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Abstract: At present, aquaculture is the fastest growing sector of animal food production 

and holds great potential as a sustainable solution for world food security. The ability to 

control sex is one of the most important factors for the commercialisation and efficient 

propagation of fish species, due to influences on reproduction, growth and product quality. 

Accordingly, there is a large body of research that targets sexual development  

in commercially important species in an attempt to understand and control fish sex and 

reproductive function. In this review, we provide an introduction to sex determination and 

differentiation in fish, including the genetic, epigenetic and environmental factors that can 

influence fish sex ratios. We also summarise the major approaches used to control sex in fish 

and discuss their application in commercially important species. Specifically, we discuss the 

use of exogenous steroid hormones, chromosome ploidy, environmental manipulations, sex-

linked genetic markers, selection for altered sex ratios, and transgenics and comment on the 

challenges associated with controlling sex in a commercial environment.  

Keywords: sex ratio; reproductive control; triploidy; hormonal manipulation; epigenetics; 

environment; QTL 
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1. Introduction 

Sex control is one of the most important and highly targeted areas of aquaculture research due to 

influences on husbandry management, productivity and economics. Without the ability to regulate sexual 

differentiation, maturation, and reproduction, farmers have little control over breeding processes, both 

in the hatchery and throughout grow-out. Arguably, in aquaculture species that have become global 

commodities, control over sex and reproduction has been the primary facilitator for large-scale industrial 

production. In species that are yet to reach industrial scale production, elucidation of sex differentiation 

and improved reliability of reproduction remains a key area of applied research. 

The Need for Sex Control 

Several broad goals in aquaculture can be reached through a better understanding of sex control. 

These include: (i) prevention of precocious maturation and uncontrolled reproduction (e.g., in tilapia); 

(ii) the desire to farm monosex populations due to differences in growth rate and economic value  

of the sexes (e.g., tilapia, shrimp); (iii) reducing the impact of phenotypic sex on product quality  

(e.g., Atlantic salmon, oysters); (iv) increasing stability of mating systems (e.g., sex change in groupers) 

and (v)) environmental and/or intellectual property protection (e.g., non-indigenous species, or 

genetically improved strains). The relative importance of each of these goals depends upon the 

reproductive biology and culture system of the species concerned.  

Precocious maturation occurs in several farmed species including Nile tilapia (Oreochromis niloticus) [1], 

freshwater crayfish (Cherax destructor) [2] and Atlantic salmon (Salmo salar), which have a tendency 

to sexually mature and reproduce before attaining a body size that is suitable for harvest. This precocious 

maturation leads to slow growth as energy is diverted into reproduction, creates large variance in product 

size at harvest and results in overpopulation of ponds and, therefore, an inability to control animal densities 

and feeding rates. Furthermore, deterioration in flesh quality is often observed in female Atlantic salmon 

as they reach sexual maturity through the diversion of energy (e.g., lipids) towards reproductive processes 

resulting in differences in economic value between males and females [3]. The desire to farm monosex 

populations may also be provoked by sex-specific growth rates. Male Nile tilapia, for example, grow 

faster and have lower feed conversion rates than females [4], while female Kuruma prawns (Penaeus 

japonicus) are generally larger than males at the time of harvest [5]. As a result, farmers have adopted 

both manual (e.g., hand sexing and selective removal) and/or various technological (e.g., exogenous 

hormone treatment, chromosome ploidy manipulation, molecular tools, or hybridisation) approaches to 

produce monosex populations for culture (Table 1). 
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Table 1. Common approaches used to manipulate sex in aquaculture fishes. 

Approach Technique Purpose Representative example species 

Hormonal manipulation 
Administration of exogenous 
hormones (e.g., 17β-estradiol,  

11-α-methyltestosterone) 
Monosex  

Atlantic cod, Gadus morhua [6]  
Nile tilapia (Oreochromis niloticus) [7] 

 
Administration of aromatase 

inhibitor (e.g., Fadrozole) 
Monosex  

Nile tilapia (Oreochromis niloticus) [8]  
Honeycomb grouper (Epinephelus merra) [9] 

Hybridisation Cross breeding Monosex 
Tilapia (O. aurea x O. niloticus) [10]  

Bass (Morone saxatilis x M. mississippiensis) [11] 

Chromosome Ploidy Gynogenetics Monosex Rainbow trout (Oncorhynchus mykiss) [12] 

 Triploidy Sterility  Atlantic salmon (Salmo salar) [13,14] 

Envionmental manipulation Manipulation of social factors 
Production of male 

broodstock 
Orange-spotted grouper (Epinephelus coioides) [15] 

 
Temperature treatment during 

gonadal differentiation 
Monosex populations European Seabass (Dicentrarchus labrax) [16–18] 

Selection Marker assisted selection (MAS) Monosex populations 
Nile tilapia (Oreochromis niloticus) [19,20]  

Turbot (Scophthalmus maximus) [21] 
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An ability to control sex and breeding is also important for hatcheries in order to produce seedstock, 

particularly if the purpose is reliable production of specific family combinations for selective breeding. 

Many fishes such as Atlantic salmon, rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus 

punctatus) can be reliably dry stripped to obtain eggs and sperm, which are subsequently mixed in buckets 

to produce fertilized eggs. This ability to strip spawn fish allows for easy creation of large numbers of 

either half- or full-sib families, depending on the mating design. However, in many other aquaculture species, 

strip spawning is inadequate for industrial scale production, and accordingly, natural reproduction is relied 

upon. Barramundi (Lates calcarifer) (also known as Asian seabass), for example, is a mass-spawning, 

sequential protandrous (male to female sex-changing) hermaphroditic species farmed throughout  

South-East Asia and Australia. In this species, female broodstock are extremely valuable due both to the 

maintenance and extensive holding time until a fish changes sex (approximately 4 or more years of age), 

as well as the high fecundity of female barramundi (2–32 million eggs depending on size; [22]). 

Although there are published accounts of dry-stripping in this species [23], industry has not adopted this 

approach due to unpredictable timing of sperm hydration and final maturation of eggs, as well as the risk 

of egg rupture and or damage to blood vessels in the ovary leading to septicemia in females used for 

repeated spawning [24]. As a result, hormonally induced natural mating is practiced in this species. In 

other species, such as sex-changing marine groupers (Epinephelus spp.), optimal, stable sex ratios are 

difficult to maintain in mating tanks due to the dependence of sexual differentiation on an individual’s 

position within social hierarchies. For example, a fish that was introduced to a mating tank as a male 

may sex revert into a female, depending on its relative dominance in the tanks existing social  

hierarchy [25,26]. In the case of grouper, stability of males in mating groups is achieved by implants 

containing methyl-testosterone [27]. 

Given the importance of sex control to aquaculture production, the intent of this review is to introduce 

the major approaches currently adopted by farmers in the endeavor to have control over sexual differentiation, 

maturation and breeding in commercially farmed fish, as well as to highlight some of the challenges in 

controlling sex within a commercial aquaculture environment. Several excellent reviews on sex 

determination and differentiation in fish have previously been published (see [28–34] for further 

reading), we begin with a brief introduction.  

2. Sex Determination and Differentiation in Fish 

Sex determination and differentiation in fish is an evolutionarily diverse and highly plastic developmental 

process [33]. Such diversity leads to great challenges when trying to develop a general understanding of 

sex in fish. At the individual or species level, however, heightened plasticity of sexual phenotypes can 

lead to increased opportunity for sex control, which is particularly important for farmed fish. In many 

species, the sex of an individual is subject to modification by external factors, such as environmental 

temperature, which can interact with hormonal, genetic and/or epigenetic regulatory pathways to alter 

fish sexual development [35].  

The term sex determination can be used to describe the genetic or environmental cue(s) that ultimately 

govern the sex of an individual [30]. For example, in most mammals, inheritance of the Y chromosome 

determines that an individual will develop as male [36]. In many reptiles, however, temperatures experienced 

during embryonic development, rather than genetic factors, provide the sex-determining cue. Sexual 
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differentiation, on the other hand, can refer to the physical realisation of sex determination cues, and 

largely pertains to the development of the testicular or ovarian tissues (e.g., phenotypic sex) that follows 

on from a sex-determining cue [30]. In some cases, processes of sex determination and gonadal 

differentiation may partially overlap and, as a result, the terms are often used interchangeably [28,34]. 

This is especially evident in teleost fish, in which the molecular mechanisms of sexual development are 

evolutionarily plastic, and require complex regulatory pathways that are governed by genetic factors 

(genetic sex determination; GSD), environmental cues (environmental sex determination; ESD), or on 

an interaction between the two (genotype x environment interactions; GxE) [37]. 

2.1. Genetic Factors Involved in Fish Sex Determination and Differentiation 

Genetic sex determination can be grouped into two broad categories: Chromosomal sex determination 

(CSD), where sex is governed by the inheritance of sex-related genes located on specific chromosomes 

(i.e., the sex chromosomes), or polygenic sex determination (PSD) in which sex determining genes are 

distributed throughout the entire chromosome complement, although major genetic effects are found in 

most cases. In fish, CSD can include both male (XX/XY) and female (ZZ/ZW) heterogamety, similar to 

that seen in mammals and birds. Some fish species, however, have undergone a loss of the derived 

chromosome (termed X0 or Z0) as in the Chilean galaxiid (Galaxias platei) [38], while others demonstrate 

translocations or fusions of sex chromosomes with autosomes (X1X1X2X2/X1X2Y) as in the wolf fish 

(Hoplias malabaricus) [39], or even exhibit multiple, fully derived chromosomes (WXZ) as in the 

swordtail platyfish (Xiphophotus maculates) [30]. In the majority of fish species, however, sex 

chromosomes are weakly differentiated, with only 7% of species showing sex-associated chromosome 

heteromorphisms [28,40]. Whilst this lack of chromosomal differentiation is suggestive of a high 

occurrence of PSD in fish, there are very few examples in which this has been experimentally demonstrated. 

These include the southern platyfish (Xiphophorus maculatus) [41], domesticated zebrafish [42] and 

likely the European seabass [43]. The lack of heteromorphism between sex chromosomes of fish may 

instead be explained by the inability of traditional cytogenetic techniques to identify small scale differences, 

such as the inversions and deletions in the Y chromosome of threespine sticklebacks (Gasterosteus 

aculeatus) [44], or the single SNP variation between X and Y chromosomes in the tiger puffer fish 

(Takifugu rubripes) [45]. Furthermore, whilst domesticated zebrafish are thought to exhibit PSD, sex 

chromosomes have been identified in their wild counterparts, indicating a loss, which has occurred in 

less than 100 generations [46]. This illustrates the rapid evolutionary turnover of sex determination systems 

in fish, and is an important consideration for the domestication of farmed populations.  

The sex determining genes themselves may be considered as either upstream “master” switches, or 

downstream differentiators, depending on their relative roles in sex determination and/or differentiation. 

Whilst it appears that in mammals, the master sex determining gene, sex determining region-Y (SRY), 

appears relatively ubiquitous, master sex-determining genes in fish show huge variety [34]. Six master 

sex-determining genes have been isolated in fish thus far, including PG17: DM-domain gene on the Y 

chromosome (dmY), the major testis-determining factor in the Japanese medaka (Oryzias latipes)  

(XX-XY) [47,48] anti-Müllerian hormone (amhY) and anti-Müllerian hormone receptor, type II (amhr2) 

in the Patagonian pejerrey (Odentesthes hatchery) [49,50] and tiger puffer fish [45], respectively, 

gonadal somatic cell derived factor (gsdf) in the Luzon ricefish (Oryzias luzonensis) [51], sexually 
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dimorphic on the Y-chromosome gene (sdY) in the rainbow trout [52] and finally SRY-related HMG-Box 

gene 3 (sox3) in the medaka (Oryzias dancena) [53]. Many of these master sex determining genes are 

thought to have been “up-recruited” from the network of downstream genes involved more specifically 

in gonadal differentiation [35]. As a general model for non-mammalian vertebrates, male sex 

differentiation can be achieved through up-regulation of a highly conserved transcription factor, 

doublesex and mab-3 related transcription factor 1 (dmrt1), which acts in combination with transcription 

factor sox-9 (sox9) to promote testis formation [54,55]. Alternatively, female sex differentiation is 

stimulated by cytochrome P450 aromatase (cyp19a) through a positive feedback loop involving the 

female-associated transcription factor known as forkhead box protein L2 (foxl2) [31,56]. Cyp19a 

encodes for gonadal aromatase, which catalyses the conversion of androgens into estrogens and is 

thought to play a pivotal role in sex differentiation and sex change in fish [31]. Other genes, such as  

r-spondin 1 (rspo) and wnt-signalling protein (wnt) in the ovary, as well as amh and gsdf in the testis, 

are thought to play roles in β-catenin and TGF-β signaling pathways, respectively, to promote sexual 

differentiation and subsequent gonadal development. Precisely how these genes interact to coordinate 

gonadal development, particularly in the ovaries, remains a major question of sex differentiation and is 

likely a reflection of the variability in their relative roles between species [34,57,58].  

2.2. Epigenetic Mechanisms Involved in Fish Sex Determination and Differentiation 

Recently it has been proposed that epigenetic mechanisms play an important role in sex determination 

and differentiation in fish and other vertebrates [59]. Epigenetics is a rapidly expanding field that investigates 

changes in gene function that cannot be explained by changes in the DNA sequence [60]. These changes 

largely act to enable or inhibit the activity of transcriptional machinery on the DNA to regulate patterns 

of gene expression and can be influenced by environmental stimuli, such as temperature [61]. It is becoming 

increasingly obvious that, in many fish, differences between the sexes cannot be fully explained by 

differences in the genes alone, particularly in cases where sex ratio shifts occur in response to temperature, 

but also in serial and sequential hermaphrodites. Epigenetic modifications may be a key mechanism 

allowing for interactions between the environment and sex determination and differentiation processes 

in fish [16,59,62] (see also section 3.3 Environmental Manipulations and Opportunities for Sex Control).  

2.3. Environmental Factors Involved in Fish Sex Determination 

In contrast to GSD, true environmental sex determination (ESD) does not rely on sexual dimorphism 

at the genomic level [42]. This is because the major determinant of sex is not genetic, but environmental. 

The best-known environmental determinant of sex is temperature and has been well studied in reptiles 

that exhibit temperature dependant sex determination (TSD). In fish, the first definitive evidence for the 

effect of environmental temperature on sex differentiation was reported in the Atlantic silverside 

(Menidia menidia), a species which shows TSD characteristics both in the wild and in captivity [63]. 

TSD is also thought to exist in the high-potential South American aquaculture species, the Patagonian 

pejerrey, where high temperature treatments can be used to achieve all male populations [64]. In most fish, 

however, even the application of extreme temperature treatment rarely produces monosex populations. 

What is more commonly seen is an incomplete shift in the sex ratio towards either the male or female 

phenotype [65]. For example in the European seabass (Dicentrarchus labrax) temperature treatments  
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of 20 °C and 15 °C can be applied to achieve 73% male and 77% female populations, respectively [66]. 

In such cases, genotype is thought to be inhibiting complete control of the sex differentiation pathway 

by external factors, indicating that both genomic and environmental factors (GxE) contribute to sex 

determination, likely through epigenetic modifications to the DNA. The fine line between TSD and GSD 

+ temperature effects (GSD+TE) in fish necessitates careful consideration of the ecological relevancy of 

temperature manipulations when attempting to classify fish sex determination systems [65]. For farmed fish, 

however, temperature treatments that are considered to be ecologically irrelevant can still provide 

important information towards the development of methods for sex control [32]. 

2.4. Sex Reversal and the Labile Period 

Sensitivity to environmental factors in fish allows for sexual reversal, a phenomenon whereby phenotypic 

sex no longer corresponds to genotypic sex following experimental manipulation. For example, a 

temperature treated fish with ZW chromosomes (genotypically female) may exhibit testis formation as 

well as other male-specific secondary sexual characteristics (phenotypically male) [62]. The type and 

timing of treatments that are able to induce sexual reversal vary greatly between species. For example, 

treatments influencing sex determination and differentiation in fish include temperature, pH, density, 

exogenous hormone treatment, social factors, or a combination of these. Furthermore, there is a discrete 

time period during development, often referred to as the labile period (also sensitive window or period), 

during which the gonad undergoes differentiation towards the male or female state [32]. Often temperature, 

hormone or other treatments become ineffective following this period of differentiation, once the gonads 

have become established and sex is stabilised [65,67]. In the case of naturally sex-changing fish the 

gonads can remain responsive to either endogenous or exogenous stimuli well into adulthood. For 

example, social cues transmitted along the brain-pituitary-gonadal axis are thought to stimulate adult sex 

change in many species of reef fish [68,69]. Information on the specific cues able to influence sexual 

development, as well as knowledge of the timing of gonadal development and the labile period, allows 

for the most accurately timed and therefore effective treatments in a given species. 

As the list of master sex determining genes isolated from different fish species grows, and we become 

more aware of the complexity of the genes in the downstream network and their interaction with the 

environment, it is becoming increasingly more apparent that in order to develop appropriate intervention 

and control strategies for sex in farmed fish, species-specific studies will be necessary. By targeting the 

specific developmental time periods, or environmental cues to which fish are most sensitive, such 

intervention can reduce the production liability of uncontrolled sex processes. 

3. Approaches Used to Manipulate Sex in Farmed Fish 

Given the complexity and variability in sex-determination and differentiation mechanisms in fish, 

there is no single approach that has proven effective in the manipulation of sex in all species. Rather sex 

control has relied on several major approaches including the addition of exogenous hormones, chromosomal 

ploidy manipulation, hybridisation (not discussed further, see [70] for a recent review), varying 

environmental and social parameters, and selection for sex ratios using a molecular and/or quantitative 

genetic approach (summarised in Figure 1).  
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Figure 1. Generalised model of targeted developmental time periods for applying strategies 

to manipulate sex in farmed fish. Screening of quantitative trait loci (QTL) and marker 

assisted selection (MAS) is used to identify broodstock that will produce the desired sex ratio 

in offspring; chromosome (ploidy) manipulation to produce triploids takes place usually within 

30 min of fertilisation; temperature treatments are generally best applied prior to the onset 

or during sex differentiation; hormonal treatments are most often applied during the period 

of sex differentiation, but, in some species, may remain effective throughout juvenile and 

adult stages; manipulation of social hierarchies are often undertaken during adult sex change 

(* only occurs in some fish), but can also be effective during the period of sexual differentiation 

of sex changing fish, or gonochoristic species where stocking density is important. 

3.1. The Use of Exogenous Hormones and Other Chemicals to Control Sex 

Of the external factors known to control fish sexual development, administration of exogenous sex 

hormones is the most frequently utilized approach due to ease of application at a commercial scale and 

consistency in producing monosex populations. Sex steroids (i.e., those steroid hormones that are known 

to interact with androgen and estrogen receptors) are of critical importance to the natural process of 

phenotypic sex differentiation, thus providing the basis for the administration of exogenous sex steroids 

to alter sex ratios in farmed fish [71]. The first successful effort to artificially induce sex reversal was 

achieved in the medaka, through the administration of estrogens and androgens to sexually undifferentiated 

fish, and resulted in both functional females and males, respectively [72,73]. Following these early 

experiments, similar treatments have been applied to a variety of fish species demonstrating that, using 

sex steroid therapy, it is possible to alter the normal course of sex differentiation in fish towards the desired 

gonadal phenotype [74]. For instance, the addition of exogenous androgens, such as 17-α-methyltestosterone, 

has proven effective in the masculinization of genetically female fish in approximately 35 species [74,75]. 

Furthermore, hormonal treatments are not only effective in species which do not appear to possess GSD 

(e.g., the honeycomb grouper (Epinephelus merra) [74,76], red-spotted grouper (E. akaara) [77], barramundi 
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(Lates calcarifer) [78], but has also proven an effective treatment in species with clear chromosomal 

sex-determination systems (e.g., Atlantic salmon [79], Nile tilapia [7], rainbow trout [80] and Atlantic 

cod (Gadus morhua) [6]). The effect of introducing exogenous hormones prior to and during the course 

of sex differentiation in fish is considered successful if their addition can override normal (genetic or 

environmental) sex determination pathways to achieve the desired phenotypic sex. 

3.1.1. Principles of Exogenous Hormones and Other Chemicals Application for Sex Control 

Control of sex differentiation through the administration of hormones is generally achieved through 

the exposure of sexually undifferentiated fish to an appropriate dosage of exogenous sex steroids. 

Yamamoto [71] highlighted that for effective sex reversal sex steroids should be given prior to any sign 

of gonadal differentiation, and at a dosage relevant to both the species treated and the nature and/or 

potency of the steroid. Yamamoto [71] further recommended that hormone administration be maintained 

until after the time when normal sex differentiation occurs. In general, fish are much more sensitive to 

the effects of steroid treatment during the labile period, when the gonads are undifferentiated [81,82]. 

The timing of this period is variable both within and between species. For example, the labile period for 

estrogen treatment in the masu salmon (Oncorhynchus masou) is from 5 to 22 days post-hatch (dph) [83], 

while in coho salmon (Oncorhynchus kisutch) it is between 8 days pre-hatch and 13 dph [84]. Furthermore, 

the differentiation period of fish destined to be female often precedes that of males (because the onset of 

ovarian development happens earlier than testicular differentiation), such as eight days prior to hatching and 

6 dph in coho salmon [84], 20 dph and 42 dph in the African catfish (Clarias gariepinus) [85], and 19 and 

90 dph in channel catfish, (Ictalurus punctatus) [86] for ovarian and testicular development, respectively. 

Whilst hormonal treatments performed during the labile period require the minimum steroid dosage and 

treatment duration to produce the desired phenotypic gender [87], this does not necessarily imply that 

fish cannot be successfully sex-reversed by hormonal treatment outside this period [83,88]. In the case 

of European seabass [89] and the chum salmon (O. keta), the gonad is responsive to exogenous steroids 

outside the period of gonadal differentiation, and well beyond the labile period [83]. Nevertheless, such 

treatments require higher doses of hormones and longer treatment times than those that are administered 

during the labile period in order to successfully reverse gonadal sex.  

In addition to the use of sex steroids to feminize or masculinise fish, other chemically induced  

sex reversal strategies are available. Among these, the use of aromatase inhibitors, such as Fadrozole, 

are commonly applied to induce sex change in fish. Aromatase inhibitors work by either irreversibility 

deactivating the aromatase enzyme (which converts androgens to estrogens), or through competitive 

exclusion of aromatase to receptors in estrogen producing cells. Administration of Fadrozole has proven 

successful in inducing complete sex reversal of genetic females into phenotypic males in Nile tilapia [8,90], 

olive flounder (Paralichthys olivaceus) [91] and honeycomb grouper [9]. In adult female honeycomb 

grouper, Fadrozole implanted at 10 mg·kg−1 body weight resulted in reversion of the ovaries into testes, 

which produced sperm capable of fertilization after two and a half months treatment [9].  

Administration of aromatase inhibitors or steroid hormones to control sex in fish can occur through 

several routes, including direct injection of the agent into the muscle or body cavity of the fish, or more 

commonly, direct immersion into culture water containing the agent, or as a dietary supplement [92]. 

The advantages and limitations of these methods have been discussed previously by Pandian and Sheela [74] 
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and Beardmore et al. [75]. Due to simplicity of administration and applicability at a commercial scale, 

adding exogenous hormones via dietary supplementation is one of the most common techniques for sex 

reversal in aquaculture. Here, the hormone is dissolved into an evaporative solvent and added to the feed, 

which fish consume as part of their normal diet. The addition of hormones and chemicals to the feed has 

proven an effective strategy to produce 100% mono-sex populations [82,93,94], however, there are some 

limiting factors to this approach. These include degradation of hormone during storage or as part of the 

fishes normal digestive progress, variability in dosage among individuals due to non-uniformity and 

concentration of the hormone in the feed and behavioural hierarchies among fish that influence feeding 

rate and lead to differences in how much of the hormone in the diet fish may actually ingest. Whilst 

administration of sex-changing agents in the feed is routinely used for many species, for those species 

in which the gonadal labile period occurs before first feed (such as during embryogenesis, or in yolk sac 

larvae like most of the egg-laying salmonids [30]) immersion in water containing sex steroids offers an 

effective alternative. Immersion of coho salmon larvae with 400 μg/L of estradiol-17P for a period of  

2 h results in clutches comprising 97% females [95]. For species in which the labile period is prolonged 

from embryogenesis to post-hatch, such as rainbow trout, multiple doses of steroids have been demonstrated 

more effective than a single dose [84,96].  

3.1.2. Challenges to the Use of Hormones and Other Chemicals in Controlling Sex 

Despite successful application in numerous aquaculture species, sex reversal of fish by hormonal 

administration manipulation should be undertaken with caution to prevent any adverse effects in the fish 

produced, to the farmers themselves and consumers, or to the environment. For example, hormonal 

overdoses or unnecessary long duration of treatments may induce deformities, or even skew sex ratios 

toward the non-target sex [75,93]. Within hatcheries, the use of hormones requires careful handling to 

avoid adverse effects on human health and hormone-laden water needs to be disposed of properly to limit 

environmental impacts. There are also consumer health concerns, particularly in cases where hormones 

are directly applied to fish destined for harvest (i.e., not broodfish). In Europe, the application of hormones 

to commercial grow-out food fish is prohibited (with Directive 96/22/EC and Directive 2003/74/EC [97,98]), 

although the use of hormones to sex reverse broodfish is legal. To circumvent some of the legal, 

environmental and consumer issues associated with the use of sex steroids in fish, new chemicals to 

induce sex inversion that are regarded as safer (such as trenbolone acetate, 17α-methyldihydrotestosreone or 

neuroendocrine controlling substances) are being investigated [99]. 

3.2. Chromosome Ploidy Manipulation and Sex Control 

Manipulation of chromosome-set ploidy levels (also referred to as whole genome manipulation) has 

been one of the most researched approaches to control sex in aquaculture species and, in several species, 

is routinely applied to commercial production (reviewed in [3,100–103]). Chromosome ploidy manipulation 

relies on the application of physical or chemical “shocks” to interfere with the normal developmental 

processes of gametogenesis and early post-fertilization. Depending on when these external shocks are 

applied, individuals that are haploid (n), triploid (3n), or tetraploid (4n) can be produced, as compared 

to the normal diploid (2n) somatic cell chromosome set number. Whilst there has been a body of research 

on producing mono-sex individuals with only a maternally (gynogens) or paternally (androgens) derived 
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set of chromosomes, these techniques have had little direct impact on the production of commercial 

aquaculture stocks. Rather, most efforts have been focused towards the production of triploids and 

tetraploids. Triploids are desired in aquaculture due to an inability of homologous chromosomes to pair 

equally in gametogenesis and the organism effectively becomes sterile. Other benefits often associated 

with this gonadal sterility include delays in secondary sexual maturation characteristics, along with 

improved flesh quality and post-pubertal body growth [3]. In contrast, tetraploids are not sterile and can 

produce viable 2n gametes. Tetraploids are produced for sole use as broodstock to cross with normal 

diploids to produce 100% interploid triploids, as is common in tilapia (Oreochromis spp.) [104]. 

3.2.1. Principles of Triploidy Induction in Fish 

When fish oocytes are released from the ovary they are arrested at the metaphase stage of meiosis II. 

Here, homologous chromosomes have been replicated, but the second process of chromosomal partitioning 

to bring the gamete to the haploid state has not occurred. Meiosis then remains arrested until after the 

egg is fertilized by the entry of a spermatozoon [105]. Therefore, at the time of fertilization the oocyte 

still contains two pairs (2n) of homologous maternal chromosomes. Immediately post-fertilization, entry 

of the sperm causes osmotic and ionic changes leading to the resumption of meiosis II, whereby the 

oocyte packages up the second set of maternal chromosomes into a vesicle called a polar body which 

carries the additional set of maternal chromosomes out of the nucleus. This means, that for a few minutes, 

the now fertilized fish zygote contains three sets of chromosomes (3n), one paternal and two maternal. 

Physical (e.g., temperature, pressure) or chemical (e.g., 6-dimethylaminopurine, cytochalasin B, caffeine) 

extrinsic shocks applied after fertilization and at the time of recommencement of meiosis II can disrupt 

this process of polar body extrusion resulting in retention of the second set of maternal chromosomes. 

From this point the embryo develops through the normal process of mitotic division and embryogenesis 

with all its cells containing three sets of chromosomes (3n). Triploids can also be produced in some 

species through the initial production of tetraploid broodstock and then subsequent crossing with 

diploids (see [3,106] for examples). 

3.2.2. Uses of Triploids in Aquaculture Production 

The production and use of triploids in aquaculture has been extensively summarised in [3], where 

triploids from at least 49 commercial species have been produced. However, despite this large number 

of species the routine commercial use of this approach to control sex and achieve other production 

benefits is a lot lower, with the technique largely commercially restricted to use for various salmonids 

(S. salmo, Oncorhyncuus rhodurus, O. masou) and trout (O. mykiss, S. trutta, Salvelinus fontinalis), Artic 

charr (Salvelinus alpinus), grass carp (Ctenopharyngodon idella), loach (Misgurnus anguillicaudatus), 

ayu (Plecoglossus altivelis), edible oysters (Crassostrea gigas, C. virginica, Saccostrea commercialis) 

and tilapia [88].  

3.2.3. Advantages of Triploidy Induction in Controlling Sex 

The major advantage to farmers in the culture of triploids is their sterility. This is because during 

meiosis the trivalent homologous chromosomes cannot pair correctly during prophase I [107]. 
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Associated with this chromosomal sterility is a severe impairment of pubertal gonad development and 

subsequent reproductive maturation. In females this retardation of ovarian development and maturation 

is usually greater than in the male testes due to the post-meiotic process of vitellogenesis in oocytes. 

Consequently, ovaries remain quiescent and generally are smaller in triploid individuals [108]. One 

example of where triploidy is routinely applied to induce sterility is that of grass carp (C. idella) in North 

America. Here, meiotic triploidy induction is used as a reproductive containment approach to produce 

fish that are sterile and can therefore be safely stocked into canals for weed control without the concern 

that this non-native species will establish feral populations [109]. Triploidy to prevent precocious and 

uncontrolled reproduction was also investigated initially in blue (O. aureus) and Nile tilapia  

(O. niloticus) [110–114]. However, due to technical difficulties in producing 100% triploids in the field, 

the use of sex-reversal through addition of hormones (see Section 3.1) to produce YY “supermales” and 

their subsequent use to produce mono-sex XY males has become a more reliable solution to the problem 

of uncontrolled reproduction in tilapia. 

Triploidy may also delay the onset of puberty, which has further advantages to aquaculture production. 

The first is that the onset of puberty will result in reallocation of energy resources away from somatic 

growth and towards gonad maturation, gamete production and spawning specific-sexual behaviours. In 

some species, like Atlantic cod, feed conversion efficiency and intake may decrease with the onset of 

puberty. The result of these two processes is that specific growth rates may significantly decrease once 

puberty is reached and can be further reduced if spawning occurs (e.g., Atlantic cod may lose up to 25% 

of their somatic body weight through a single spawning season [115,116]). During immature reproductive 

phases, diploids and triploids often grow at the same rate, however, in many species once normal maturation 

age is reached triploids outgrow their diploid counterparts (but not always, see [3,101]). Triploid Atlantic 

salmon, rainbow trout, Nile tilapia, channel catfish, turbot (Scophthamus maximus), for example, all exhibit 

higher growth rates after the onset of normal puberty than diploids. An added advantage in those species 

where females are more desired and the sex ratio is skewed in this direction is that females outgrow 

triploid males [3]. Puberty and sexual maturation also may influence flesh composition through the depletion 

of lipids, proteins and pigments such as the carotenoid, astaxhanthin. For example, in Atlantic salmon, 

pre-pubertal fish exhibit higher lipid stores than in sexually mature fish, while the fillet is depleted for 

lipids, proteins and astaxhanthin post-maturation [117]. Finally, delaying and/or preventing sexual 

maturation may have an influence on reproductive behaviours that often lead to antagonistic and 

territorial encounters, although in an aquaculture context there is limited evidence for such alterations. 

Garner et al., [118] found that triploid chinook salmon (O. hynchus tshawytscha) exhibited a slightly less 

aggressive feeding behaviour than diploids, although this did not result in any discernible differences  

in growth. 

3.2.4. Challenges of Producing Triploids 

Whilst farming of triploids is often seen as a panacea to control sex in fish, there are several challenges 

with commercial application of the approach, thus having limited adoption. Besides the obvious challenge 

of obtaining newly fertilized eggs within minutes of spawning and before extrusion of the second polar 

body (difficult in some mass spawning species like barramundi and snappers (Sparus spp.)), to ensure 

100% triploidy it is essential to interfere with polar body extrusion in all oocytes. Inducing 100% triploids 
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as routine practice is, therefore difficult at commercial scales because often there is intra-specific family 

variability in the timing of polar body extrusion and/or oocyte sensitivity to intensity and duration of the 

environmental shock applied [119]. The timing, intensity/duration and best mode of shock is species-specific 

and in fishes to achieve 100% triploidy treatments have to cover the entire duration of polar body II 

extrusion and be of a sufficient magnitude to disrupt extrusion of the polar body. Thus protocols need to 

be individually optimized and precise in their application, as variation often leads to decreased percentages 

of triploidy induction success [120,121]. For instance, Piferrer, et al. [122] investigated the effects of 

cold shock timing and duration on induction of triploidy in turbot. A cold shock commencing at 5 min 

post-fertilisation (PF) and a duration of 20 min produced 92% triploid turbot, whereas cold shock starting 

at 6.5 min PF with 25 min duration produced only 83% triploids.  

A further challenge in the commercial use of triploids for sex control is that often triploids exhibit 

lower survival, higher rates of deformities and reduced pre-pubertal growth than diploids, although this 

again is species-specific. As examples, triploid common carp (Cyrpinus carpio) had only a 70% survival 

rate and 85% of the growth as that of diploid controls [123], while all-female triploid Atlantic salmon, 

when reared in saltwater, had a survival rate of 40% compared to 60% of all-female diploids between 

stocking and harvest [13]. 

3.3. Environmental Manipulations and Opportunities for Sex Control 

The influence of genotype by environment interactions on fish sex determination and differentiation 

allows for increased opportunity to alter fish sex ratios via environmental manipulations such as social 

factors, temperature, pH, and density. These manipulations can be used to alter processes of sexual 

differentiation during early development, or encourage sex change in adult hermaphrodite fish.  

3.3.1. The Use of Social Factors to Influence Sex Change in Hermaphrodite Fish 

Social interactions are commonly implicated in the onset of adult sex change in hermaphrodite  

fish [124,125]. Marine groupers are a group of premium aquaculture species, many of which are 

protogynous hermaphrodites (i.e., they mature first as females and later sex change to males). A major 

challenge in establishing viable grouper hatcheries and breeding programs is a shortage of male 

broodstock [15]. Manipulation of social factors provides the possibility to attain males at a younger age. 

For example, to encourage female-to-male sex change in orange-spotted grouper (Epinephelus coioides), 

fish are initially stocked as mature females (~4 months) at low densities, and later transferred to higher 

stocking densities [25]. Social manipulations in E. coioides have not only been shown to influence sex ratios 

in adult fish, but also sexual differentiation in juveniles. By manipulating the number of juveniles reared 

in a single tank, Liu and Sadovy de Mitcheson [15] were able to encourage primary male maturation, with 

39% of experimental juveniles maturing first as males, compared with <5% obtained under  

mariculture conditions.  

3.3.2. The Use of Temperature to Manipulate Sex Ratios 

The effect of temperature on sex ratios in fish has been documented in over 60 species, many of which 

are of commercial importance [30,37,63,65,126]. One of the best-studied examples of this occurs in the 
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European seabass. In this species, farmed populations exhibit strongly male-biased sex ratios whereas 

in wild populations, female biases appear more common [29]. Exposure to high water temperatures 

during the thermosensitive period (0–60 days post-fertilisation) has been shown to produce male-biased 

sex ratios through an epigenetic modification known as DNA-methylation. In this system, DNA methylation 

of the gene encoding gonadal aromatase, cyp19a, is linked to a down regulation in gene expression and 

subsequent masculinisation of genetically female fish [16]. Experimentally, treatments of 20 °C and 15 °C 

can be applied to achieve 73% male and 77% female populations, respectively [66]. Such knowledge of 

thermosensitivity during sexual development in juvenile European seabass offers farmers a practical tool 

to achieve more desirable sex ratios. DNA methylation has also been proposed as the molecular 

mechanism allowing for manipulations of sex ratio in farmed populations of half-smooth tongue sole 

(Cynoglossus semilaevis). This species exhibits a female heterogametic (ZW) chromosomal system, in 

which high water temperature is able to induce ZW males (termed, “pseudomales”) [62]. It was recently 

observed that the promoter of the key testis-determining gene, dmrt1, was hypermethylated and 

downregulated in ZW females, but not in ZW pseudomales, and further, that these epigenetic modifications 

were heritable, as the epigenetic signatures of sex-reversed fish were evident in progeny reared at normal 

temperatures [62]. This new understanding of how temperature influences sex ratio and the underlying 

genetic mechanisms driving these changes has stimulated exciting and innovative research and will likely 

lead to new and/or optimised methods for sex control in cultured species with GSD with temperature effects 

(GSD + TE).  

3.3.3. Other Environmental Factors Affecting Fish Sex Ratios 

In addition to social factors and temperature, there are other factors known to affect sex ratios in fish 

that could be considered when culturing fish. For example, stocking density can strongly influence sexual 

differentiation pathways. This phenomenon is particularly prevalent in Anguillidae spp., a group of 

catadromous eels for which high stocking densities produce a greater number of males [127]. A reduction 

in stocking density is advantageous, however, where this is not economically viable, periodic transfer 

from high to low density can also result in higher proportions of females and increased growth [128]. 

Acidity of culture water may also influence sex ratios. In poeciliids, such as Xiphophorus helleri and Poecilia 

melanogaster, acidic waters resulted in 100% and 90% male populations, respectively [129]. Sensitivity 

to pH is also common in fish, such as cichlids like Apistogramma caetei, where 96% female progenies 

can be achieved at pH 6.5 [130]. More general farming practices must also be considered, for example 

separation of fish by size grade is often used to reduce competition and/or avoid cannibalism. However, 

this procedure can lead to skewed sex ratios because of the strong association between growth and sex 

in some fish [17,131,132].  

3.3.4. Challenges for Environmental Control of Sex in Fish 

There is great diversity in the types of environmental stimuli that influence fish sexual development 

and the effectiveness of these manipulations ranges from monosex population production (as in ESD or 

other highly sensitive species), to only marginal, or sometimes negligible changes in sex ratio (GxE or 

strict GSD). To add to this complexity, the sensitivity of sexual differentiation in a species to a given 

environmental cue is also highly specific [32]. For example, the European seabass is sensitive to temperature, 
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but not pH or density [132], tilapia are sensitive to temperature, but not salinity, density or confinement [32], 

and although not an aquaculture species, zebrafish appear sensitive to a broad range of factors including 

temperature, density and hypoxia [133–136]. An important future challenge for species of commercial 

importance will be to document species-specific characterisations of the environmental stimuli able to 

influence sexual differentiation processes, and further to identify the sensitive period during development 

during which treatments are most effective. Where this is achievable, environmental manipulations 

provide a particularly attractive technique for aquaculture production, as they provide a relatively 

consumer-friendly approach to sex control. 

3.4. Selection for Altered Sex Ratios 

Powerful and ever more accessible genomic approaches have greatly contributed to the rapid discovery 

of genes, gene functions and pathways associated with sex differentiation and maintenance of gonadal 

state in commercially important fish species [34]. The use of next generation sequencing and high throughput 

SNP genotyping technologies have allowed for high-resolution linkage mapping and quantitative trait 

loci (QTL) studies and their potential use in marker assisted selection (MAS) breeding schemes [137]. 

Although identification of sex-specific markers in fishes has traditionally been performed with low 

throughput random amplified polymorphic DNA (RAPD) markers (e.g., sex-specific DNA markers #1 

and #2 from African catfish, Clarias gariepinus, CgaY1 and CgaY2 respectivley [138,139]), high density 

marker genome screening using restriction site associated DNA (RAD) markers are enabling the rapid 

identification of sex-associated loci and the development of sex-specific markers in species with genetically 

determined systems (e.g., Nile tilapia X-linked Oni23063 and Oni28137 SNP markers [140] and Oni3161 in 

linkage group 20 [141]). The recent discovery that the underlying mechanism determining sex in fish 

may not be exclusively related to sex-specific genes (or alleles) themselves, but in fact related to epigenetic 

modifications, has resulted in a broadened perspective of where and how we should be looking at the 

DNA [59]. Nonetheless, the three complimentary fields of genome mapping [142], epigenetics [35] and 

selection for altered sex ratios [143] are likely to deepen our understanding on how to effectively 

manipulate and control sex differentiation in fishes.  

3.4.1. Heritability and Potential for Selection of Altered Sex Ratios 

For selective breeding to be effective, biases in sex ratio in a population must be (i) a quantitative 

genetic trait and (ii) under additive genetic control (heritable). As yet, there is very little information on 

the heritability of sex ratios in most commercial species, and for those species for which data do exist, 

heritability for biased sex ratios has been shown to be nearly 2-fold that of the most selected trait in 

aquaculture, growth (e.g., Nile tilapia: h2
sex = 0.77 vs. h2

weight = 0.31 [19,144], rainbow trout: h2
sex = 0.67 

vs. h2
weight = 0.37 [145,146], European seabass: h2

sex = 0.62 vs. h2
weight = 0.41 [43,147]). These data suggest 

that within a population, individuals are genetically inclined to produce families with either more male, 

or more female offspring. Indeed, trials with Nile tilapia have shown that sex ratio can be selected [20]. 

Male Nile tilapia originating from a family comprised of >90% males produced progeny with equally 

biased sex ratios (85%–100%), regardless of whether they were mated with females from families with 

balanced, or male biased sex ratios [20]. However, selected offspring did not always produce similarly 

biased sex ratios to parents, suggesting that in some cases, the trait was not inherited [148,149]. Wessels 
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and Hörstgen-Schwark [144] later showed that sex ratios may be influenced not by the sex-determining 

genes themselves, but their thermo-sensitivity (because sex ratio in families exhibited changes dependent 

on whether 9 day old progeny were exposed to 36 °C for 10 days). Over three generations of divergent 

selection for a high male line (families with >80% male offspring) and a low male line (families with 

<60% male offspring), Wessels and Hörstgen-Schwark [143] observed changes in the proportion of males 

to 92.7% and 50.4%, respectively. The authors also showed that for sex ratios to be selected for progenies 

must be exposed to temperature treatments during the thermo-sensitive period, suggesting an epigenetic 

mechanism is also at play. Similar results to tilapia have since been found within a single generation of 

rainbow trout [145].  

3.4.2. The Use of Quantitative Trait Loci to Improve Sex Control 

When variable sex ratios within a species exist within a population, or among different families, due 

to both genetic and environmental effects, sex can be regarded as a quantitative threshold trait [43,150]. 

In such instances, QTL mapping can assist in determining the number and effect of chromosomal regions 

determining sex, as well as to narrow down regions of the genome where major sex determining genes 

are located [137]. QTLs have been identified for various phenotypic traits, including sex traits, in over 

40 aquaculture species [137,142]. Most of these efforts have been directed towards finding sex, or early 

maturation QTLs in species such as tilapia, sea bream Sparus aurata, rainbow trout, turbot [21] and 

others [140,151–156]. In Nile tilapia, for instance, QTLs for sex-determination have been detected on 

linkage groups 1 and 23, with the key sex gene amh residing within the middle QTL of linkage group 

23 [153]. In turbot the Sma-USC30 microsatellite on LG5 has been identified and used in commercial 

hatcheries as a precocious sex marker and to establish expected sex ratios in progeny [157]. Ultimately, 

QTL mapping aims to provide useful sex-linked and temperature-dependent sex reversal markers as a 

tool to accelerate the genetic improvement of monosex populations through selective breeding  

programs [140,152,155,158,159]. Alternatives to such DNA markers include a number of transcriptomic 

approaches, which aim to screen for genes that are differentially expressed between testis and ovaries [35]. 

The use of RNA-Seq technology to identify sex-biased gene expression has greatly contributed to the 

identification of major coding sequences underlying sex-determination/differentiation pathways in an 

increasing number of aquaculture species such as the Asian sea bass [160], olive flounder [161], sharpsnout 

seabream (Diplodus puntazzo) [162] and African cichlids [163].  

4. Other Methods and Future Directions 

Recent developments in genetic technologies have introduced the opportunity to control sex through 

the direct targeting of genes involved in either sex determination and/or reproductive maturation. Two 

of these technologies, namely antisense RNA gene knock-down and insertion of transgenes to achieve 

transgenic sterilisation hold greatest potential for commercial application [164]. Despite this, there are 

few examples of their application to control sex at this time and this paucity of examples is likely due to 

an inefficiency in achieving complete and reliable outcomes [165]. Whilst this inefficacy may be due to 

technical issues, there also are regulatory hurdles that need to be overcome. Regardless of these issues, 

preliminary work on controlling sex via direct targeting of sex and reproductive genes has commenced 

in several species including tilapia, rainbow trout and common carp (Cyprinus carpio) [166–169]. Studies 
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with these three species have targeted key reproductive hormone genes like gonadotropin-releasing hormone 

(GnRH), a key hormone released from the hypothalamus stimulating the release of pituitary gonadotropins, 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which signal the gonads to differentiate 

and mature. In rainbow trout, for example, Uzbekova et al. [166] were one of the first to employ a  

single-stranded antisense RNA silencing approach using DNA from the Atlantic salmon GnRH3 gene. 

In this experiment, GnRH mRNA in transgenic rainbow trout was down regulated, however, the effect 

on FSH and LH levels was not significant. Despite this, Uzbekova et al. [166] showed that maturation 

among treated fish showed increased variability than those in the control group. Similarly in tilapia, 

females with a GnRH3 construct under the control of a constitutive common carp β-actin promoter were 

half as fertile as control females [167]. Whilst these studies using transgenic anti-sense technology were 

not able to induce complete sterility, they highlight the potential of this approach to control sexual 

processes in aquaculture fish species in the future.  

5. Concluding Remarks 

Sexual development is a complex, often species-specific process in fish. Therefore, technological 

innovations that successfully control sex in one species are certainly not guaranteed to work in another. 

Despite this complexity, there is an armory of approaches available to farmers to enable them to influence 

sex in their culture species, and many of these have now achieved commercial implementation. Our 

knowledge of the genes involved in sexual development and the mechanisms by which environmental 

modifiers can induce phenotypic changes is also rapidly increasing, due to the ease with which  

whole-genome sequencing and transcriptomic studies can now be conducted. Incorporation of current 

approaches to control sex with this new genetic (and epigenetic) understanding will undoubtedly lead to 

further advances in sex control of fish and will be a significant catalyst for selective breeding and the 

culture of more productive populations of farmed fish in the near future. 
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