Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Parasitization
2.2. Dissection of Female Reproductive Apparatus and Its Light Microscopy
2.3. Transmission Electron Microscopy
3. Results
3.1. Morphology of the Female Reproductive Apparatus
3.2. Ultrastructure of Ovary
3.3. Ultrastructure of Venom Gland
3.4. Ultrastructure of Venom Reservoir
3.5. Ultrastructure of Dufour gland
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.H.; Chen, J.N.; Fang, G.Q.; Pang, L.; Zhou, S.C.; Zhou, Y.N.; Pan, Z.Q.; Zhang, Q.C.; Sheng, Y.F.; Lu, Y.Q.; et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 2021, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Libersat, F.; Delago, A.; Gal, R. Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 2009, 54, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.P.; Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 2018, 63, 471–487. [Google Scholar] [CrossRef]
- Stoltz, D.B. Interactions between parasitoid-derived products and host insects: An overview. J. Insect Physiol. 1986, 32, 347–350. [Google Scholar] [CrossRef]
- Strand, M.R.; Wong, E.A. The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens. J. Insect Physiol. 1991, 37, 503–515. [Google Scholar] [CrossRef]
- Asgari, S.; Rivers, D.B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 2011, 56, 313–335. [Google Scholar] [CrossRef]
- Quicke, D.L.J.; Butcher, B.A. Review of venoms of non-polydnavirus carrying ichneumonoid wasps. Biology 2021, 10, 50. [Google Scholar] [CrossRef]
- Lavine, M.D.; Beckage, N.E. Polydnaviruses: Potent mediators of host insect immune dysfunction. Parasitol. Today 1995, 11, 368–378. [Google Scholar] [CrossRef]
- Qin, Q.L.; Gong, H.; Ding, C.; Qi, Y.M.; Gan, Y.L.; Li, S.W. Property and function of virus-like filaments in calyx region of the endoparasitoid Microplitis mediator. Acta Entomol. Sin. 2001, 44, 170–175. [Google Scholar]
- Barratt, B.I.P.; Murney, R.; Easingwood, R.; Ward, V.K. Virus-like particles in the ovaries of Microctonus aethiopoides Loan (Hymenoptera: Braconidae): Comparison of biotypes from Morocco and Europe. J. Invertebr. Pathol. 2006, 91, 13–18. [Google Scholar] [CrossRef]
- Davies, D.H.; Vinson, S.B. Passive evasion by eggs of braconid parasitoid Cardiochiles nigriceps of encapsulation in vitro by haemocytes of host Heliothis virescens. A role for fibrous layer in immunity. J. Insect Physiol. 1986, 32, 1003–1010. [Google Scholar] [CrossRef]
- Mabiala-Moundoungou, A.D.N.; Doury, G.; Eslin, P.; Cherqui, A.; Prévost, G. Deadly venom of Asobara japonica parasitoid needs ovarian antidote to regulate host physiology. J. Insect Physiol. 2010, 56, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.W.; Wu, H.Z.; Ye, X.H.; Xiong, S.J.; Xu, G.; Wang, F.; Fang, Q.; Ye, G.Y. An ovarian protein involved in passive avoidance of an endoparasitoid to evade its host immune response. J. Proteome Res. 2019, 18, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- King, P.E.; Ratcliffe, N.A. The structure and possible mode of functioning of the female reproductive system in Nasonia vitripennis (Hymenoptera: Pteromalidae). J. Zool. 1969, 157, 319–344. [Google Scholar] [CrossRef]
- Espagne, E.; Dupuy, C.; Huguet, E.; Cattolico, L.; Provost, B.; Martins, N.; Poirié, M.; Periquet, G.; Drezen, J.M. Genome sequence of a polydnavirus: Insights into symbiotic virus evolution. Science 2004, 306, 286–289. [Google Scholar] [CrossRef]
- Soller, M.; Lanzrein, B. Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J. Insect Physiol. 1996, 42, 471–481. [Google Scholar] [CrossRef]
- Blass, S.; Ruthmann, A. Fine structure of the accessory glands of the female genital tract of the Ichneumonid Pimpla turionellae (Insecta, Hymenoptera). Zoomorphology 1989, 108, 367–377. [Google Scholar] [CrossRef]
- Edson, K.M.; Vinson, S.B. A comparative morphology of the venom apparatus of female braconids (Hymenoptera: Braconidae). Can. Entomol. 1979, 111, 1013–1024. [Google Scholar] [CrossRef]
- Edson, K.M.; Barlin, M.R.; Vinson, S.B. Venom apparatus of braconid wasps: Comparative ultrastructure of reservoirs and gland filaments. Toxicon 1982, 20, 553–562. [Google Scholar] [CrossRef]
- Quicke, D.L.J.; Achterberg, K.; Godfray, H.C.J. Comparative morphology of the venom gland and reservoir in opiine and alysiine braconid wasps (Insecta, Hymenoptera, Braconidae). Zool. Scr. 1997, 26, 23–50. [Google Scholar] [CrossRef]
- Quicke, D.L.J.; Tunstead, J.; Falco, J.V.; Marsh, P.M. Venom gland and reservoir morphology in the Doryctinae and related braconid wasps (Insecta, Hymenoptera, Braconidae). Zool. Scr. 1992, 21, 403–416. [Google Scholar] [CrossRef]
- Mao, N.; Tang, P.; Tian, H.W.; Shi, M.; Chen, X.X. General morphology and ultrastructure of the female reproductive apparatus of Trichomalopsis shirakii Crawford (Hymenoptera, Pteromalidae). Microsc. Res. Tech. 2016, 79, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Rotheram, S. Immune surface of eggs of a parasitic insect. Nature 1967, 214, 700. [Google Scholar] [CrossRef] [PubMed]
- Barratt, B.I.P.; Evans, A.A.; Stoltz, D.B.; Vinson, S.B.; Easingwood, R. Virus-like particles in the ovaries of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). J. Invertebr. Pathol. 1999, 73, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Chiu, H.; Oo, T.; Plaza, R.; Hoskins, S.; Govind, S. Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. J. Insect Physiol. 2005, 51, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, C.; Carton, Y.; Dubuffet, A.; Drezen, J.M.; Poirie, M. Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J. Insect Physiol. 2003, 49, 513–522. [Google Scholar] [CrossRef]
- Rizki, R.M.; Rizki, T.M. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc. Natl. Acad. Sci. USA 1990, 87, 8388–8392. [Google Scholar] [CrossRef]
- Wan, Z.W.; Wang, H.Y.; Chen, X.X. Venom apparatus of the endoparasitoid wasp Opius caricivorae Fischer (Hymenoptera: Braconidae): Morphology and ultrastructure. Microsc. Res. Tech. 2006, 69, 820–825. [Google Scholar] [CrossRef]
- Gatti, J.l.; Schmitz, A.; Colinet, D.; Poirié, M. Diversity of virus-like particles in parasitoids venom. In Parasitoid Viruses; Beckage, N.E., Drezen, J.M., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 181–192. [Google Scholar]
- Pichon, A.; Bézier, A.; Urbach, S.; Aury, J.M.; Jouan, V.; Ravallec, M.; Guy, J.; Cousserans, F.; Thézé, J.; Gauthier, J.; et al. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 2015, 1, e1501150. [Google Scholar] [CrossRef]
- Burke, G.R.; Simmonds, T.J.; Sharanowski, B.J.; Geib, S.M. Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture. Mol. Biol. Evol. 2018, 35, 2463–2474. [Google Scholar] [CrossRef]
- Heavner, M.E.; Ramroop, J.; Gueguen, G.; Ramrattan, G.; Dolios, G.; Scarpati, M.; Kwiat, J.; Bhattacharya, S.; Wang, R.; Singh, S.; et al. Novel organelles with elements of bacterial and eukaryotic secretion systems weaponize parasites of Drosophila. Curr. Biol. 2017, 27, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Khoo, C.C.H.; Lawrence, P.O. Hagen’s glands of the parasitic wasp Diachasmimorpha longicaudata (Hymenoptera: Braconidae): Ultrastructure and the detection of entomopoxvirus and parasitism-specific proteins. Arthropod Struct. Dev. 2002, 31, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fang, Q.; Wang, B.; Yan, Z.; Hong, J.; Bao, Y.; Kuhn, J.H.; Werren, J.H.; Song, Q.; Ye, G. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathog. 2017, 13, e1006201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, F.; Yuan, B.; Yang, L.; Yang, Y.; Fang, Q.; Kuhn, J.H.; Song, Q.; Ye, G. A novel cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp’s Drosophila melanogaster host. ISME J. 2021, 15, 3239–3257. [Google Scholar] [CrossRef] [PubMed]
- Early, R.; González-Moreno, P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 2018, 40, 25–50. [Google Scholar] [CrossRef]
- Sun, X.X.; Hu, C.X.; Jia, H.R.; Wu, Q.L.; Shen, X.J.; Zhao, S.Y.; Jiang, Y.Y.; Wu, K.M. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Berry, J.A.; Walker, G.P. Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae: Euphorinae): An exotic polyphagous parasitoid in New Zealand. N. Z. J. Zool. 2004, 31, 33–44. [Google Scholar] [CrossRef]
- Suzuki, M.; Tanaka, T. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. J. Insect Physiol. 2006, 52, 602–613. [Google Scholar] [CrossRef]
- Suzuki, M.; Miura, K.; Tanaka, T. Effects of the virus-like particles of a braconid endoparasitoid, Meteorus pulchricornis, on hemocytes and hematopoietic organs of its noctuid host, Pseudaletia separata. Appl. Entomol. Zool. 2009, 44, 115–125. [Google Scholar] [CrossRef]
- Suzuki, M.; Miura, K.; Tanaka, T. The virus-like particles of a braconid endoparasitoid wasp, Meteorus pulchricornis, inhibit hemocyte spreading in its noctuid host, Pseudaletia separata. J. Insect Physiol. 2008, 54, 1015–1022. [Google Scholar] [CrossRef]
- Gatti, J.L.; Belghazi, M.; Legeai, F.; Ravallec, M.; Frayssinet, M.; Robin, S.; Aboubakar-Souna, D.; Srinivasan, R.; Tamò, M.; Poirié, M.; et al. Proteo-trancriptomic analyses reveal a large expansion of metalloprotease-like proteins in atypical venom vesicles of the wasp Meteorus pulchricornis (Braconidae). Toxins 2021, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, D.; Farrugia, L.; Shaw, M.R. Braconid and ichneumonid (Hymenoptera) parasitoid wasps of Lepidoptera from the Maltese Islands. Zootaxa 2019, 4567, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Stigenberg, J.; Ronquist, F. Revision of the Western Palearctic Meteorini (Hymenoptera, Braconidae), with a molecular characterization of hidden Fennoscandian species diversity. Zootaxa 2011, 3084, 1–95. [Google Scholar] [CrossRef]
- Leach, I.M.; Ferber, S.; van de Zande, L.; Beukeboom, L.W. Genetic variability of arrhenotokous and thelytokous Venturia canescens (Hymenoptera). Genetica 2012, 140, 53–63. [Google Scholar] [CrossRef]
- Marsh, P.M. The braconid (Hymenoptera) parasites of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 1979, 72, 794–810. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Maeto, K.; Hamaguchi, K.; Isaki, Y.; Takami, Y.; Naito, T.; Miura, K. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. Bull. Entomol. Res. 2014, 104, 307–313. [Google Scholar] [CrossRef]
- Nacro, S.; Nnon, J.P. Female reproductive biology of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Entomol. Sci. 2008, 11, 231–237. [Google Scholar] [CrossRef]
- Stoltz, D.B.; Vinson, S.B. Viruses and parasitism in insects. In Advances in Virus Research; Lauffer, M.A., Bang, F.B., Maramorosch, K., Smith, K.M., Eds.; Academic Press: London, UK, 1979; Volume 24, pp. 125–171. [Google Scholar]
- Strand, M.R.; Dover, B.A. Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Arch. Insect Biochem. Physiol. 1991, 18, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.F.; Cai, D.Z.; Li, X.; Chen, X.X. Parasitic castration of Plutella xylostella larvae induced by polydnaviruses and venom of Cotesia vestalis and Diadegma semiclausum. Arch. Insect Biochem. Physiol. 2009, 70, 30–43. [Google Scholar] [CrossRef]
- Kinuthia, W.; Li, D.; Schmidt, O.; Theopold, U. Is the surface of endoparasitic wasp eggs and larvae covered by a limited coagulation reaction? J. Insect Physiol. 1999, 45, 501–506. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, X.X.; Fu, W.J. Passive evasion of encapsulation in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae), a polyembryonic parasitoid of Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). J. Insect Physiol. 2003, 49, 367–375. [Google Scholar] [CrossRef]
- Feddersen, I.; Sander, K.; Schmidt, O. Virus-like particles with host protein-like antigenic determinants protect an insect parasitoid from encapsulation. Experientia 1986, 42, 1278–1281. [Google Scholar] [CrossRef]
- Syvertsen, T.C.; Jackson, L.L.; Blomquist, G.J.; Vinson, S.B. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J. Chem. Ecol. 1995, 21, 1971–1989. [Google Scholar] [CrossRef]
- Howard, R.W.; Baker, J.E.; Morgan, E.D. Novel diterpenoids and hydrocarbons in the Dufour gland of the ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 2003, 54, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Howard, R.; Morrill, W.; Meers, S.; Weaver, D. Acetate esters of saturated and unsaturated alcohols (C12–C20) are major components in Dufour glands of Bracon cephi and Bracon lissogaster (Hymenoptera: Braconidae), parasitoids of the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). Biochem. Syst. Ecol. 2005, 33, 757–769. [Google Scholar] [CrossRef]
- Zaldivar-Riveron, A.; Areekul, B.; Shaw, M.R.; Quicke, D.L.J. Comparative morphology of the venom apparatus in the braconid wasp subfamily Rogadinae (Insecta, Hymenoptera, Braconidae) and related taxa. Zool. Scr. 2004, 33, 223–237. [Google Scholar] [CrossRef]
- Li, W.D.; Yu, R.X.; Chen, X.X.; He, J.H. Venom gland of the ichneumonid Diadromus collaris: Morphology, ultrastructure and age-related changes. Insect Sci. 2006, 13, 137–143. [Google Scholar] [CrossRef]
- Noirot, C.; Quennedey, A. Fine structure of insect epidermal glands. Annu. Rev. Entomol. 1974, 19, 61–80. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Ye, G.Y.; Hu, C. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon 2008, 51, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Goguet, E.; Ravallec, M.; Pierre, O.; Lemauf, S.; Volkoff, A.N.; Gatti, J.L.; Poirié, M. Venom atypical extracellular vesicles as interspecies vehicles of virulence factors involved in host specificity: The case of a Drosophila parasitoid wasp. Front. Immunol. 2019, 10, 1688. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.J.; Lin, Z.; Zhou, L.Z.; Chen, C.H.; Yu, X.H.; Zhang, J.J.; Zou, Z.; Lu, Z.Q. Rho 1 participates in parasitoid wasp eggs maturation and host cellular immunity inhibition. Insect Sci. 2022, 1744–7917. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.J.M.; Guillot, S. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol. 2005, 35, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Gnatzy, W.; Volknandt, W.; Schulz, S. Dufour gland of the digger wasp Liris niger: Structure and developmental and biochemical aspects. Cell Tissue Res. 2004, 315, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Grasso, D.A.; Mori, A.; Moli, F.L.; Billen, J. Morpho-functional comparison of the Dufour gland in the female castes of the Amazon ant Polyergus rufescens (Hymenoptera, Formicidae). Zoomorphology 2005, 124, 149–153. [Google Scholar] [CrossRef]
- Ruano, F.; Hefetz, A.; Lenoir, A.; Francke, W.; Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 2005, 51, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Derstine, N.T.; Villar, G.; Orlova, M.; Hefetz, A.; Millar, J.; Amsalem, E. Dufour’s gland analysis reveals caste and physiology specific signals in Bombus impatiens. Sci. Rep. 2021, 11, 2821. [Google Scholar] [CrossRef]
- Pitts-Singer, T.L.; Hagen, M.M.; Helm, B.R.; Highland, S.; Buckner, J.S.; Kemp, W.P. Comparison of the chemical compositions of the cuticle and Dufour’s gland of two solitary bee species from laboratory and field conditions. J. Chem. Ecol. 2017, 43, 451–468. [Google Scholar] [CrossRef]
- Mekonnen, B.; Cheseto, X.; Pirk, C.; Yusuf, A.; Ekesi, S.; Deletre, E.; Torto, B. Re-analysis of abdominal gland volatilome secretions of the african weaver ant, Oecophylla longinoda (Hymenoptera: Formicidae). Molecules 2021, 26, 871. [Google Scholar] [CrossRef]
- Mitra, A. Function of the Dufour’s gland in solitary and social Hymenoptera. J. Hymenopt. Res. 2013, 35, 33–58. [Google Scholar] [CrossRef]
- Mudd, A.; Fisher, R.C.; Smith, M.C. Volatile hydrocarbons in the Dufour’s gland of the parasite Nemeritis canescens (Grav.) (Hymenoptera; Ichneumonidae). J. Chem. Ecol. 1982, 8, 1035–1042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, P.; Shu, X.; Wang, Z.; Chen, X. Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). Biology 2023, 12, 713. https://doi.org/10.3390/biology12050713
Chen Y, Wang P, Shu X, Wang Z, Chen X. Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). Biology. 2023; 12(5):713. https://doi.org/10.3390/biology12050713
Chicago/Turabian StyleChen, Yusi, Pengzhan Wang, Xiaohan Shu, Zhizhi Wang, and Xuexin Chen. 2023. "Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae)" Biology 12, no. 5: 713. https://doi.org/10.3390/biology12050713
APA StyleChen, Y., Wang, P., Shu, X., Wang, Z., & Chen, X. (2023). Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). Biology, 12(5), 713. https://doi.org/10.3390/biology12050713