Induction of Systemic Resistance in Hibiscus sabdariffa Linn. to Control Root Rot and Wilt Diseases Using Biotic and Abiotic Inducers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Growing Conditions, Proposed Treatments, and Plant Material
2.2. In Vitro Studies
2.2.1. Isolation and Identification of Fungi Related to Rotted and Wilted Roselle Samples
2.2.2. Source and Inoculum Preparation of Biocontrol Agent Isolates
2.2.3. Bioassay of Biocontrol Isolates against Linear Growth of Pathogenic Fungi
2.3. Pathogenicity Assay, Fungal Inoculum, and Soil Artificial Inoculation
2.4. Evaluation of the Inhibitory Activity of Abiotic Inducers on the Linear Growth of Pathogenic Fungi
2.5. Induction of Systemic Resistance in Roselle against Root Rot and Wilt Diseases under In Vivo Conditions
2.6. Root Rot/Wilt Disease Measurements
2.7. Monitoring the Quality of Growth and Yield
2.8. Estimation of Biochemical Changes
2.8.1. Defensive Enzyme Activity Assay
Peroxidase (POX)
Polyphenol Oxidase (PPO)
Phenylalanine Ammonia-Lyase (PAL)
2.8.2. Phytochemical Parameters
Total Soluble Carbohydrates (TSC)
Total Anthocyanin Concentration (TAC)
Vitamin C
Total Acidity %
2.9. Statistical Analysis of the Data
3. Results
3.1. Isolation and Identification of Fungi Related to Roselle Root Rot and Wilt Diseases
3.2. Pathogenicity Assay of Root Rot and Wilt-Related Fungi against Roselle Seedlings under Greenhouse Conditions
3.3. In Vitro, Inhibitory Activity of Biotic Inducers against the Linear Growth of Roselle Root Rot and Wilt Fungi
3.4. In Vitro, Inhibitory Activity of Abiotic Inducers against the Linear Growth of Roselle Root Rot and Wilt Fungi
3.5. Potential of Biocontrol Agents, Chemical Inducers, and Biofertilizers against Root Rot and Wilt of Roselle under Greenhouse Conditions
3.6. Induction of Systemic Resistance in Roselle against Root Rot and Wilt under Field Conditions
3.7. Quality of Growth and Yield of Treated Roselle
3.8. Defensive Enzyme Activities
3.9. Induction of Biochemical Changes in Roselle Plant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Naim, A.M.; Ahmed, A.I.; Ibrahim, K.A.; Suliman, A.M.; Babikir, E.S.N. Effects of nitrogen and bio-fertilizers on growth and yield of roselle (Hibiscus sabdariffa var. sabdariffa L.). Int. J. Agric. For. 2017, 7, 145–150. [Google Scholar]
- Ansari, M.; Eslaminejad, T.; Sarhadynejad, Z.; Eslaminejad, T. An overview of the roselle plant with particular reference to its cultivation, diseases and usages. Eur. J. Med. Plants 2013, 3, 135–145. [Google Scholar] [CrossRef]
- Anel, T.C.; Thokchom, R.; Subapriya, M.S.; Thokchom, J.; Singh, S.S. Hibiscus sabdariffa—A natural micro nutrient source. Int. J. Adv. Res. Biol. Sci. 2016, 3, 243–248. [Google Scholar]
- Riaz, G.; Chopra, R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed. Pharmacother. 2018, 102, 575–586. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Food and Agriculture Organization of the UN. 2018. Available online: http://www.fao.org/giews/english/cpfs/index.htm#2015 (accessed on 22 June 2020).
- Hassan, N.; Elsharkawy, M.M.; Shimizu, M.; Hyakumachi, M. Control of root rot and wilt diseases of roselle under field conditions. Mycobiology 2014, 42, 376–384. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Palmateer, A.J.; Geiser, D.M.; Juba, J.H. First report of Fusarium wilt caused by Fusarium oxysporum on roselle in the United States. Plant Dis. 2007, 91, 639. [Google Scholar] [CrossRef]
- Hassan, N.; Shimizu, M.; Hyakumachi, M. Occurrence of root rot and vascular wilt diseases in roselle (Hibiscus sabdariffa L.) in Upper Egypt. Mycobiology 2014, 42, 66–72. [Google Scholar] [CrossRef] [PubMed]
- De Waard, A.; Georgopoulos, S.G.; Hollomon, D.W.; Ishii, H.; Leroux, P. Chemical control of plant diseases: Problems and prospects. Ann. Rev. Phytopathol. 1993, 31, 403–423. [Google Scholar] [CrossRef]
- Walters, D.R.; Ratsep, J.; Havis, N.D. Controlling crop diseases using induced resistance: Challenges for the future. J. Exp. Bot. 2013, 64, 1263–1280. [Google Scholar] [CrossRef]
- Vallard, G.E.; Goodman, R.M. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004, 44, 1920–1934. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.M.; Langenbach, C.J.G.; Jaskiewicz, M.R. Priming for enhanced defense. Ann. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef]
- da Rocha, A.B.; Hammerschmidt, R. History and perspectives on the use of disease resistance inducers in horticultural crops. Hort. Technol. 2005, 15, 518–529. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Aranega-Bou, P.; Leyva, M.O.; Finiti, I.; García-Agustín, P.; González-Bosch, C. Priming of plant resistance by natural compounds: Hexanoic acid as a model. Front. Plant Sci. 2014, 5, 488. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a potential natural compound to manage plant diseases. Macromolecules 2022, 220, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J.F. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int. J. Biol. Macromol. 2023, 239, 124192. [Google Scholar] [CrossRef] [PubMed]
- McQuilken, M.; Gemmell, J.; Lahdenpera, M. Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. J. Phytopathol. 2001, 149, 171–178. [Google Scholar] [CrossRef]
- Tut, G.; Magan, N.; Brain, P.; Xu, X. Critical evaluation of two commercial biocontrol agents for their efficacy against B. cinerea under in vitro and in vivo conditions in relation to different abiotic factors. Agronomy 2021, 11, 1868. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Xue, M.; Liu, Z.; Zhang, Q.; Hou, J.; Xing, M.; Wang, R.; Liu, T. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. J. Fungi 2021, 7, 685. [Google Scholar] [CrossRef]
- Yi, Y.; Luan, P.; Liu, S.; Shan, Y.; Hou, Z.; Zhao, S.; Jia, S.; Li, R. Efficacy of Bacillus subtilis XZ18-3 as a Biocontrol agent against Rhizoctonia cerealis on wheat. Agriculture 2022, 12, 258. [Google Scholar] [CrossRef]
- Helyer, N.; Cattlin, N.D.; Brown, K.C. Biological Control in Plant Protection: A Color Handbook; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Huang, H. Gliocladium catenulatum: Hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Can. J. Bot. 1978, 56, 2243–2246. [Google Scholar] [CrossRef]
- Mukherjee, M.; Mukherjee, P.K.; Horwitz, B.A.; Zachow, C.; Berg, G.; Zeilinger, S. Trichoderma-plant-pathogen interactions: Advances in genetics of biological control. Indian J. Microbiol. 2012, 52, 522–529. [Google Scholar] [CrossRef]
- Brunner, K.; Zeilinger, S.; Ciliento, R.; Woo, S.L.; Lorito, M.; Kubicek, C.P.; Mach, R.L. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl. Environ. Microbiol. 2005, 71, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Quan, X.; Xue, B.; Goodwin, P.H.; Lu, S.; Wang, J.; Du, W.; Wu, C. Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol. Control 2015, 85, 52–58. [Google Scholar] [CrossRef]
- Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 2011, 33, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Heloir, M.C.; Zhang, X.; Geissler, M.; Trouvelot, S.; Jacquens, L.; Henkel, M.; Su, X.; Fang, X.; Wang, Q. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defense stimulation. Mol. Plant Pathol. 2019, 20, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Camejo, D.; Guzmán-Cedeño, Á.; Moreno, A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 2016, 103, 10–23. [Google Scholar] [CrossRef]
- Llorens, E.; García-Agustín, P.; Lapeña, L. Advances in induced resistance by natural compounds: Towards new options for woody crop protection. Sci. Agric. 2017, 74, 90–100. [Google Scholar] [CrossRef]
- Wiesel, L.; Newton, A.C.; Elliott, I.; Booty, D.; Gilroy, E.M.; Birch, P.R.J. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci. 2014, 5, 655. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Seleiman, M.F. Improving plant growth, seed yield, and quality of faba bean by integration of bio-fertilizers with biogas digestate. Agronomy 2023, 13, 744. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef]
- Batool, T.; Ali, S.; Seleiman, M.F.; Naveed, N.H.; Ali, A.; Ahmend, K.; Abid, M.; Rizwan, M.; Shahid, M.R.; Alotaibi, M.; et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020, 10, 16975. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Hardan, A.N. Importance of mycorrhizae in crop productivity. In Mitigating Environmental Stresses for Agricultural Sustainability in Egypt; Awaad, H., Abu-hashim, M., Negm, A., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 471–484. [Google Scholar]
- Liu, L.; Kloepper, J.W.; Tuzun, S. Induction of systemic resistance in cucumber against Fusarium-wilt by plant growth-promoting rhizobacteria. Phytopathology 1995, 85, 695–698. [Google Scholar] [CrossRef]
- Martinez-Ochoa, N.; Kloepper, J.W.; Rodriguez-Kabana, R. PGPR-mediated induced systemic resistance against root-knot nematode (Meloidogyne incognita) on cucumber. Phytopathology 1995, 85, 1154. [Google Scholar]
- Benami, M.; Isack, Y.; Grotsky, D.; Levy, D.; Kofman, Y. The economic potential of arbuscular mycorrhizal fungi in agriculture. Biotechnol. Extrem. 2020, 2020, 239–279. [Google Scholar]
- Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of silicon on plant–pathogen interactions. Front. Plant Sci. 2017, 8, 701. [Google Scholar] [CrossRef]
- Göre, M.E. Epidemic outbreaks of downy mildew caused by Plasmopara halstedii on sunflower in Thrace, part of the Marmara region of Turkey. Plant Pathol. 2009, 58, 2. [Google Scholar] [CrossRef]
- Awadalla, O.A. Induction of systemic acquired resistance in tomato plants against early blight disease. Egypt. J. Exp. Biol. 2008, 4, 53–59. [Google Scholar]
- El-Gamal, N.G.; Abd-El-Kareem, F.; Fotouh, Y.; El-Mougy, N. Induction of systemic resistance in potato plants against late and early blight diseases using chemical inducers under greenhouse and field conditions. Res. J. Agric. Biol. Sci. 2007, 3, 73–81. [Google Scholar]
- Yousef, H. Integration of bioagents with antioxidants to control powdery mildew disease in sunflower. Egypt. J. Agric. Res. 2021, 99, 158–169. [Google Scholar] [CrossRef]
- Shahda, W.T. The use of antioxidants for control of tomato damping-off. Alex. J. Agric. Res. 2000, 45, 307–316. [Google Scholar]
- Whan, J.A.; Dann, E.K.; Aitken, E.A. Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defenses in root tissues of two cotton cultivars. Ann. Bot. 2016, 118, 219–226. [Google Scholar] [PubMed]
- Chérif, M.; Benhamou, N.; Bélanger, R.R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 1994, 84, 236–242. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Page, A.I., Miller, R.H., Keeny, T.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Part 2; pp. 403–430. [Google Scholar]
- Richards, L.F. Diagnosis and Improvement of Saline and Alkaline Soils. In Agriculture Handbook; U.S. Department of Agriculture: Washington, DC, USA, 1954; p. 60. [Google Scholar]
- Sahi, I.Y.; Khalid, A.N. In Vitro biological control of Fusarium oxysporum causing wilt in Capsicum annuum. Mycopathology 2007, 5, 85–88. [Google Scholar]
- Manandhar, J.B.; Hartman, G.L.; Wang, T.C. Conidial germination and appressorial formation of Colletotrichum capsici and C. gloeosporioides isolates from pepper. Plant Dis. 1995, 79, 361–366. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; Macmillan Publishing Co.: New York, NY, USA, 1986. [Google Scholar]
- Dennis, L.; Webster, J. Antagonistic properties of species group of Trichoderma III. Hyphal interaction. Trans. Br. Mycol. Soc. 1971, 57, 363–369. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against postharvest fungi infestation of food commodities. Innov. Food Sci. Emerg. Technol. 2008, 9, 575–580. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dazy, M.; Jung, V.; Ferard, J.F. Ecological recovery of 712 vegetation at a former coke-factory industrial wasteland: Role of plant 713 antioxidant enzymes and possible implications in site restoration. Chemosphere 2008, 74, 57–63. [Google Scholar] [CrossRef]
- Constabel, C.P.; Ryan, C.A. A survey of wound-and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 1998, 47, 507–511. [Google Scholar] [CrossRef]
- Beaudoin-Eagan, L.D.; Thorpe, T.A. Shikimate pathway activity during shoot initiation in tobacco callus cultures. Plant Physiol. 1983, 73, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chew, Y.L.; Goh, J.K.; Lim, Y.Y. Assessment of antioxidant capacity and polyphenolic composition of selected medicinal herbs. Food Chem. 2009, 116, 13–18. [Google Scholar] [CrossRef]
- Wimalasir, P.; Wills, R.B.H. Simultaneous analysis of ascorbic acid and dehydroascorbic acid in fruit and vegetables by high performance liquid chromatography. J. Chromatogr. 2010, 15, 418–421. [Google Scholar] [CrossRef]
- Gbadegesin, A.R.; Gbadamosi, S.O.; Odunlade, T.V. Physicochemical and sensory properties of pineapple flavored roselle powders. Cogent Food Agric. 2017, 3, 1292833. [Google Scholar] [CrossRef]
- El-Mohamedy, R.; Shafeek, M.; El-Samad, E.; Salama, D.; Rizk, F. Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.). Aust. J. Crop Sci. 2017, 11, 496–505. [Google Scholar] [CrossRef]
- Milica, M.; Emil, R.; Jovana, H.; Mila, G.; Brankica, T.P. Methods for management of soil borne plant pathogens. Phytomedicine 2017, 32, 9–24. [Google Scholar]
- Chowdappa, P.; Kumar, S.P.M.; Lakshmi, M.J.K.; Upreti, K. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 2013, 65, 109–117. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Zhong, Z.M.; Sun, M.H. A perilipin gene from Clonostachys rosea f. catenulata HL-1-1 is related to sclerotial parasitism. Int. J. Mol. Sci. 2015, 16, 5347–5362. [Google Scholar]
- Vey, A.; Hoagland, R.E.; Butt, T.M. Toxic metabolites of fungal bio control agents. In Fungi as Biocontrol Agents: Progress Problems and Potential; Butt, T.M., Jacson, C., Magan, N., Eds.; CAB International: Bristol, UK, 2001; pp. 311–346. [Google Scholar]
- Ahmed, H.F.A.; Seleiman, M.F.; Al-Saif, A.M.; Alshiekheid, M.A.; Battaglia, M.L.; Taha, R.S. Biological control of celery powdery mildew disease caused by Erysiphe heraclei DC in vitro and in vivo conditions. Plants 2021, 10, 2342. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; Atwa, M.A.M.; Morsy, K.M. Induce systemic resistance against root rot and wilt diseases in fodder beet (Beta vulgaris L. var. rapacea Koch.) by using potassium salts. J. Plant Pathol. Microbiol. 2015, 6, 315. [Google Scholar] [CrossRef]
- Kanto, T.; Maekawa, K.; Aino, M. Suppression of conidial germination and appressorial formation by silicate treatment in powdery mildew of strawberry. J. Gen. Plant Pathol. 2007, 73, 1–7. [Google Scholar] [CrossRef]
- Perrenoud, S. Fertilizing for High Yield Potato. In IPI Bulletin 8, 2nd ed.; International Potash Institute: Basel, Switzerland, 1993. [Google Scholar]
- Abd-El-Kareem, F.; El-Mougy Nehal, S.; El-Gamal, N.G.; Fotouh, Y.O. Induction of resistance in squash plants against powdery mildew and Alternaria leaf spot diseases using chemical inducers as protective or therapeutic treatments. Egypt. J. Phytopathol. 2004, 32, 65–76. [Google Scholar]
- Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 2019, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.J. Elicitors the hypersensitive response and phytoalexins. In Physiology and Biochemistry of Plant-Microbial Interactions; Keen, N.T., Kosuge, T., Walling, L.L., Eds.; American Society of Plant Biologists: Rockville, MD, USA, 1988; pp. 103–110. [Google Scholar]
- Kloepper, J.W.; Ryu, C.M.; Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef]
- Sivan, A.; Chet, I. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. Microbiology 1989, 135, 675–682. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–787. [Google Scholar]
- Kawakami, K.; Inuzuka, H.; Hori, N.; Takahashi, N.; Ishida, K.; Mochizuki, K.; Ohkusu, K.; Muraosa, Y.; Watanabe, A.; Kamei, K. Inhibitory effects of antimicrobial agents against Fusarium species. Med. Mycol. 2015, 53, 603–611. [Google Scholar] [CrossRef]
- Ahmed, H.F.A.; Seleiman, M.F.; Mohamed, I.A.A.; Taha, R.S.; Wasonga, D.O.; Battaglia, M.L. Activity of essential oils and plant extracts as biofungicides for suppression of soil-borne fungi associated with root rot andwilt of marigold (Calendula officinalis L.). Horticulturae 2023, 9, 222. [Google Scholar] [CrossRef]
- Ravishankar, N.; Vaishali, P.; Deepika, S. In Vitro biofilm formation of Pseudomonas fluorescens, a promising technique for waste water treatment. Int. J. Sci. Res. 2013, 4, 2319–7064. [Google Scholar]
- Carvalho, T.L.; Balsemão-Pires, E.; Saraiva, R.M.; Ferreira, P.C.; Hemerly, A.S. Nitrogen signaling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot. 2014, 65, 5631–5642. [Google Scholar] [CrossRef]
- Khalil, A.A.; Hassan, F.A.S.; Ali, E.F. Influence of bio-fertilizers on growth, yield and anthocyanin content of Hibiscus sabdariffa L. plant under Taif region conditions. Ann. Res. Rev. Biol. 2017, 17, 1–15. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- Altomare, C.; Norvell, W.A.; Björkman, T.; Harman, G.E. Solubilization of phosphates and micronutrients by the plantgrowth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999, 65, 2926–2933. [Google Scholar] [CrossRef] [PubMed]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef]
- El-Sayed, O.M.; El-Gammal, O.; Salama, A. Effect of ascorbic acid, proline and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Sci. Hortic. 2014, 176, 32–37. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Mansour, E.; Yasin, M.A.; El Sobky, E.S.E.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, 16. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef]
- Nikraftar, F.; Taheri, P.; Rastegar, M.F.; Tarighi, S. Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiol. Mol. Plant Pathol. 2013, 81, 74–83. [Google Scholar] [CrossRef]
- Pandey, S.; Fartyal, D.; Agarwal, A.; Shukla, T.; James, D.; Kaul, T.; Negi, Y.K.; Arora, S.; Reddy, M.K. Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Front. Plant Sci. 2017, 8, 581. [Google Scholar] [CrossRef] [PubMed]
- DallAgnol, L.J.; Rodrigues, F.A.; Pascholati, S.F.; Fortunato, A.A.; Camargo, L.E.A. Comparison of root and foliar applications of potassium silicate in potentiating post-infection defenses of melon against powdery mildew. Plant Pathol. 2015, 64, 1085–1093. [Google Scholar] [CrossRef]
- Morishita, M.; Sugiyama, K.; Saito, T.; Sakata, Y. Review: Powdery mildew resistance in cucumber. J. Agric. Res. Q. 2003, 37, 7–14. [Google Scholar] [CrossRef]
- Duan, L.; Liu, H.; Li, X.; Xiao, J.; Wang, S. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol. Plant. 2014, 152, 486–500. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.; Hegab, S.A.; Youssef, M.A.; Khalafalla, M.Y.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Abo-Baker, A.A.; Mostafa, G.G. Effect of Bio-and chemical fertilizers on growth, sepals yield and chemical composition of Hibiscus sabdariffa at new reclaimed soil of South Valley Area. Asian J. Crop Sci. 2011, 3, 16–25. [Google Scholar] [CrossRef]
- Selem, E.; Hassan, A.A.S.A.; Awad, M.F.; Mansour, E.; Desoky, E.S.M. Impact of exogenously sprayed antioxidants on physio-biochemical, agronomic, and quality parameters of potato in salt-affected soil. Plants 2022, 11, 210. [Google Scholar] [CrossRef] [PubMed]
Soil Physiochemical Analysis | 2019 Season | 2020 Season |
Clay % | 12.3 | 13.54 |
Silt % | 17.48 | 18.11 |
Sand % | 70.22 | 68.35 |
Soil texture | Sandy loam | Sandy loam |
pH (1:2.5) | 7.5 | 7.35 |
EC dS m−1 | 3.67 | 3.9 |
Organic matter % | 0.98 | 1.12 |
CaCO3 % | 4.92 | 5.13 |
Total N % | 0.09 | 0.12 |
Available P mg kg−1 soil | 7.68 | 7.91 |
Available K mg kg−1 soil | 179 | 183 |
Available Fe mg kg−1 soil | 6.4 | 6.35 |
Irrigation Water Analysis | ||
pH | 5.21 | 4.93 |
EC dS m−1 | 7.04 | 6.95 |
CO3− meq/L | 0 | 0 |
HCO3− meq/L | 2.17 | 2.5 |
SO4− meq/L | 21.05 | 20.42 |
Cl− meq/L | 40.36 | 38.9 |
Ca++ meq/L | 5.57 | 6.14 |
Mg++ meq/L | 13.04 | 14.52 |
Na+ meq/L | 44.19 | 41.31 |
K+ meq/L | 0.26 | 0.29 |
Isolated Fungi | Location/Number of Isolates and Frequency Values | |||||||
---|---|---|---|---|---|---|---|---|
Fayoum Governorate | Beni-Suef Governorate | Minya Governorate | Total | |||||
No. of Isolates | Frequency% | No. of Isolates | Frequency % | No. of Isolates | Frequency % | No. of Isolates | Frequency % | |
F. equiseti | 3 | 7.5 | 3 | 8.6 | 5 | 15.2 | 11 | 10.2 |
F. oxysporum | 14 | 35.0 | 17 | 48.6 | 11 | 33.3 | 42 | 38.9 |
F. solani | 12 | 30.0 | 7 | 20.0 | 7 | 21.2 | 26 | 24.1 |
M. phaseolina | 9 | 22.5 | 8 | 22.8 | 7 | 21.2 | 24 | 22.2 |
P. ultimum | 2 | 5.0 | 0 | 0.0 | 3 | 9.1 | 5 | 4.6 |
Total | 40 | 100 | 35 | 100 | 33 | 100 | 108 | 100 |
Tested Fungi | Disease Infection % | * Surviving Plants % | ||
---|---|---|---|---|
Days after Sowing | ||||
30 Days | 60 Days | 90 Days | ||
F. equiseti | 16.7 ± 0.74 d | 25.0 ± 1.0 d | 33.3 ± 1.30 d | 66.7 |
F. oxysporum | 25.0 ± 1.06 b | 37.5 ± 1.41 b | 58.3 ± 1.0 b | 41.7 |
F. solani | 20.8 ± 0.66 c | 33.3 ± 1.14 c | 54.2 ± 1.10 c | 45.8 |
M. phaseolina | 29.2 ± 0.91 a | 41.7 ± 0.92 a | 62.5 ± 0.50 a | 37.5 |
P. ultimum | 20.8± 0.76 c | 25.0± 1.02 d | 29.2± 1.10 e | 70.8 |
Control (pathogen-free soil) | 0.0 ± 0.0 e | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 100 |
Biocontrol Agents | M. phaseolina | F. solani | F. oxysporum | |||
---|---|---|---|---|---|---|
Linear Growth (mm) | * Reduction (%) | Linear Growth (mm) | * Reduction (%) | Linear Growth (mm) | * Reduction (%) | |
Bacillus subtilis | 28.5 ± 1.04 c | 68.3 | 25.7 ± 1.00 c | 71.4 | 27.9 ± 0.90 c | 69.0 |
Gliocladium catenulatum | 24.1 ± 0.81 d | 73.2 | 21.5 ± 0.81 d | 76.1 | 23.9 ± 1.11 d | 73.4 |
Trichoderma asperellum | 33.7 ± 1.31 b | 62.5 | 31.9 ± 1.01 b | 64.5 | 31.7 ± 1.02 b | 64.7 |
Positive control | 11.5 ± 0.68 e | 87.2 | 9.1 ± 0.71 e | 89.8 | 9.5 ± 0.44 e | 89.4 |
Negative control | 90.0 ± 0.0 a | – | 90.0 ± 0.0 a | – | 90.0 ± 0.0 a | – |
Chemical Inducers | Conc. (ppm) | M. phaseolina | F. solani | F. oxysporum | |||
---|---|---|---|---|---|---|---|
Linear Growth (mm) | * Reduction (%) | Linear Growth (mm) | * Reduction (%) | Linear Growth (mm) | * Reduction (%) | ||
Ascorbic acid | 500 | 75.2 ± 1.60 b | 16.4 | 71.3 ± 1.65 b | 20.7 | 77.1 ± 1.42 b | 14.3 |
1000 | 58.2 ± 1.46 d | 35.3 | 53.8 ± 1.17 d | 40.2 | 54.7 ± 1.23 d | 39.2 | |
2000 | 47.5 ± 1.83 f | 47.2 | 45.0 ± 1.19 f | 50.0 | 46.2 ± 1.42 f | 48.6 | |
Potassium silicate | 500 | 58.4 ± 1.79 d | 35.1 | 61.2 ± 1.65 c | 32.0 | 54.5 ± 1.39 d | 39.4 |
1000 | 44.5 ± 1.14 g | 50.5 | 44.7 ± 1.17 f | 50.3 | 44.5 ± 1.31 g | 50.5 | |
2000 | 35.3 ± 1.14 j | 60.7 | 33.9 ± 1.19 i | 62.3 | 35.7 ± 1.30 i | 60.3 | |
Salicylic acid | 500 | 62.5 ± 1.65 c | 30.5 | 61.8 ± 1.44 c | 31.3 | 65.4 ± 1.60 c | 27.3 |
1000 | 49.7 ± 1.50 e | 44.7 | 48.6 ± 1.04 e | 46.0 | 48.2 ± 1.55 e | 46.4 | |
2000 | 42.2 ± 1.41 h | 53.1 | 39.8 ± 1.20 g | 55.7 | 40.5 ± 1.20 h | 53.0 | |
Positive control | 500 | 40.3 ± 1.47 i | 55.2 | 36.5 ± 1.22 h | 59.4 | 43.1 ± 1.33 gh | 52.1 |
1000 | 19.7 ± 1.12 k | 78.1 | 16.3 ± 1.15 j | 81.8 | 21.3 ± 1.20 j | 76.3 | |
2000 | 10.5 ± 1.08 l | 88.3 | 9.1 ± 1.17 k | 89.8 | 10.7 ± 1.19 k | 88.1 | |
Negative control | – | 90.0 ± 0.0 a | – | 90.0 ± 0.0 a | – | 90.0 ± 0.0 a | – |
Biotic/Abiotic Inducers | Rate Used | * Average Disease Control % | |||||
---|---|---|---|---|---|---|---|
M. phaseolina | F. solani | F. oxysporum | |||||
Damping-Off % | Root Rot % | Damping-Off % | Root Rot % | Damping-Off % | Wilt % | ||
Biocontrol Agents (CFU mL−1) | |||||||
Bacillus subtilis | 1 × 105 | 34.8 ± 1.83 g | 35.7 ± 1.37 g | 33.4 ± 1.44 g | 35.0 ± 1.91 g | 33.9 ± 1.28 f | 35.9 ± 1.39 g |
1 × 107 | 47.3 ± 0.80 e | 50.0 ± 1.39 e | 52.7 ± 1.73 e | 56.4 ± 1.82 d | 52.9 ± 1.64 d | 59.5 ± 1.14 d | |
1 × 109 | 65.0 ± 1.08 b | 70.0 ± 1.49 b | 70.1 ± 1.88 b | 68.2 ± 1.53 b | 70.0 ± 1.89 b | 75.2 ± 1.06 b | |
Gliocladium catenulatum | 1 × 105 | 47.3 ± 1.59 e | 50.0 ± 1.75 e | 50.3 ± 2.24 e | 49.3 ± 1.69 e | 46.6 ± 1.88 e | 52.6 ± 1.39 e |
1 × 107 | 53.5 ± 1.33 d | 56.7 ± 1.46 d | 57.7 ± 2.00 d | 56.4 ± 1.82 d | 52.9 ± 1.92 d | 59.5 ± 1.24 d | |
1 × 109 | 72.3 ± 1.89 a | 75.7 ± 1.37 a | 78.0 ± 1.92 a | 73.7 ± 1.64 a | 75.3 ± 1.33 a | 78.2 ± 1.06 a | |
Trichoderma asperellum | 1 × 105 | 26.2 ± 1.73 h | 28.3 ± 1.10 h | 25.5 ± 1.45 h | 20.7 ± 1.71 h | 21.2 ± 1.69 g | 25.1 ± 1.07 h |
1 × 107 | 38.8 ± 0.92 f | 41.7 ± 1.77 f | 45.9 ± 1.34 f | 42.1 ± 1.64 f | 46.6 ± 1.96 e | 50.6 ± 1.45 f | |
1 × 109 | 57.5 ± 1.18 c | 61.7 ± 1.61 c | 62.2 ± 1.15 c | 63.6 ± 1.88 c | 59.3 ± 1.78 c | 63.4 ± 1.23 c | |
Chemical Inducers (g/L) | |||||||
Ascorbic acid | 1.0 | 16.0 ± 0.94 g | 20.5 ± 0.99 g | 23.5 ± 1.11 i | 19.6 ± 0.99 h | 13.2 ± 1.58 h | 24.9 ± 1.74 i |
2.0 | 28.5 ± 0.73 f | 32.0 ± 0.94 f | 35.4 ± 1.51 g | 34.1 ± 0.95 f | 25.9 ± 1.54 f | 37.9 ± 1.61 f | |
4.0 | 55.5 ± 1.03 c | 60.1 ± 1.06 c | 58.2 ± 1.34 c | 63.2 ± 1.61 c | 51.3 ± 1.51 c | 66.0 ± 3.81 c | |
Potassium silicate | 1.0 | 28.5 ± 0.86 f | 38.8 ± 1.51 e | 36.4 ± 0.60 f | 34.1 ± 1.65 f | 26.9 ± 1.95 f | 35.9 ± 1.06 g |
2.0 | 53.5 ± 1.21 d | 59.1 ± 1.11 c | 55.7 ± 0.84 d | 55.9 ± 1.51 d | 44.9 ± 1.43 d | 57.9 ± 1.50 d | |
4.0 | 68.0 ± 0.86 a | 73.7 ± 1.31 a | 72.1 ± 0.79 a | 65.0 ± 1.18 a | 64.0 ± 1.37 a | 75.0 ± 1.74 a | |
Salicylic acid | 1.0 | 28.5 ± 1.25 f | 32.0 ± 1.14 f | 29.9 ± 1.16 h | 26.9 ± 1.20 g | 19.5 ± 0.91 g | 31.9 ± 1.46 h |
2.0 | 41.0 ± 1.73 e | 45.6 ± 1.19 d | 42.9 ± 0.95 e | 41.4 ± 1.40 e | 32.2 ± 1.06 e | 40.9 ± 1.46 e | |
4.0 | 60.8 ± 1.49 b | 65.9 ± 1.40 b | 61.3 ± 1.15 b | 63.5 ± 1.59 b | 57.6 ± 0.78 b | 69.0 ± 2.18 b | |
Biofertilizers (g/kg seeds) | |||||||
Mycorrhizeen | 10 | 54.5 ± 1.40 c | 61.3 ± 1.00 c | 44.1 ± 1.20 c | 56.3 ± 1.50 c | 49.2 ± 0.70 c | 53.4 ± 1.90 c |
Microbein | 10 | 35.2 ± 1.20 d | 41.7 ± 2.00 d | 26.9 ± 1.40 d | 38.2 ± 0.90 d | 31.0 ± 1.60 d | 32.5 ± 1.50 d |
Mycor.+ Micr. | 10 | 59.2 ± 1.10 b | 68.0 ± 1.10 b | 52.5 ± 1.20 b | 64.4 ± 1.90 b | 55.4 ± 1.20 b | 59.2 ± 0.90 b |
Positive control | 3 | 80.2 ± 0.50 a | 83.4 ± 1.70 a | 83.0 ± 0.90 a | 87.1 ± 1.20 a | 80.4 ± 1.50 a | 85.5 ± 2.40 a |
Treatments | Rate Used | * Average Disease Control % | |||
---|---|---|---|---|---|
Damping-Off % | Root Rot % | Wilt % | |||
Pre- Emergence % | Post- Emergence % | ||||
G. catenulatum (Gc) | 1 × 109 CFU mL−1 | 73.2 ± 1.57 c | 60.4 ± 1.86 d | 64.2 ± 1.77 d | 70.4 ± 1.46 c |
B. subtilis (Bs) | 1 × 109 CFU mL−1 | 54.4 ± 1.61 f | 43.3 ± 1.08 g | 45.3 ± 1.00 g | 52.3 ± 1.57 f |
T. asperellum (Ta) | 1 × 109 CFU mL−1 | 44.1 ± 1.11 h | 35.4 ± 0.83 i | 34.1 ± 1.94 i | 39.6 ± 1.79 h |
Mixture of Gc + Bs + Ta | 1 × 109 CFU mL−1 | 79.2 ± 0.95 b | 72.5 ± 1.28 b | 75.6 ± 1.62 b | 77.2 ± 2.68 b |
Ascorbic acid (AA) | 4 g L−1 | 39.1 ± 1.06 i | 30.0 ± 1.32 j | 28.3 ± 1.41 j | 32.5 ± 1.45 i |
Potassium silicate (PS) | 4 g L−1 | 67.2 ± 1.70 d | 56.4 ± 1.06 e | 59.9 ± 1.79 e | 66.0 ± 1.67 d |
Salicylic acid (SA) | 4 g L−1 | 49.4 ± 1.94 g | 41.2 ± 1.15 h | 42.5 ± 2.33 h | 45.0 ± 1.52 g |
Mixture of AA + PS + SA | 4 g L−1 | 77.0 ± 2.06 b | 68.0 ± 1.35 c | 70.4 ± 1.23 c | 73.2 ± 1.00 b |
Mixture of Mycor. + Micr. | 10 g kg−1 seeds | 59.6 ± 1.93 e | 50.1 ± 1.05 f | 53.4 ± 1.55 f | 59.5 ± 1.62 e |
Positive control | 3 g kg−1 seeds | 89.0 ± 1.42 a | 80.4 ± 0.95 a | 85.2 ± 1.63 a | 83.7 ± 2.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.F.A.; Elnaggar, S.; Abdel-Wahed, G.A.; Taha, R.S.; Ahmad, A.; Al-Selwey, W.A.; Ahmed, H.M.H.; Khan, N.; Seleiman, M.F. Induction of Systemic Resistance in Hibiscus sabdariffa Linn. to Control Root Rot and Wilt Diseases Using Biotic and Abiotic Inducers. Biology 2023, 12, 789. https://doi.org/10.3390/biology12060789
Ahmed HFA, Elnaggar S, Abdel-Wahed GA, Taha RS, Ahmad A, Al-Selwey WA, Ahmed HMH, Khan N, Seleiman MF. Induction of Systemic Resistance in Hibiscus sabdariffa Linn. to Control Root Rot and Wilt Diseases Using Biotic and Abiotic Inducers. Biology. 2023; 12(6):789. https://doi.org/10.3390/biology12060789
Chicago/Turabian StyleAhmed, Hamada F. A., Sameh Elnaggar, Gomaa A. Abdel-Wahed, Ragab S. Taha, Awais Ahmad, Wadei A. Al-Selwey, Hoda M. H. Ahmed, Naeem Khan, and Mahmoud F. Seleiman. 2023. "Induction of Systemic Resistance in Hibiscus sabdariffa Linn. to Control Root Rot and Wilt Diseases Using Biotic and Abiotic Inducers" Biology 12, no. 6: 789. https://doi.org/10.3390/biology12060789
APA StyleAhmed, H. F. A., Elnaggar, S., Abdel-Wahed, G. A., Taha, R. S., Ahmad, A., Al-Selwey, W. A., Ahmed, H. M. H., Khan, N., & Seleiman, M. F. (2023). Induction of Systemic Resistance in Hibiscus sabdariffa Linn. to Control Root Rot and Wilt Diseases Using Biotic and Abiotic Inducers. Biology, 12(6), 789. https://doi.org/10.3390/biology12060789