An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies
Abstract
:Simple Summary
Abstract
1. Introduction
- In Metazoa, how generally do proliferative cells and organisms exhibit the Warburg effect?
- Do high rates of proliferation result in lactate formation or are alternative pathways used to reoxidize NADH?
- Why is NADH not reoxidized using the entire electron transport chain with oxygen as a terminal electron acceptor?
2. A Closer Look at Anaerobic Metabolism in Eukaryotes
2.1. Eukaryotic Metabolism
2.2. Warburg Effect
2.3. One Ring to Rule Them All
3. New Model Organisms
3.1. Model Systems for Genetics
3.2. Model Systems for Proliferation
3.3. Anaerobic Metabolism in Cnidarians
4. Do Cnidarians Have Anaerobic Mitochondria? A Bioinformatic Approach
Anaerobic Metabolism in Cnidarians
5. Experimental Approach to Clarifying the Warburg Effect
5.1. Model Choice
5.2. Expected Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.M.R. Cancer metabolism: The Warburg effect today. Exp. Mol. Pathol. 2010, 89, 372–380. [Google Scholar] [CrossRef]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Lunt, S.Y.; Vander Heiden, M.G. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27, 441–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect-dual metabolic nature of cancer cells. Sci. Rep. 2014, 4, 4927. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Potter, M.; Newport, E.; Morten, K.J. The Warburg effect: 80 years on. Biochem. Soc. Trans. 2016, 44, 1499–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.F.; Tielens, A.G.M.; Mentel, M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes; De Gruyter: Berlin, Germany, 2021; p. 251. [Google Scholar]
- Bryant, C. (Ed.) Metazoan Life Without Oxygen; Chapman and Hall: New York, NY, USA, 1991; p. 291. [Google Scholar]
- Müller, M.; Mentel, M.; van Hellemond, J.J.; Henze, K.; Woehle, C.; Gould, S.B.; Yu, R.-Y.; van der Giezen, M.; Tielens, A.G.M.; Martin, W.F. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef] [Green Version]
- Steffens, L.; Pettinato, E.; Steiner, T.M.; Mall, A.; König, S.; Eisenreich, W.; Berg, I.A. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 2021, 592, 784–788. [Google Scholar] [CrossRef]
- Livingstone, D.R. Invertebrate and vertebrate pathways of anaerobic metabolism: Evolutionary considerations. J. Geol. Soc. 1983, 140, 27–37. [Google Scholar] [CrossRef]
- Linsmayer, L.B.; Deheyn, D.D.; Tomanek, L.; Tresguerres, M. Dynamic regulation of coral energy metabolism throughout the diel cycle. Sci. Rep. 2020, 10, 19881. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Lautens, M.; Romanelli-Cedrez, L.; Wang, J.; Schertzberg, M.R.; Reinl, S.R.; Davis, R.E.; Shepherd, J.N.; Fraser, A.G.; Salinas, G. Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. eLife 2020, 9, e56376. [Google Scholar] [CrossRef] [PubMed]
- Lautens, M.J.; Tan, J.H.; Serrat, X.; Del Borrello, S.; Schertzberg, M.R.; Fraser, A.G. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl. Trop. Dis. 2021, 15, e0009991. [Google Scholar] [CrossRef] [PubMed]
- Lane, N. Transformer: The Deep Chemistry of Life and Death; Norton: New York, NY, USA, 2022; p. 390. [Google Scholar]
- Wang, Y.; Stancliffe, E.; Fowle-Grider, R.; Wang, R.; Wang, C.; Schwaiger-Haber, M.; Shriver, L.P.; Patti, G.J. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol. Cell 2022, 82, 3270–3283.e9. [Google Scholar] [CrossRef]
- Blackstone, N.W. Energy and Evolutionary Conflict: The Metabolic Roots of Cooperation; Springer Nature: Cham, Switzerland, 2022; p. 124. [Google Scholar]
- Roca, F.J.; Whitworth, L.J.; Prag, H.A.; Murphy, M.P.; Ramakrishnan, L. Tumor necrosis factor induces pathogenic mito-chondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376, 1431. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? Cambridge University Press: Cambridge, UK, 1944; p. 194. [Google Scholar]
- Morowitz, H.J. Beginnings of Cellular Life; Yale University Press: New Haven, CT, USA, 1992; p. 195. [Google Scholar]
- de Duve, C. Life Evolving; Oxford University Press: Oxford, UK, 2002; p. 341. [Google Scholar]
- Holmes, F.L. Manometers, tissue slices, and intermediary metabolism. In The Right Tools for the Job; Clarke, A.E., Fujimura, J.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 151–171. [Google Scholar]
- Blackstone, N.W. A food’s-eye view of the transition from basal metazoans to bilaterians. Integr. Comp. Biol. 2007, 47, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Blackstone, N.W.; Bridge, D.M. Model systems for environmental signaling. Integr. Comp. Biol. 2005, 45, 605–614. [Google Scholar] [CrossRef]
- Mitman, G.; Fausto-Sterling, A. Whatever happened to Planaria? C. M. Child and the physiology of inheritance. In The Right Tools for the Job; Clarke, A.E., Fujimura, J.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 172–197. [Google Scholar]
- Blackstone, N.W. Charles Manning Child (1869–1954): The past, present, and future of metabolic signaling. J. Exp. Zool. Part B Mol. Dev. Evol. 2006, 306, 1–7. [Google Scholar] [CrossRef]
- Blackstone, N.W. Morphological, physiological, and metabolic comparisons of runner-like and sheet-like inbred lines of a colonial hydroid. J. Exp. Biol. 1998, 201, 2821–2831. [Google Scholar] [CrossRef]
- Rutherford, L.; Thuesen, E. Metabolic performance and survival of medusae in estuarine hypoxia. Mar. Ecol. Prog. Ser. 2005, 294, 189–200. [Google Scholar] [CrossRef] [Green Version]
- DeSalle, R.; Schierwater, B. Invertebrate Zoology: A Tree of Life Approach; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Del Borrello, S.; Lautens, M.; Dolan, K.; Tan, J.H.; Davie, T.; Schertzberg, M.R.A.; Spensley, M.; Caudy, A.A.; Fraser, A.G. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway. eLife 2019, 8, e48165. [Google Scholar] [CrossRef]
- Michels, H.; Seinstra, R.I.; Uitdehaag, J.C.M.; Koopman, M.; van Faassen, M.; Martineau, C.N.; Kema, I.P.; Buijsman, R.; Nollen, E.A.A. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase. Sci. Rep. 2016, 6, 39199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Frerman, F.E.; Kim, J.-J.P. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc. Natl. Acad. Sci. USA 2006, 103, 16212–16217. [Google Scholar] [CrossRef] [Green Version]
- El Rahmany, W.S. Nutrient Scarcity and Cellular Cooperation in a Clonal Hydroid. Master’s Thesis, Northern Illinois University, DeKalb, IL, USA, 2022. [Google Scholar]
- Bumann, D.; Buss, L.W. Nutritional physiology and colony form in Podocoryna carnea (Cnidaria: Hydrozoa). Invertebr. Biol. 2008, 127, 368–380. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Chance, B.; Castor, L.N. Some Patterns of the Respiratory Pigments of Ascites Tumors of Mice. Science 1952, 116, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Skejo, J.; Garg, S.G.; Gould, S.B.; Hendriksen, M.; Tria, F.D.K.; Bremer, N.; Franjević, D.; Blackstone, N.W.; Martin, W.F. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol. Evol. 2021, 13, evab096. [Google Scholar] [CrossRef]
Species 1 | COQ-2 Residues 2 | MEV-1 Residue | TDO-2 Residue | ETFDH Residue |
---|---|---|---|---|
Caenorhabditis elegans | L204; S243 | G71 | P133 | F437 |
Homo sapiens | F; A | I | A | C |
Hydra vulgaris | L; A | G | P | F |
Nematostella vectensis (sea anemone) | L; S | G | P | F |
Exaiptasia pallida (sea anemone) | F; A | G | P | F |
Actinia tenebrosa (sea anemone) | M; A | G | P | F |
Diadumene lineata (sea anemone) | M; A | - | - | F |
Xenia sp. Carnegie-2017 (soft coral) | I; A | I | A | F |
Dendronephthya gigantea (soft coral) | F; A | G | S | F |
Orbicella faveolate (hard coral) | F; A | I | P | F |
Stylophora pistillata (hard coral) | F; A | I | P | F |
Acropora millepora (hard coral) | F; A | I | P | F |
Acropora digitifera (hard coral) | F; A | I | P | F |
Pocillopora damicornis (hard coral) | F; A | - | P | F |
Blastomussa wellsi (hard coral) | F; A | - | - | F |
Montipora capitata (hard coral | F; A | - | - | F |
Galaxea fascicularis (hard coral) | F; A | - | - | F |
Haliclystus octoradiatus (stalked jellyfish) | M; A | - | - | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blackstone, N.W.; El Rahmany, W.S. An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies. Biology 2023, 12, 502. https://doi.org/10.3390/biology12040502
Blackstone NW, El Rahmany WS. An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies. Biology. 2023; 12(4):502. https://doi.org/10.3390/biology12040502
Chicago/Turabian StyleBlackstone, Neil W., and Weam S. El Rahmany. 2023. "An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies" Biology 12, no. 4: 502. https://doi.org/10.3390/biology12040502
APA StyleBlackstone, N. W., & El Rahmany, W. S. (2023). An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies. Biology, 12(4), 502. https://doi.org/10.3390/biology12040502