Lahaul–Zanskar–Sham Valley Corridor in Indian Trans Himalayan Region Facilitates Dispersal and Gene Flow in Himalayan Ibex
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Occurrence Data
2.3. Sample Collection, PCR and Sequencing
2.4. Microsatellite Genotyping
2.5. Distribution Modelling
2.6. Sequence Data Analysis
2.7. Microsatellite Data Analysis
2.8. Corridor Connectivity Using Landscape Genetics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cushman, S.A.; Mcrae, B.; Adriaensen, F.; Beier, P.; Shirley, M.; Zeller, K. Biological corridors and connectivity. Key Top. Conserv. Biol. 2013, 2, 384–404. [Google Scholar] [CrossRef]
- Dilkina, B.; Houtman, R.; Gomes, C.P.; Montgomery, C.A.; McKelvey, K.S.; Kendall, K.; Graves, T.A.; Bernstein, R.; Schwartz, M.K. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks. Conserv. Biol. 2017, 31, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Osborn, F.V.; Parker, G.E. Linking two elephant refuges with a corridor in the communal lands of Zimbabwe. Afr. J. Ecol. 2003, 41, 68–74. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M.; Bennett, A.F. Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLoS ONE 2018, 13, e0206071. [Google Scholar] [CrossRef]
- Shepherd, B.; Whittington, J. Response of wolves to corridor restoration and human use management. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef] [Green Version]
- Waits, L.P.; Cushman, S.A.; Spear, S.F. Applications of landscape genetics to conectivity reaseach in terrestrial animals; landscape genetics: Concepts, methods, applications. Landsc. Genet. Concepts Methods Appl. 2016, 199–219. [Google Scholar] [CrossRef]
- Dalui, S.; Khatri, H.; Singh, S.K.; Basu, S.; Ghosh, A.; Mukherjee, T.; Sharma, L.K.; Singh, R.; Chandra, K.; Thakur, M. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci. Rep. 2020, 10, 15446. [Google Scholar] [CrossRef]
- LaCava, M.E.F.; Gagne, R.B.; Gustafson, K.D.; Oyler-McCance, S.; Monteith, K.L.; Sawyer, H.; Kauffman, M.J.; Thiele, D.J.; Ernest, H.B. Functional connectivity in a continuously distributed, migratory species as revealed by landscape genomics. Ecography 2021, 44, 987–999. [Google Scholar] [CrossRef]
- Sommer, S.; McDevitt, A.D.; Balkenhol, N. Landscape genetic approaches in conservation biology and management. Conserv. Genet. 2013, 14, 249–251. [Google Scholar] [CrossRef] [Green Version]
- Storfer, A. Landscape Genetics. Encycl. Biodivers. Second Ed. 2013, 58, 508–523. [Google Scholar] [CrossRef]
- Kaczensky, P.; Kuehn, R.; Lhagvasuren, B.; Pietsch, S.; Yang, W.; Walzer, C. Connectivity of the asiatic wild ass population in the mongolian gobi. Biol. Conserv. 2011, 144, 920–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pease, K.M.; Freedman, A.H.; Pollinger, J.P.; McCormack, J.E.; Buermann, W.; Rodzen, J.; Banks, J.; Meredith, E.; Bleich, V.C.; Schaefer, R.J.; et al. Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Mol. Ecol. 2009, 18, 1848–1862. [Google Scholar] [CrossRef]
- Portanier, E.; Larroque, J.; Garel, M.; Marchand, P.; Maillard, D.; Bourgoin, G.; Devillard, S. Landscape genetics matches with behavioral ecology and brings new insight on the functional connectivity in Mediterranean mouflon. Landsc. Ecol. 2018, 33, 1069–1085. [Google Scholar] [CrossRef]
- Mishra, C.; Van Wieren, S.E.; Ketner, P.; Heitkonig, I.M.A.; Prins, H.H.T. Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. J. Appl. Ecol. 2004, 41, 344–354. [Google Scholar] [CrossRef]
- Rawat, G. Pastoral practices, wild mammals and conservation status of alpine meadows in Western Himalaya. BOMBAY Nat. Hist. Soc. 2007, 104, 5. [Google Scholar]
- Segelbacher, G.; Cushman, S.A.; Epperson, B.K.; Fortin, M.J.; Francois, O.; Hardy, O.J.; Holderegger, R.; Taberlet, P.; Waits, L.P.; Manel, S. Applications of landscape genetics in conservation biology: Concepts and challenges. Conserv. Genet. 2010, 11, 375–385. [Google Scholar] [CrossRef]
- Reading, R.; Michel, S.; Suryawanshi, K.; Bhatnagar, Y. Capra sibirica, Siberian Ibex. iucn red list threat. Species 2020. Available online: https://www.iucnredlist.org/species/42398/22148720 (accessed on 10 April 2022).
- Fedosenko, A.K.; Blank, D.A. Capra sibirica. Mamm. Species 2001, 675, 1–13. [Google Scholar] [CrossRef]
- Joshi, B.D.; Jabin, G.; Sharief, A.; Kumar, V.; Mukherjee, T.; Kumar, M.; Singh, A.; Singh, S.K.; Chandra, K.; Sharma, L.K.; et al. Genetic evidence for allopatric speciation of the siberian ibex capra sibirica in India. Endanger. Species Res. 2020, 42, 1–5. [Google Scholar] [CrossRef]
- Ahmad, S.; Strelnikov, I.I.; Ahmad, A.; Rajpar, M.N.; Khan, M.Z.; Wanghe, K.; Ahmad, I.M.; Nabi, G.; Li, D. Recent advances in ecological research on Asiatic ibex (Capra sibirica): A critical ungulate species of highland landscapes. Glob. Ecol. Conserv. 2022, 35, e02105. [Google Scholar] [CrossRef]
- Namgail, T. Mountain ungulates of the Trans-Himalayan region of Ladakh, India. Int. J. Wilderness 2009, 15, 35–40. [Google Scholar]
- Maheshwari, A.; Sathyakumar, S. Snow leopard stewardship in mitigating human–wildlife conflict in Hemis National Park, Ladakh, India. Hum. Dimens. Wildl. 2019, 24, 395–399. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, S.K.; Joshi, B.D.; Chandra, K.; Sharma, L.K.; Thakur, M. Population genetics of the snow leopards (Panthera uncia) from the Western Himalayas, India. Mamm. Biol. 2022, 102, 263–269. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, V.P.; Joshi, B.D.; Raza, M.; Nigam, P.; Khan, A.A.; Goyal, S.P. Genetic diversity of the Tibetan antelope (Pantholops hodgsonii) population of Ladakh, India, its relationship with other populations and conservation implications. BMC Res. Notes 2016, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, B.D.; Sharief, A.; Kumar, V.; Kumar, M.; Dutta, R.; Devi, R.; Singh, A.; Thakur, M.; Sharma, L.K.; Chandra, K. Field testing of different methods for monitoring mammals in Trans-Himalayas: A case study from Lahaul and Spiti. Glob. Ecol. Conserv. 2020, 21, e00824. [Google Scholar] [CrossRef]
- Sambrook, J.; Bowtell, D.D.L. DNA Microarrays: A Molecular Cloning Manual 2002; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2002. [Google Scholar]
- Gupta, S.K.; Kumar, A.; Hussain, S.A. Novel primers for sequencing of the complete mitochondrial cytochrome b gene of ungulates using non-invasive and degraded biological samples. Conserv. Genet. Resour. 2014, 6, 499–501. [Google Scholar] [CrossRef]
- Maudet, C.; Miller, C.; Bassano, B.; Breitenmoser-Würsten, C.; Gauthier, D.; Obexer-Ruff, G.; Michallet, J.; Taberlet, P.; Luikart, G. Microsatellite DNA and recent statistical methods in wildlife conservation management: Applications in Alpine ibex [Capra ibex (ibex)]. Mol. Ecol. 2002, 11, 421–436. [Google Scholar] [CrossRef]
- Moore, S.S.; Barendse, W.; Berger, K.T.; Armitage, S.M.; Hetzel, D.J.S. Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Anim. Genet. 1992, 23, 463–467. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Buitrago-Pinilla, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENM evalVersion 2.0, Redesigned for customizable and reproducible modeling of species’ niche and distribution. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Tarekegn, G.M.; Tesfaye, K.; Mwai, O.A.; Djikeng, A.; Dessie, T.; Birungi, J.; Osama, S.; Zergaw, N.; Alemu, A.; Achieng, G.; et al. Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats. Ecol. Evol. 2018, 8, 1543–1553. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Smouse, R.P.P.; Peakall, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar]
- Wilberg, M.J.; Dreher, B.P. GENECAP: A program for analysis of multilocus genotype data for non-invasive sampling and capture-recapture population estimation. Mol. Ecol. Notes 2004, 4, 783–785. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (version 2.9. 4), a program (for Windows 95 and above) to estimate and test population genetics parameters. Dep. Ecol. Evol. Lausanne Univ. Switz. 2003, 53. Available online: http://www.unil.ch/izea/softwares/fstat.html (accessed on 4 January 2023).
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Pierpaoli, M.; Birò, Z.S.; Herrmann, M.; Hupe, K.; Fernandes, M.; Ragni, B.; Szemethy, L.; Randi, E. Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol. Ecol. 2003, 12, 2585–2598. [Google Scholar] [CrossRef] [Green Version]
- Lecis, R.; Pierpaoli, M.; Birò, Z.S.; Szemethy, L.; Ragni, B.; Vercillo, F.; Randi, E. Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol. Ecol. 2006, 15, 119–131. [Google Scholar] [CrossRef]
- Oliveira, R.; Godinho, R.; Randi, E.; Alves, P.C. Hybridization versus conservation: Are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2953–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukesh; Sharma, L.K.; Charoo, S.A.; Sathyakumar, S. Conflict bear translocation: Investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS ONE 2015, 10, e0132005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, G.A.; Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003, 163, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Piry, S.; Alapetite, A.; Cornuet, J.M.; Paetkau, D.; Baudouin, L.; Estoup, A. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 2004, 95, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Paetkau, D.; Slade, R.; Burden, M.; Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 2004, 13, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.P. Computer software for the joint analysis of interindividual spatial and genetic information Mark. J. Hered. 2005, 722–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcrae, B.H.; Shah, V.B. Circuitscape User Guide. University of California, Santa Barbara. The Nature Conservancy. 2011. Available online: http://www.circuitscape.org (accessed on 4 January 2023).
- Sharma, L.K.; Mukherjee, T.; Saren, P.C.; Chandra, K. Identifying suitable habitat and corridors for Indian Grey Wolf (Canis lupus pallipes) in Chotta Nagpur Plateau and Lower Gangetic Planes: A species with differential management needs. PLoS ONE 2019, 14, e0215019. [Google Scholar] [CrossRef] [Green Version]
- Reading, R.P.; Amgalanbaatar, S.; Kenny, D.; Denicola, A.; Tuguldur, E. Siberian Ibex (Capra sibirica) Home Ranges in Ikh Nart Nature Reserve, Mongolia: Preliminary Findings. Mong. J. Biol. Sci. 2007, 5, 29–36. [Google Scholar] [CrossRef]
- Scillitani, L.; Sturaro, E.; Monaco, A.; Rossi, L.; Ramanzin, M. Factors affecting home range size of male alpine ibex (Capra ibex ibex) in the Marmolada massif. Hystrix 2012, 23, 2. [Google Scholar] [CrossRef]
- Al-Ghafri, M.K.; White, P.J.C.; Briers, R.A.; Dicks, K.L.; Ball, A.; Ghazali, M.; Ross, S.; Al-Said, T.; Al-Amri, H.; Al-Umairi, M.; et al. Genetic diversity of the Nubian ibex in Oman as revealed by mitochondrial DNA. R. Soc. Open Sci. 2021, 8, 210125. [Google Scholar] [CrossRef]
- Jang, J.E.; Kim, N.H.; Lim, S.; Kim, K.Y.; Lee, H.J.; Park, Y.C. Genetic integrity and individual identification-based population size estimate of the endangered long-tailed goral, Naemorhedus caudatus from Seoraksan National Park in South Korea, based on a non-invasive genetic approach. Animal Cells Syst. 2020, 24, 171–179. [Google Scholar] [CrossRef]
- Mukesh; Kumar, V.P.; Sharma, L.K.; Shukla, M.; Sathyakumar, S. Pragmatic perspective on conservation genetics and demographic history of the last surviving population of kashmir red deer (cervus elaphus hanglu) in India. PLoS ONE 2015, 10, e0117069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Peng, Q.; Jiang, L.; Tan, S.; Peng, R.; Zou, F. Development and characterization of nine polymorphic microsatellite markers for the blue sheep (Pseudois nayaur). Conserv. Genet. Resour. 2015, 7, 183–185. [Google Scholar] [CrossRef]
- Bhatnagar, Y.V. Ranging and Habitat Utilization by the Himalayan Ibex (Capra Ibex Sibirica) in Pin Valley National Park. Ph.D. Thesis, Saurashtra University, Rajkot, India, 1997. [Google Scholar]
- Fox, J.L.; Sinha, S.P.; Chundawat, R.S. Activity patterns and habitat use of ibex in the Himalaya Mountains of India. J. Mammal. 1992, 73, 527–534. [Google Scholar] [CrossRef]
- Barrett, K.; Bosak, K. The role of place in adapting to climate change: A case study from Ladakh, Western Himalayas. Sustainability 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Yangkey, T. An Analysis of Precipitation Trend in Leh, Ladakh, Northern India. Ph.D Thesis, Civil and Environment Engineering Department, Duke University, Durham, NC, USA, 2020. [Google Scholar]
- Chevuturi, A.; Dimri, A.P.; Thayyen, R.J. Climate change over Leh (Ladakh), India. Theor. Appl. Climatol. 2018, 131, 531–545. [Google Scholar] [CrossRef]
- Raina, R.K.; Koul, M.N. Impact of climatic change on agro-ecological zones of the Suru-Zanskar valley, Ladakh (Jammu and Kashmir), India. J. Ecol. 2011, 3, 424–440. [Google Scholar]
- Sharma, H.R. Crop diversification in himachal pradesh: Patterns, determinants and challenges. Indian J. Agric. Econ. 2011, 66, 97–114. [Google Scholar]
- Sharma, L.; Samant, S.S.; Kumar, A.; Lal, M.; Devi, K.; Tewari, L.M. Diversity, distribution pattern, endemism and indigenous uses of wild edible plants in Cold Desert Biosphere Reserve of Indian Trans Himalaya. Indian J. Tradit. Knowl. 2018, 17, 122–131. [Google Scholar]
- Vijay, S.; Braun, M. Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sens. 2016, 8, 1038. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Blank, D.; Wang, M.; da Silva, A.A.; Yang, W.; Ruckstuhl, K.; Alves, J. Diet differences between males and females in sexually dimorphic ungulates: A case study on Siberian ibex. Eur. J. Wildl. Res. 2020, 66, 42. [Google Scholar] [CrossRef]
- Shabir, M.; Tiwari, J.; Agnihotri, P. Bio-Cultural Diversity of Kargil District (J&K), with Special References to Ethno-Botany. In Angiosperm Systematics: Recent Trends and Emerging Issues 2018 (Fecilitation Volume in Honor of Dr. Tariq Hussain); Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 2018; pp. 329–348. [Google Scholar]
- Dey, D.; Bhojak, P.; Sekar, K.C.; Arya, D. An annotated checklist of vascular plants in and around two major high-altitude wetlands of Lahaul-Spiti, Himachal Pradesh, India. Check List 2021, 17, 1715–1730. [Google Scholar] [CrossRef]
- Singh, A.; Lal, M.; Samant, S.S. Diversity, indigenous uses and conservation prioritization of medicinal plants in lahaul valley, proposed cold desert biosphere reserve, India. Int. J. Biodivers. Sci. Manag. 2009, 5, 132–154. [Google Scholar] [CrossRef] [Green Version]
Locus | N | Na | Ne | Ho | He | uHe | PID by Locus | PID Sibs by Locus | Cum. PID | Cum. PID Sibs | F | FIS | PIC | ADO | FA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Haut14 † | 102 | 15 | 5.555 | 0.333 | 0.820 | 0.824 | 5.2 × 10−2 | 3.5 × 10−1 | 5.2 × 10−2 | 3.5 × 10−1 | 0.593 | 0.584 | 0.801 | 0.089 | 0.00 |
ETH152 † | 97 | 18 | 5.171 | 0.526 | 0.807 | 0.811 | 5.7 × 10−2 | 3.6 × 10−1 | 2.9 × 10−3 | 1.3 × 10−1 | 0.348 | 0.360 | 0.785 | 0.0156 | 0.00 |
BM415 † | 110 | 11 | 4.213 | 0.491 | 0.763 | 0.766 | 8.9 × 10−2 | 3.9 × 10−1 | 2.6 × 10−4 | 5.0 × 10−2 | 0.356 | 0.328 | 0.730 | 0.125 | 0.00 |
CSSM14 † | 102 | 11 | 4.156 | 0.745 | 0.759 | 0.763 | 9.1 × 10−2 | 3.9 × 10−1 | 2.4 × 10−5 | 2.0 × 10−2 | 0.019 | 0.016 | 0.726 | 0.015 | 0.00 |
ETH225 † | 90 | 10 | 3.989 | 0.433 | 0.749 | 0.754 | 9.8 × 10−2 | 4.0 × 10−1 | 2.4 × 10−6 | 7.9 × 10−3 | 0.422 | 0.405 | 0.714 | 0.096 | 0.00 |
INRA35 † | 89 | 10 | 3.562 | 0.494 | 0.719 | 0.723 | 1.2 × 10−1 | 4.2 × 10−1 | 2.8 × 10−7 | 3.3 × 10−3 | 0.313 | 0.276 | 0.680 | 0.000 | 0.10 |
BM1824 † | 104 | 12 | 3.511 | 0.250 | 0.715 | 0.719 | 1.2 × 10−1 | 4.2 × 10−1 | 3.3 × 10−8 | 1.4 × 10−3 | 0.650 | 0.643 | 0.679 | 0.022 | 0.00 |
CSRP6 | 106 | 12 | 3.489 | 0.406 | 0.713 | 0.717 | 1.3 × 10−1 | 4.2 × 10−1 | 4.1 × 10−9 | 5.9 × 10−4 | 0.431 | 0.405 | 0.670 | 0.0306 | 0.10 |
CSSM19 | 96 | 14 | 2.962 | 0.417 | 0.662 | 0.666 | 1.5 × 10−1 | 4.6 × 10−1 | 6.1 × 10−10 | 2.7 × 10−4 | 0.371 | 0.361 | 0.628 | 0.031 | 0.00 |
ETH10 | 105 | 10 | 1.883 | 0.162 | 0.469 | 0.471 | 3.0 × 10−1 | 5.9 × 10−1 | 1.9 × 10−10 | 1.6 × 10−4 | 0.655 | 0.644 | 0.448 | 0.033 | 0.00 |
Mean | 100.1 | 12.30 | 3.849 | 0.426 | 0.718 | 0.721 | 0.416 | 0.393 | |||||||
SE | 2.188 | 0.831 | 0.331 | 0.051 | 0.031 | 0.031 | 0.060 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabin, G.; Dolker, S.; Joshi, B.D.; Singh, S.K.; Chandra, K.; Sharma, L.K.; Thakur, M. Lahaul–Zanskar–Sham Valley Corridor in Indian Trans Himalayan Region Facilitates Dispersal and Gene Flow in Himalayan Ibex. Biology 2023, 12, 382. https://doi.org/10.3390/biology12030382
Jabin G, Dolker S, Joshi BD, Singh SK, Chandra K, Sharma LK, Thakur M. Lahaul–Zanskar–Sham Valley Corridor in Indian Trans Himalayan Region Facilitates Dispersal and Gene Flow in Himalayan Ibex. Biology. 2023; 12(3):382. https://doi.org/10.3390/biology12030382
Chicago/Turabian StyleJabin, Gul, Stanzin Dolker, Bheem Dutt Joshi, Sujeet Kumar Singh, Kailash Chandra, Lalit Kumar Sharma, and Mukesh Thakur. 2023. "Lahaul–Zanskar–Sham Valley Corridor in Indian Trans Himalayan Region Facilitates Dispersal and Gene Flow in Himalayan Ibex" Biology 12, no. 3: 382. https://doi.org/10.3390/biology12030382
APA StyleJabin, G., Dolker, S., Joshi, B. D., Singh, S. K., Chandra, K., Sharma, L. K., & Thakur, M. (2023). Lahaul–Zanskar–Sham Valley Corridor in Indian Trans Himalayan Region Facilitates Dispersal and Gene Flow in Himalayan Ibex. Biology, 12(3), 382. https://doi.org/10.3390/biology12030382