Heteroresistance of Mycobacterium tuberculosis in the Sputum Detected by Droplet Digital PCR
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sputum Sample Collection
2.2. Sample Processing
2.3. Nucleic Acid Extraction
2.4. Detection of Heteroresistance Associated with Point Mutation in the katG Gene at Codon 315 and the rpoB Gene at Codon 531
2.5. Designing Primers and Probes for ddPCR to Detect Mutation
2.5.1. Mutation Detection Assay for katG S315T
2.5.2. Mutation Detection Assay for rpoB S531L
2.6. ddPCR System and Its Reaction Conditions
2.7. Limit of Detection (LOD)
2.8. Data Analyses
3. Results
= (3.5 CPM × 20 µL/3 µL) × 3 µL × (8232 ng/12.5 ng)
= 46,099.2 copies
= 46,099.2 copies/2500 µL
= 18.44 CPM (MT)
= (742 CPM × 20 µL/3 µL) × 3 µL × (8232 ng/12.5 ng)
= 9,773,030.4 copies
= 9,773,030.4 copies/2500 µL
= 3909.21 CPM (WT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Tuberculosis Report. 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 10 November 2022).
- Global Tuberculosis Report. 2019. Available online: https://www.who.int/publications-detail-redirect/9789241565714 (accessed on 9 January 2023).
- World Health Organization. Global Tuberculosis Report 2013; World Health Organization: Geneva, Switzerland, 2013; ISBN 92-4-156465-2. [Google Scholar]
- The Costly Burden of Drug-Resistant TB Disease in the U.S. | Fact Sheets | Newsroom | NCHHSTP | CDC. Available online: https://www.cdc.gov/nchhstp/newsroom/fact-sheets/tb/costly-burden-drug-resistant.html (accessed on 8 December 2022).
- Zhang, Y.; Yew, W.-W. Mechanisms of Drug Resistance in Mycobacterium Tuberculosis: Update 2015. Int. J. Tuberc. Lung Dis. 2015, 19, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Prakash, P.; Singh, S.K.; Anupurba, S. Rapid Genotypic Detection of RpoB and KatG Gene Mutations in Mycobacterium Tuberculosis Clinical Isolates from Northern India as Determined by MAS-PCR. J. Clin. Lab. Anal. 2013, 27, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Moaddab, S.R.; Farajnia, S.; Kardan, D.; Zamanlou, S.; Alikhani, M.Y. Isoniazid MIC and KatG Gene Mutations among Mycobacterium Tuberculosis Isolates in Northwest of Iran. Iran. J. Basic Med. Sci. 2011, 14, 540–545. [Google Scholar]
- Espasa, M.; González-Martín, J.; Alcaide, F.; Aragón, L.M.; Lonca, J.; Manterola, J.M.; Salvadó, M.; Tudó, G.; Orus, P.; Coll, P. Direct Detection in Clinical Samples of Multiple Gene Mutations Causing Resistance of Mycobacterium Tuberculosis to Isoniazid and Rifampicin Using Fluorogenic Probes. J. Antimicrob. Chemother. 2005, 55, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadri, H.; Farahani, A.; Mohajeri, P. Frequency of Mutations Associated with Isoniazid-Resistant in Clinical Mycobacterium Tuberculosis Strains by Low-Cost and Density (LCD) DNA Microarrays. Ann. Trop. Med. Public Health 2016, 9, 307. [Google Scholar] [CrossRef]
- Ahmad, S.; Mokaddas, E. Contribution of AGC to ACC and Other Mutations at Codon 315 of the KatG Gene in Isoniazid-Resistant Mycobacterium Tuberculosis Isolates from the Middle East. Int. J. Antimicrob. Agents 2004, 23, 473–479. [Google Scholar] [CrossRef]
- Tracevska, T.; Jansone, I.; Broka, L.; Marga, O.; Baumanis, V. Mutations in the RpoB and KatG Genes Leading to Drug Resistance in Mycobacterium Tuberculosis in Latvia. J. Clin. Microbiol. 2002, 40, 3789–3792. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, F.B.; Guthrie, J.L.; Neemuchwala, A.; Lastovetska, O.; Melano, R.G.; Mehaffy, C. Profiling of RpoB Mutations and MICs for Rifampin and Rifabutin in Mycobacterium Tuberculosis. J. Clin. Microbiol. 2014, 52, 2157–2162. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and Clinical Relevance of Bacterial Heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Pholwat, S.; Stroup, S.; Foongladda, S.; Houpt, E. Digital PCR to Detect and Quantify Heteroresistance in Drug Resistant Mycobacterium Tuberculosis. PLoS ONE 2013, 8, e57238. [Google Scholar] [CrossRef]
- Sedlak, R.H.; Cook, L.; Cheng, A.; Magaret, A.; Jerome, K.R. Clinical Utility of Droplet Digital PCR for Human Cytomegalovirus. J. Clin. Microbiol. 2014, 52, 2844–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, J.; Jerome, K.R. Applications of Digital PCR for Clinical Microbiology. J. Clin. Microbiol. 2017, 55, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
- Handbook on Tuberculosis Laboratory Diagnostic Methods in the European Union—Updated 2018. Available online: http://ecdc.europa.eu/en/publications-data/handbook-tuberculosis-laboratory-diagnostic-methods-european-union-updated-2018 (accessed on 18 April 2019).
- Aung, Y.W.; Faksri, K.; Sangka, A.; Tomanakan, K.; Namwat, W. Detection of Mycobacterium Tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting Mpt64. Pathogens 2023, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Bulletin_6311.Pdf. Available online: http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6311.pdf (accessed on 9 March 2017).
- Jones, M.; Williams, J.; Gärtner, K.; Phillips, R.; Hurst, J.; Frater, J. Low Copy Target Detection by Droplet Digital PCR through Application of a Novel Open Access Bioinformatic Pipeline, ‘Definetherain’. J. Virol. Methods 2014, 202, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO | Global Tuberculosis Report. 2017. Available online: http://www.who.int/tb/publications/global_report/en/ (accessed on 4 June 2018).
- Bollela, V.R.; Namburete, E.I.; Feliciano, C.S.; Macheque, D.; Harrison, L.H.; Caminero, J.A. Detection of KatG and InhA Mutations to Guide Isoniazid and Ethionamide Use for Drug-Resistant Tuberculosis. Int. J. Tuberc. Lung Dis. 2016, 20, 1099. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Cao, L.; Ren, X.; Hu, J.; Tavengana, G.; Wu, H.; Zhou, Y.; Fu, Y.; Jiang, M.; Wen, Y. The Mutation Rate of RpoB Gene Showed an Upward Trend with the Increase of MIRU10, MIRU39 and QUB4156 Repetitive Number. BMC Genom. 2023, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 92-4-156564-0. [Google Scholar]
- Ismail, N.A.; Mvusi, L.; Nanoo, A.; Dreyer, A.; Omar, S.V.; Babatunde, S.; Molebatsi, T.; van der Walt, M.; Adelekan, A.; Deyde, V.; et al. Prevalence of Drug-Resistant Tuberculosis and Imputed Burden in South Africa: A National and Sub-National Cross-Sectional Survey. Lancet Infect. Dis. 2018, 18, 779–787. [Google Scholar] [CrossRef]
- Chien, J.-Y.; Chen, Y.-T.; Wu, S.-G.; Lee, J.-J.; Wang, J.-Y.; Yu, C.-J. Treatment Outcome of Patients with Isoniazid Mono-Resistant Tuberculosis. Clin. Microbiol. Infect. 2015, 21, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Barnard, M.; Albert, H.; Coetzee, G.; O’Brien, R.; Bosman, M.E. Rapid Molecular Screening for Multidrug-Resistant Tuberculosis in a High-Volume Public Health Laboratory in South Africa. Am. J. Respir. Crit. Care Med. 2008, 177, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Rinder, H.; Mieskes, K.T.; Löscher, T. Heteroresistance in Mycobacterium Tuberculosis. Int. J. Tuberc. Lung Dis. 2001, 5, 339–345. [Google Scholar]
- Hofmann-Thiel, S.; van Ingen, J.; Feldmann, K.; Turaev, L.; Uzakova, G.T.; Murmusaeva, G.; van Soolingen, D.; Hoffmann, H. Mechanisms of Heteroresistance to Isoniazid and Rifampin of Mycobacterium Tuberculosis in Tashkent, Uzbekistan. Eur. Respir. J. 2009, 33, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | DR-TB *, n (%) | Drug-Susceptible TB, n (%) | Total, n (%) |
---|---|---|---|
Type of TB | |||
TB | 0 (0.0%) | 70 (100.0%) | 70 (88.6%) |
INH mono-resistant TB | 1 (11.1%) | 0 (0.0%) | 1 (1.3%) |
RIF mono-resistant TB | 5 (55.6%) | 0 (0.0%) | 5 (6.3%) |
MDR-TB | 3 (33.3%) | 0 (0.0%) | 3 (3.8%) |
katG at codon 315 | |||
Detected | 4 (44.4%) | 0 (0.0%) | 4 (5.1%) |
Not detected | 5 (55.6%) | 70 (100.0%) | 75 (94.9%) |
rpoB at codon 531 | |||
Detected | 8 (88.9%) | 0 (0.0%) | 8 (10.1%) |
Not detected | 1 (11.1%) | 70 (100.0%) | 71 (89.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, Y.W.; Faksri, K.; Sangka, A.; Tomanakan, K.; Namwat, W. Heteroresistance of Mycobacterium tuberculosis in the Sputum Detected by Droplet Digital PCR. Biology 2023, 12, 525. https://doi.org/10.3390/biology12040525
Aung YW, Faksri K, Sangka A, Tomanakan K, Namwat W. Heteroresistance of Mycobacterium tuberculosis in the Sputum Detected by Droplet Digital PCR. Biology. 2023; 12(4):525. https://doi.org/10.3390/biology12040525
Chicago/Turabian StyleAung, Ye Win, Kiatichai Faksri, Arunnee Sangka, Kanchana Tomanakan, and Wises Namwat. 2023. "Heteroresistance of Mycobacterium tuberculosis in the Sputum Detected by Droplet Digital PCR" Biology 12, no. 4: 525. https://doi.org/10.3390/biology12040525
APA StyleAung, Y. W., Faksri, K., Sangka, A., Tomanakan, K., & Namwat, W. (2023). Heteroresistance of Mycobacterium tuberculosis in the Sputum Detected by Droplet Digital PCR. Biology, 12(4), 525. https://doi.org/10.3390/biology12040525