid isomer |
6 | 6.7 | 353.0875 | C16H18O9 | 2.4 | 191, 179, 173 135 | 5-Caffeoylquinic acid (chlorogenic acid) a |
7 | 6.8 | 179.0340 | C9H8O4 | 0.9 | Caffeic acid a | |
8 | 7.2 | 387.1661 | C18H28O9 | 2.9 | 207, 163 | Fatty-acyl hexoside |
9 | 8.0 | 515.1179 | C25H24O12 | −0.9 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
10 | 9.3 | 317.0664 | C16H14O7 | 2.5 | 167 | Padmatin isomer |
11 | 12.1 | 477.0663 | C21H18O13 | −0.2 | 301 | Quercetin glucuronide |
12 | 12.3 | 463.0876 | C21H20O12 | 1.0 | 301 | Quercetin hexose |
13 | 12.5 | 507.0777 | C22H20O14 | 1.5 | 331, 316, 287 | Methoxy-myricetin glucuronide |
14 | 12.6 | 493.0988 | C22H22O13 | 2.2 | 331, 316, 287 | Methoxy-myricetin hexoside |
15 | 13.0 | 515.1179 | C25H24O12 | −1.1 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
16 | 13.2 | 477.1032 | C22H21O12 | 1.0 | 315, 299, 271 | Methylquercetin hexose |
17 | 13.3 | 515.1180 | C25H24O12 | −0.7 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
18 | 13.8 | 515.1181 | C25H24O12 | −0.6 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
19 | 14.0 | 515.1182 | C25H24O12 | −0.5 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
20 | 15.0 | 493.1734 | C24H30O11 | 5.9 | Unknown | |
21 | 15.2 | 515.1181 | C25H24O12 | −0.6 | 353, 191, 179, 135 | Dicaffeoylquinic-acid isomer |
22 | 17.3 | 317.0667 | C16H14O7 | 3.4 | 167 | Padmatin isomer |
23 | 17.9 | 345.0617 | C17H14O8 | 3.4 | 330, 315, 300, 287 | Spinacetin |
24 | 18.1 | 265.1444 | C15H22O4 | 3.4 | 247, 221, 203 | 2,3-Dihydroxycostic acid/2,5-dihydroxy-α-isocostic acid |
25 | 18.4 | 265.1444 | C15H22O4 | 3.7 | 247, 221, 203 | 2,3-Dihydroxycostic acid/2,5-dihydroxy-α-isocostic acid |
26 | 18.5 | 247.134 | C15H20O3 | 4.6 | 203, 187 | Tomentosin |
27 | 19.1 | 299.0561 | C16H12O6 | 3.8 | 284 | Diosmetin |
28 | 20.1 | 329.0668 | C17H14O7 | 3.7 | 314, 299 | Cirsiliol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pane, C.; Manganiello, G.; Vitti, A.; Celano, R.; Piccinelli, A.L.; De Falco, E. Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach. Biology 2023, 12, 790. https://doi.org/10.3390/biology12060790
Pane C, Manganiello G, Vitti A, Celano R, Piccinelli AL, De Falco E. Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach. Biology. 2023; 12(6):790. https://doi.org/10.3390/biology12060790
Chicago/Turabian StylePane, Catello, Gelsomina Manganiello, Antonella Vitti, Rita Celano, Anna Lisa Piccinelli, and Enrica De Falco. 2023. "Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach" Biology 12, no. 6: 790. https://doi.org/10.3390/biology12060790
APA StylePane, C., Manganiello, G., Vitti, A., Celano, R., Piccinelli, A. L., & De Falco, E. (2023). Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach. Biology, 12(6), 790. https://doi.org/10.3390/biology12060790