Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Compound and Surfaces Used in This Study
2.2. Preparation of Test Inoculum
2.3. ISO22196:2011 Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces
2.3.1. Antimicrobial Coating Kinetics
2.3.2. Antimicrobial Coating Durability
2.4. Cytotoxicity–MTT Assay
2.5. Statistical Analysis
3. Results
3.1. Measurement of Antibacterial Activity and Kinetics
3.2. Antimicrobial Activity Durability
3.3. Cytotoxicity of Caco-2 Cells Exposed to Vestigial Antimicrobial Coating Concentrations
4. Discussion
4.1. Measurement of Antibacterial Activity and Kinetics
4.2. Antimicrobial Activity Durability
4.3. Cytotoxicity of Caco-2 Cells Exposed to Vestigial Antimicrobial Coating Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gargiulo, A.H.; Duarte, S.G.; Campos, G.Z.; Landgraf, M.; Franco, B.D.G.M.; Pinto, U.M. Food safety issues related to eating in and eating out. Microorganisms 2022, 10, 2118. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). The European Union one health 2021 zoonoses report. EFSA J. 2022, 20, e06971. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Ferreira, V.; Truninger, M.; Maia, R.; Teixeira, P. Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. Int. J. Food Microbiol. 2021, 338, 108984. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, M.; Goulter, R.M.; Chapman, B.J.; Clayton, J.; Jaykus, L.-A. Cross-contamination on atypical surfaces and venues in food service environments. J. Food Prot. 2021, 84, 1239–1251. [Google Scholar] [CrossRef]
- Okpala, C.; Ezeonu, I. Food Hygiene/microbiological safety in the typical household kitchen: Some basic ‘must knows’ for the general public. J. Pure Appl. Microbiol. 2019, 13, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, E.; Nguyen, P.; Hunt, H.; Mustapha, A. Antimicrobial coatings for food contact surfaces: Legal framework, mechanical properties, and potential applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1825–1858. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, F.; O’Neill, A.; Ivask, A.; Jenssen, H.; Inkinen, J.; Kahru, A.; Ahonen, M.; Schreiber, F. Selection of resistance by antimicrobial coatings in the healthcare setting. J. Hosp. Infect. 2020, 106, 115–125. [Google Scholar] [CrossRef]
- Cassidy, S.S.; Sanders, D.J.; Wade, J.; Parkin, I.P.; Carmalt, C.J.; Smith, A.M.; Allan, E. Antimicrobial surfaces: A need for stewardship? PLoS Pathog. 2020, 16, e1008880. [Google Scholar] [CrossRef]
- Dunne, C.P.; Askew, P.D.; Papadopoulos, T.; Gouveia, I.C.; Ahonen, M.; Modic, M.; Azevedo, N.F.; Schulte, S.; Cosemans, P.; Kahru, A.; et al. Antimicrobial coating innovations to prevent infectious disease: A consensus view from the AMiCl COST Action. J. Hosp. Infect. 2020, 105, 116–118. [Google Scholar] [CrossRef]
- Swartjes, J.J.; Sharma, P.K.; van Kooten, T.G.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J.; Rochford, E.T. Current developments in antimicrobial surface coatings for biomedical applications. Curr. Med. Chem. 2015, 22, 2116–2129. [Google Scholar] [CrossRef] [Green Version]
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Standards Organization: Geneva, Switzerland, 2011.
- Fu, E.; McCue, K.; Boesenberg, D. Chemical disinfection of hard surfaces—Household, industrial and institutional settings. In Handbook for Cleaning/Decontamination of Surfaces; Johansson, I., Somasundaran, P., Eds.; Elsevier Science B.V: Amsterdam, The Netherlands, 2007; pp. 573–592. [Google Scholar] [CrossRef]
- Ioannou, C.J.; Hanlon, G.W.; Denyer, S.P. Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 296–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Y.; Niu, L.N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.L. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Medrano-Félix, A.; Martínez, C.; Castro-del Campo, N.; León-Félix, J.; Peraza-Garay, F.; Gerba, C.P.; Chaidez, C. Impact of prescribed cleaning and disinfectant use on microbial contamination in the home. J. Appl. Microbiol. 2011, 110, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Gozzelino, G.; Tobar, D.E.; Chaitiemwong, N.; Hazeleger, W.; Beumer, R. Antibacterial activity of reactive quaternary ammonium compounds in solution and in nonleachable coatings. J. Food Prot. 2011, 74, 2107–2112. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef]
- Fazlara, A.; Ekhtelat, M. The disinfectant effects of benzalkonium chloride on some important foodborne pathogens. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 23–29. [Google Scholar]
- Makvandi, P.; Jamaledin, R.; Jabbari, M.; Nikfarjam, N.; Borzacchiello, A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent. Mater. J. 2018, 34, 851–867. [Google Scholar] [CrossRef]
- Ramzi, A.; Oumokhtar, B.; Ez Zoubi, Y.; Filali Mouatassem, T.; Benboubker, M.; El Ouali Lalami, A. Evaluation of antibacterial activity of three quaternary ammonium disinfectants on different germs isolated from the hospital environment. BioMed Res. Int. 2020, 2020, 6509740. [Google Scholar] [CrossRef]
- Shtyrlin, N.V.; Sapozhnikov, S.V.; Galiullina, A.S.; Kayumov, A.R.; Bondar, O.V.; Mirchink, E.P.; Isakova, E.B.; Firsov, A.A.; Balakin, K.V.; Shtyrlin, Y.G. Synthesis and antibacterial activity of quaternary ammonium 4-deoxypyridoxine derivatives BioMed Res. Int. 2016, 2016, 3864193. [Google Scholar] [CrossRef] [Green Version]
- Reichel, M.; Schlicht, A.; Ostermeyer, C.; Kampf, G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect. Dis. 2014, 14, 292. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G. Sterilization and disinfection. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 529–548. [Google Scholar] [CrossRef]
- Villapún, V.M.; Dover, L.G.; Cross, A.; González, S. Antibacterial metallic touch surfaces. Materials 2016, 9, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorchuk, B.S.; Reimer, S.L.; Beniac, D.R.; Hiebert, S.L.; Booth, T.F.; Wuzinski, M.; Funk, B.E.; Milner, K.A.; Cartwright, N.H.; Doucet, A.N.; et al. Antiseptic quaternary ammonium compound tolerance by gram-negative bacteria can be rapidly detected using an impermeant fluorescent dye-based assay. Sci. Rep. 2020, 10, 20543. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Pascall, M.A. Reduction in microbial survival on food contact surfaces by a spray coated polymerized quaternary ammonium compound. Food Sci. Nutr. 2020, 8, 2472–2477. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Muriana, P.M. Efficacy of a next generation quaternary ammonium chloride sanitizer on Staphylococcus and Pseudomonas biofilms and practical application in a food processing environment. Appl. Microbiol. 2021, 1, 89–103. [Google Scholar] [CrossRef]
- Chauret, C.P. Sanitization. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 360–364. Available online: https://www.sciencedirect.com/science/article/pii/B9780123847300004079 (accessed on 10 February 2023).
- Siedenbiedel, F.; Tiller, J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers 2012, 4, 46–71. [Google Scholar] [CrossRef] [Green Version]
- Lootjens, J.A. Quaternary ammonium compounds. In Biomaterials Associated Infection; Moriarty, T., Zaat, S., Busscher, H., Eds.; Springer: New York, NY, USA, 2013; pp. 379–404. [Google Scholar] [CrossRef]
- Asri, L.; Crismaru, M.; Roest, S.; Chen, Y.; Ivashenko, O.; Rudolf, P.; Tiller, J.C.; van der Mei, H.C.; Loontjens, T.J.A.; Busscher, H.J.B. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium-compounds tethered on hyperbranched polyurea and its mechanism of action. Adv. Funct. Mater. 2014, 24, 346–355. [Google Scholar] [CrossRef]
- Ellingson, K.D.; Pogreba-Brown, K.; Gerba, C.P.; Elliott, S.P. Impact of a novel antimicrobial surface coating on health care-associated infections and environmental bioburden at 2 urban hospitals. Clin. Infect. Dis. 2020, 71, 1807–1813. [Google Scholar] [CrossRef]
- Colquhoun, J.M.; Rather, P.N. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 253. [Google Scholar] [CrossRef]
- Achinas, S.; Charalampogiannis, N.; Euverink, G.J. A brief recap of microbial adhesion and biofilms. Appl. Sci. 2019, 9, 2801. [Google Scholar] [CrossRef] [Green Version]
- Butot, S.; Baert, L.; Zuber, S. Assessment of antiviral coatings for high-touch surfaces by using human Coronaviruses HCoV-229E and SARS-CoV-2. Appl. Environ. Microbiol. 2021, 87, e0109821. [Google Scholar] [CrossRef]
- Molling, J.W.; Seezink, J.W.; Teunissen, B.E.; Muijrers-Chen, I.; Borm, P.J. Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe. Nanotechnol. Sci. Appl. 2014, 7, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P. Dietary factors, hormesis and health. Ageing Res. Rev. 2008, 7, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouda, K.; Iki, M. Beneficial effects of mild stress (hormetic effects): Dietary restriction and health. J. Physiol. Anthropol. 2010, 29, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ding, S.; Yu, J.; Chen, X.; Lei, Q.; Fang, W. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir 2015, 31, 12161–12169. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Hung, Y.-C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Food Safety Initiative. Chemicals in Food Hygiene. Volume 1. Available online: https://mygfsi.com/wp-content/uploads/2019/09/Chemicals-in-Food-Hygiene-Volume-1.pdf (accessed on 10 February 2023).
- Global Food Safety Initiative. Chemicals in Food Hygiene. Volume 2. Available online: https://mygfsi.com/wp-content/uploads/2019/09/Chemicals-in-Food-Hygiene-Volume-2.pdf (accessed on 10 February 2023).
- Van Bruijnsvoort, M.; Rooselaar, J.; Stern, A.G.; Jonker, K.M. Determination of residues of quaternary ammonium disinfectants in food products by liquid chromatography-tandem mass spectrometry. J. AOAC Int. 2004, 87, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bento de Carvalho, T.; Barbosa, J.B.; Teixeira, P. Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination. Biology 2023, 12, 669. https://doi.org/10.3390/biology12050669
Bento de Carvalho T, Barbosa JB, Teixeira P. Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination. Biology. 2023; 12(5):669. https://doi.org/10.3390/biology12050669
Chicago/Turabian StyleBento de Carvalho, Teresa, Joana Bastos Barbosa, and Paula Teixeira. 2023. "Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination" Biology 12, no. 5: 669. https://doi.org/10.3390/biology12050669
APA StyleBento de Carvalho, T., Barbosa, J. B., & Teixeira, P. (2023). Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination. Biology, 12(5), 669. https://doi.org/10.3390/biology12050669