Genome-Wide Association Study of Growth and Sex Traits Provides Insight into Heritable Mechanisms Underlying Growth Development of Macrobrachium nipponense (Oriental River Prawn)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Population and Collection of Phenotype
2.2. Isolation of DNA and SNP Calling
2.3. Genome-Wide Association Analyses
2.4. Statistical Test
3. Results
3.1. Phenotype and Genotype, SNP Calling and Quality Control
3.2. Genome-Wide Association Analysis
3.3. Correlation Analysis among Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Sun, J.; Zhao, S.; Wang, H.; Zeng, Q. Transcriptome analysis of oriental river Prawn (Macrobrachium nipponense) Hepatopancreas in response to ammonia exposure. Fish Shellfish. Immunol. 2019, 93, 22–3231. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Sagi, A.; Ra’Anan, Z.; Zohar, G. Production of Macrobrachium rosenbetgii in momosex population: Yield characteristes under intensive monoculture conditions in cages. Aquaculture 1986, 51, 265–275. [Google Scholar]
- Rodjaroen, S.; Thongprajukaew, K.; Jaihao, P.; Saekhow, S.; Nuntapong, N.J.A.R. Mixed feeding schedules switching between dietary crude protein levels for mono-sex male Nile tilapia (Oreochromis niloticus). Aquac. Rep. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, M.; Qi, P.P.; Chang, L.Y.; Wang, T.; Hu, C.H.; Lu, Z.Y.; Fan, Q.X.; Shen, Z.G. High temperature-induced masculinization in yellow catfish Tachysurus fulvidraco: A potential approach for environmental-friendly mono-sex production. Aquaculture 2021, 534, 736263. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.B.; Wang, G.L.; Guan, T.Y.; Zhu, C.K.; Li, J.L.; Wang, H. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. Ecotoxicol. Environ. Saf. 2021, 224, 112651. [Google Scholar] [CrossRef]
- Mohammad, E.; Hossein, H. Impact of different dietary lutein levels on growth performance, biochemical and immuno-physiological parameters of oriental river prawn (Macrobrachium nipponense). Fish Shellfish. Immunol. 2021, 115, 86–94. [Google Scholar]
- Liu, B.; Wang, H.; Jiang, Z.; Qin, W.; Zhou, C.; Huang, X.; Huang, Y.; Ren, Q. Identification of four spätzle genes (MnSpz1, MnSpz2, MnSpz2-isoform, and MnSpz3) and their roles in the innate immunity of Macrobrachium nipponense. Dev. Comp. Immunol. 2021, 126, 104254. [Google Scholar] [CrossRef]
- Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.W.; Fan, H.Z.; Chang, T.P.; Xu, L.Y.; Zhang, W.G.; Song, Y.X.; Zhu, B.; Zhang, L.P.; Gao, X.; Chen, Y.; et al. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Sci. Rep. 2017, 7, 42048. [Google Scholar] [CrossRef] [Green Version]
- Zöllner, S.; Teslovich, T.M. Using GWAS Data to Identify Copy Number Variants Contributing to Common Complex Diseases. Stat. Sci. 2009, 24, 530–546. [Google Scholar] [CrossRef] [Green Version]
- Gerasimova, A.; Chavez, L.; Li, B.; Seumois, G.; Greenbaum, J.; Rao, A.; Vijayanand, P.; Peters, B. Predicting Cell Types and Genetic Variations Contributing to Disease by Combining GWAS and Epigenetic Data. PLoS ONE 2013, 8, e54359. [Google Scholar] [CrossRef] [PubMed]
- Phani, N.M.; Vohra, M.; Adhikari, P.; Nagri, S.K.; Shashikiran, U.; D’Souza, S.C.; Kalluri, P.R.R.; Satyamoorthy, K.; Rai, P.S. Genetic Variants Identified from GWAS for Predisposition to Type 2 Diabetes Predict Sulfonylurea Drug Response. Curr. Mol. Med. 2017, 17, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Bonney, G.E. Regressive Logistic Models for Familial Disease and Other Binary Traits. Biometrics 1986, 42, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Fritsche, L.G.; Mukherjee, B.; Kim, S.; Lee, S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am. J. Hum. Genet. 2020, 107, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Wedderburn, R. Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika 1974, 61, 439–447. [Google Scholar]
- Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, C.; Conomos, M.P.; Stilp, A.M.; Li, Z.; Sofer, T.; Szpiro, A.A.; Chen, W.; Brehm, J.M.; Celedón, J.C.; et al. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. Am. J. Hum. Genet. 2016, 98, 653–666. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Nielsen, J.B.; Fritsche, L.G.; Dey, R.; Gabrielsen, M.E.; Wolford, B.N.; LeFaive, J.; VandeHaar, P.; Gagliano, S.A.; Gifford, A.; et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018, 50, 1335–1341. [Google Scholar] [CrossRef]
- Dai, X.; Fu, G.; Zhao, S.; Zeng, Y. Statistical Learning Methods Applicable to Genome-Wide Association Studies on Unbalanced Case-Control Disease Data. Genes 2021, 12, 736. [Google Scholar] [CrossRef]
- Gregersen, P.K.; Diamond, B.; Plenge, R.M. GWAS implicates a role for quantitative immune traits and threshold effects in risk for human autoimmune disorders. Curr. Opin. Immunol. 2012, 24, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrock, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2017, 7, e30619. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.; Richard, D. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, 10295. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 2014, 11, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Lilin, Y.; Haohao, Z.; Zhenshuang, T.; Jingya, X.; Dong, Y.; Zhiwu, Z.; Xiaohui, Y.; Mengjin, Z.; Shuhong, Z.; Xinyun, L.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated tool for Genome-Wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Budd, A.; Banh, Q.; Domingos, J.; Jerry, D. Sex Control in Fish: Approaches, Challenges and Opportunities for Aquaculture. JMSE 2015, 3, 329–355. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Kaiqiang, L.; Bo, F.; Zhihua, Z.; Renkai, W.; Lili, T.; Wensheng, L.; Qiye, L.; Francesc, P.; Changwei, S. Transcriptome of Gonads From High Temperature Induced Sex Reversal During Sex Determination and Differentiation in Chinese Tongue Sole, Cynoglossus semilaevis. Front. Genet. 2019, 10, 1128. [Google Scholar]
- Yuning, Z.; Sufei, J.; Hui, Q.; Yiwei, X.; Hongtuo, F.; Wenyi, Z.; Yongsheng, G.; Shubo, J.; Yan, W. Transcriptome analysis of five ovarian stages reveals gonad maturation in female Macrobrachium nipponense. BMC Genom. 2021, 22, 510. [Google Scholar]
- Jin, S.B.; Fu, H.T.; Jiang, S.F.; Xiong, Y.W.; Qiao, H.; Zhang, W.Y.; Gong, Y.S.; Wu, Y. Identification of androgenic gland microRNA and their target genes to discover sex-related microRNA in the oriental river prawn, Macrobrachium nipponense. Genet. Mol. Res. GMR 2015, 14, 18396–18406. [Google Scholar] [CrossRef] [PubMed]
- Junpeng, Z.; Hongtuo, F.; Hui, Q.; Shubo, J.; Wenyi, Z.; Sufei, J.; Yongsheng, G.; Yiwei, X. Expression and functional analysis of cathepsin L1 in ovarian development of the oriental river prawn, Macrobrachium nipponense. Aquac. Rep. 2021, 20, 100724. [Google Scholar]
- Zhang, S.; Jiang, S.; Xiong, Y.; Fu, H.; Sun, S.; Qiao, H.; Zhang, W.; Jiang, F.; Jin, S.; Gong, Y. Six chitinases from oriental river prawn Macrobrachium nipponense: cDNA characterization, classification and mRNA expression during post-embryonic development and moulting cycle. Comp. Biochem. Physiol. Part B 2014, 167, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Wenchao, Y.; Junyu, L.; Feng, Y.; Yawei, S.; Shihai, G.; Yisha, L.; Wenzhu, P.; Yi, W.; Yang, G.; Qizhen, X.; et al. Heritability and genetic correlation for residual feed intake of Pacific abalone Haliotis discus hannai. Aquaculture 2022, 553, 738060. [Google Scholar]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Campos, G.D.L.; Vazquez, A.I.; Fernando, R.; Klimentidis, Y.C.; Sorensen, D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013, 9, 1–15. [Google Scholar]
- Cantor, R.M.; Lange, K.; Sinsheimer, J.S. Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application. Am. J. Hum. Genet. 2010, 86, 6–22. [Google Scholar] [CrossRef] [Green Version]
- Stranger, B.E.; Stahl, E.A.; Raj, T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 2011, 187, 367–383. [Google Scholar] [CrossRef] [Green Version]
- Christoforou, A.; Dondrup, M.; Mattingsdal, M.; Mattheisen, M.; Giddaluru, S.; Nöthen, M.M.; Rietschel, M.; Cichon, S.; Djurovic, S.; Andreassen, O.A.; et al. Linkage-Disequilibrium-Based Binning Affects the Interpretation of GWASs. Am. J. Hum. Genet. 2012, 90, 727–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Traits | Mean | S.D. |
---|---|---|
BW | 0.62 | 0.24 |
RMY | 0.20 | 0.08 |
LB | 6.89 | 1.15 |
LH | 9.30 | 1.50 |
CC | 16.69 | 1.73 |
LFL | 7.29 | 0.84 |
BL | 22.09 | 4.69 |
HW | 6.73 | 1.02 |
TW | 5.58 | 0.77 |
LP | 5.38 | 0.73 |
Items | Before Quality Control | After Quality Control | Numbers of SNP |
---|---|---|---|
Female | 100 | 81 | |
Male | 100 | 100 | |
Total | 200 | 181 | 7793 |
Trait | CHR | Position | Allele1 | Allele2 | AC_Allele2 | AF_Allele2 | BETA | −log10P | SNP Heritability (Sum = 0.7557) | Trait Heritability |
---|---|---|---|---|---|---|---|---|---|---|
Sex | 4 | 15720532 | G | T | 60 | 0.1657 | −1.7731 | 6.2737 | 0.0702 | 0.8998 |
4 | 16854185 | A | T | 38 | 0.1050 | −2.1512 | 6.6487 | 0.0774 | ||
4 | 77983121 | T | C | 64 | 0.1768 | −1.8135 | 6.7215 | 0.0757 | ||
7 | 1196691 | C | A | 57 | 0.1575 | −1.6184 | 5.2299 | 0.0569 | ||
17 | 1354721 | A | G | 19 | 0.0525 | −2.3820 | 5.6057 | 0.0537 | ||
17 | 8735782 | G | A | 19 | 0.0525 | −2.3616 | 5.4769 | 0.0528 | ||
17 | 10806722 | C | T | 31 | 0.0856 | −2.5689 | 9.1268 | 0.0944 | ||
17 | 15732561 | G | A | 25 | 0.0691 | −2.4986 | 7.5556 | 0.0749 | ||
17 | 17405758 | G | A | 24 | 0.0663 | −2.4491 | 6.9668 | 0.0695 | ||
17 | 17406275 | C | A | 43 | 0.1188 | 2.4573 | 10.0919 | 0.1102 | ||
17 | 21052671 | G | A | 32 | 0.0884 | −2.5772 | 9.3536 | 0.0974 |
Traits | SNPs | Delta | Estimated h2 | Sum_SNP_h2 |
---|---|---|---|---|
BW | 1 | 0.62 | 0.99 | 0.91 |
RMY | 0 | 0.20 | 0.99 | |
LB | 0 | 6.89 | 0.52 | |
LH | 4 | 21.25 | 0.45 | 0.10 |
CC | 0 | 16.69 | 0.55 | |
LFL | 0 | 7.30 | 0.36 | |
BL | 13 | 23.79 | 0.16 | 0.23 |
HW | 0 | 6.73 | 0.71 | |
TW | 0 | 5.58 | 0.50 | |
LP | 0 | 5.38 | 0.55 |
Traits | CHR | Allele1 | Allele2 | Position | AF | BETA | p-Value |
---|---|---|---|---|---|---|---|
BW | 13 | C | G | 102638935 | 0.017 | 4.51 × 10−1 | 5.69 × 10−7 |
LH | 8 | A | G | 72682480 | 0.019 | 3.14 × 102 | 3.13 × 10−14 |
11 | T | G | 1293551 | 0.011 | 2.61 × 102 | 3.13 × 10−6 | |
25 | T | G | 11413511 | 0.011 | 2.66 × 102 | 1.85 × 10−6 | |
25 | A | C | 13704879 | 0.011 | 2.70 × 102 | 1.27 × 10−6 | |
BL | 11 | T | G | 1293707 | 0.014 | 6.01 × 101 | 6.76 × 10−9 |
22 | T | G | 39519561 | 0.017 | 5.17 × 101 | 6.75 × 10−8 | |
22 | A | G | 39519603 | 0.02 | 4.46 × 101 | 5.99 × 10−7 | |
25 | A | T | 15146598 | 0.017 | 5.45 × 101 | 1.07 × 10−8 | |
25 | C | T | 15146607 | 0.02 | 4.58 × 101 | 2.85 × 10−7 | |
29 | T | A | 70883628 | 0.014 | 6.17 × 101 | 2.59 × 10−9 | |
31 | A | G | 6678099 | 0.023 | 3.82 × 101 | 5.71 × 10−6 | |
32 | T | A | 2639350 | 0.014 | 6.25 × 101 | 1.53 × 10−9 | |
32 | A | T | 2639352 | 0.014 | 6.25 × 101 | 1.53 × 10−9 | |
37 | G | A | 40580067 | 0.017 | 5.25 × 101 | 3.93 × 10−8 | |
38 | T | C | 41076945 | 0.011 | 7.60 × 101 | 2.25 × 10−11 | |
40 | T | C | 26373891 | 0.011 | 7.62 × 101 | 2.37 × 10−11 | |
48 | T | C | 5097901 | 0.011 | 7.83 × 101 | 1.02 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Jin, S.; Liu, S.; Fu, H.; Zhao, Y.; Jiang, L. Genome-Wide Association Study of Growth and Sex Traits Provides Insight into Heritable Mechanisms Underlying Growth Development of Macrobrachium nipponense (Oriental River Prawn). Biology 2023, 12, 429. https://doi.org/10.3390/biology12030429
Wang M, Jin S, Liu S, Fu H, Zhao Y, Jiang L. Genome-Wide Association Study of Growth and Sex Traits Provides Insight into Heritable Mechanisms Underlying Growth Development of Macrobrachium nipponense (Oriental River Prawn). Biology. 2023; 12(3):429. https://doi.org/10.3390/biology12030429
Chicago/Turabian StyleWang, Mengchao, Shubo Jin, Shuai Liu, Hongtuo Fu, Yunfeng Zhao, and Li Jiang. 2023. "Genome-Wide Association Study of Growth and Sex Traits Provides Insight into Heritable Mechanisms Underlying Growth Development of Macrobrachium nipponense (Oriental River Prawn)" Biology 12, no. 3: 429. https://doi.org/10.3390/biology12030429
APA StyleWang, M., Jin, S., Liu, S., Fu, H., Zhao, Y., & Jiang, L. (2023). Genome-Wide Association Study of Growth and Sex Traits Provides Insight into Heritable Mechanisms Underlying Growth Development of Macrobrachium nipponense (Oriental River Prawn). Biology, 12(3), 429. https://doi.org/10.3390/biology12030429