Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. CT Image Acquisition
2.3. Aorta Segmentation and Radiomic Feature Extraction
2.4. Consistency of Segmentation and Radiomics Features
2.5. Radiomic Signature Construction
2.6. Radiologists–Model Collaboration
3. Statistical Analysis
4. Results
4.1. Patient Characteristics
4.2. Agreement Analysis between Radiologists
4.3. Radiomic Feature Selection
4.4. Comprehensive and Comparative Analysis of Model Performance in the Validation Cohort
4.5. Performance of the Detection Models and Radiologist in the External Testing Cohort
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vilacosta, I.; San Román, J.A.; di Bartolomeo, R.; Eagle, K.; Estrera, A.L.; Ferrera, C.; Kaji, S.; Nienaber, C.A.; Riambau, V.; Schäfers, H.J.; et al. Acute Aortic Syndrome Revisited: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 2106–2125. [Google Scholar] [CrossRef] [PubMed]
- Bossone, E.; LaBounty, T.M.; Eagle, K.A. Acute aortic syndromes: Diagnosis and management, an update. Eur. Heart J. 2018, 39, 739–749. [Google Scholar] [CrossRef] [Green Version]
- DeMartino, R.R.; Sen, I.; Huang, Y.; Bower, T.C.; Oderich, G.S.; Pochettino, A.; Greason, K.; Kalra, M.; Johnstone, J.; Shuja, F.; et al. Population-Based Assessment of the Incidence of Aortic Dissection, Intramural Hematoma, and Penetrating Ulcer, and Its Associated Mortality from 1995 to 2015. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004689. [Google Scholar] [CrossRef]
- Salmasi, M.Y.; Al-Saadi, N.; Hartley, P.; Jarral, O.A.; Raja, S.; Hussein, M.; Redhead, J.; Rosendahl, U.; Nienaber, C.A.; Pepper, J.R.; et al. The risk of misdiagnosis in acute thoracic aortic dissection: A review of current guidelines. Heart 2020, 106, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.G.; Eagle, K.A.; Bruckman, D.; Moon, B.S.; Malouf, J.F.; Fattori, R.; Evangelista, A.; Isselbacher, E.M.; Suzuki, T.; Nienaber, C.A.; et al. Choice of computed tomography, transesophageal echocardiography, magnetic resonance imaging, and aortography in acute aortic dissection: International Registry of Acute Aortic Dissection (IRAD). Am. J. Cardiol. 2002, 89, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, A.; Nienaber, C.A.; Harris, K.M.; Myrmel, T.; Fattori, R.; Sechtem, U. Geographic differences in clinical presentation, treatment, and outcomes in type A acute aortic dissection (from the International Registry of Acute Aortic Dissection). Am. J. Cardiol. 2008, 102, 1562–1566. [Google Scholar] [CrossRef]
- Pape, L.A.; Awais, M.; Woznicki, E.M.; Suzuki, T.; Trimarchi, S.; Evangelista, A.; Myrmel, T.; Larsen, M.; Harris, K.M.; Greason, K.; et al. Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: 17-Year Trends from the International Registry of Acute Aortic Dissection. J. Am. Coll. Cardiol. 2015, 66, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.J.; Trautmann, A.; Böhm, I.; Scherer, K.; Barbaud, A.; Bavbek, S.; Bonadonna, P.; Cernadas, J.R.; Chiriac, A.M.; Gaeta, F.; et al. Practice parameters for diagnosing and managing iodinated contrast media hypersensitivity. Allergy 2021, 76, 1325–1339. [Google Scholar] [CrossRef]
- Hodler, J.; Kubik-Huch, R.A.; von Schulthess, G.K. (Eds.) Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging; IDKD Springer: Cham, Switzerland, 2019. [Google Scholar]
- McMahon, M.A.; Squirrell, C.A. Multidetector CT of Aortic Dissection: A Pictorial Review. Radiographics 2010, 30, 445–460. [Google Scholar] [CrossRef]
- Yi, Y.; Mao, L.; Wang, C.; Guo, Y.; Luo, X.; Jia, D.; Lei, Y.; Pan, J.; Li, J.; Li, S.; et al. Advanced Warning of Aortic Dissection on Non-Contrast CT: The Combination of Deep Learning and Morphological Characteristics. Front. Cardiovasc. Med. 2021, 8, 762958. [Google Scholar] [CrossRef]
- Kurabayashi, M.; Okishige, K.; Ueshima, D.; Yoshimura, K.; Shimura, T.; Suzuki, H.; Mitsutoshi, A.; Aoyagi, H.; Otani, Y.; Isobe, M. Diagnostic utility of unenhanced computed tomography for acute aortic syndrome. Circ. J. 2014, 78, 1928–1934. [Google Scholar] [CrossRef] [Green Version]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, C.; Jin, L.; Gao, P.; Zhao, W.; Ma, W.; Tan, M.; Wu, W.; Duan, S.; Shan, Y.; et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: Invasive prediction. Eur. Radiol. 2020, 30, 3650–3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Li, L.; Li, Y.; Qian, Z.; Wu, F.; He, Y.; Jiang, H.; Li, R.; Wang, D.; Zhai, Y.; et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 2022, 145, 1151–1161. [Google Scholar] [CrossRef]
- Guzene, L.; Beddok, A.; Nioche, C.; Modzelewski, R.; Loiseau, C.; Salleron, J.; Thariat, J. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2022, in press. [CrossRef] [PubMed]
- Liu, D.; Sheng, N.; He, T.; Wang, W.; Zhang, J.; Zhang, J. SGEResU-Net for brain tumor segmentation. Math. Biosci. Eng. 2022, 19, 5576–5590. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yuan, J.; Lo, G.G.; Chang, A.T.; Poon, D.M.; Wong, O.L.; Zhou, Y.; Chu, W.C. Radiomics feature reliability assessed by intraclass correlation coefficient: A systematic review. Quant. Imaging Med. Surg. 2021, 11, 4431–4460. [Google Scholar] [CrossRef]
- Song, X.; Zhu, J.; Tan, X.; Yu, W.; Wang, Q.; Shen, D.; Chen, W. XGBoost-Based Feature Learning Method for Mining COVID-19 Novel Diagnostic Markers. Front. Public Health 2022, 10, 926069. [Google Scholar] [CrossRef]
- Hata, A.; Yanagawa, M.; Yamagata, K.; Suzuki, Y.; Kido, S.; Kawata, A.; Doi, S.; Yoshida, Y.; Miyata, T.; Tsubamoto, M.; et al. Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. Eur. Radiol. 2021, 31, 1151–1159. [Google Scholar] [CrossRef]
- Xiong, X.; Ding, Y.; Sun, C.; Zhang, Z.; Guan, X.; Zhang, T.; Chen, H.; Liu, H.; Cheng, Z.; Zhao, L.; et al. A Cascaded Multi-Task Generative Framework for Detecting Aortic Dissection on 3-D Non-Contrast-Enhanced Computed Tomography. IEEE J. Biomed. Health Inform. 2022, 26, 5177–5188. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, J.; Wang, S.; Li, W.; Xie, L.; Li, Y.; Zhang, C. The diagnostic value of a non-contrast computed tomography scan-based radiomics model for acute aortic dissection. Medicine 2021, 100, e26212. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Lin, X.; Chen, L.; Shu, J.; Pang, P.; Cheng, J.; Xu, M.; Sun, Z. Non-contrast CT-based radiomic signature for screening thoracic aortic dissections: A multicenter study. Eur. Radiol. 2021, 31, 7067–7076. [Google Scholar] [CrossRef] [PubMed]
Training and Validation Cohort | Internal Testing Cohort | Total Internal Cohort | External Testing Cohort | p Value | |||||
---|---|---|---|---|---|---|---|---|---|
AAS | NAAS | p Value | AAS | NAAS | p Value | AAS | |||
Number of patients | 51 | 133 | - | 9 | 37 | - | 60 | 95 | - |
Age (years), (mean SD) | 72.59 14.61 | 66.15 13.1 | 0.006 | 73.11 | 66.03 14.22 | 0.200 | 73.00 | 11.41 | <0.001 |
Sex (n, %) | <0.001 | <0.001 | <0.001 | ||||||
Male | 46 (90.2) | 67 (50.4) | 9 (100.0) | 21 (56.8) | 55 (1.6) | 75 (79.0) | |||
Female | 5 (9.8) | 66 (49.6) | 0 (0) | 16 (43.2) | 5 (8.4) | 20 (21.0) | |||
Stanford type | |||||||||
A (n, %) | 10 (19.6) | 3 (33.3) | <0.001 | 13 (21.7) | 7 (7.4) | <0.001 | |||
B (n, %) | 41 (80.4) | 6 (66.7) | 47 (78.3) | 88 (92.6) | |||||
Intimal calcification | 28 (54.9) | 63 (47.36) | 0.371 | 4 (44.4) | 17 (45.9) | 0.777 | 32 (53.3) | 30 (31.6) | 0.020 |
Slice thickness (mm), (mean SD) | 1.65 1.27 | 1.25 | <0.001 | 1.13 | 1.25 | <0.001 | 1.56 | 5.00 | <0.001 |
Cases | Dice | HD95 (mm) | Case | Dice | HD95 (mm) |
---|---|---|---|---|---|
Case1 | 0.941 | 0.070 | Case16 | 0.937 | 0.078 |
Case2 | 0.928 | 0.100 | Case17 | 0.945 | 0.609 |
Case3 | 0.935 | 0.162 | Case18 | 0.869 | 0.610 |
Case4 | 0.931 | 0.531 | Case19 | 0.901 | 0.198 |
Case5 | 0.926 | 0.114 | Case20 | 0.990 | 0.098 |
Case6 | 0.959 | 0.044 | Case21 | 0.858 | 0.486 |
Case7 | 0.938 | 0.084 | Case22 | 0.930 | 0.101 |
Case8 | 0.939 | 0.067 | Case23 | 0.932 | 0.094 |
Case9 | 0.939 | 0.186 | Case24 | 0.917 | 0.113 |
Case10 | 0.952 | 0.054 | Case25 | 0.940 | 0.083 |
Case11 | 0.916 | 0.101 | Case26 | 0.886 | 0.314 |
Case12 | 0.943 | 0.066 | Case27 | 0.936 | 0.087 |
Case13 | 0.918 | 0.145 | Case28 | 0.919 | 0.097 |
Case14 | 0.903 | 0.135 | Case29 | 0.929 | 0.109 |
Case15 | 0.929 | 0.082 | Case30 | 0.959 | 0.048 |
Median SD | Dice: 0.932 0.026 | HD95: 0.101 0.166 |
The Most Predictive Subset of Features | Important Coefficients | ICC | p Value |
---|---|---|---|
original_shape_MeshVolume | 0.080 | 0.974 | <0.05 |
original_shape_SurfaceVolumeRatio | 0.365 | 0.890 | |
original_firstorder_Maximum | 0.020 | 0.790 | |
original_glcm_Imc1 | 0.030 | 0.805 | |
original_glrlm_LongRunHighGrayLevelEmphasis | 0.162 | 0.964 | |
original_gldm_GrayLevelNonUniformity | 0.154 | 0.980 | |
Wavelet_LLH_firstorder_Mean | 0.217 | 0.808 | |
Wavelet_LLH_glcm_Correlation | 0.080 | 0.935 | |
Wavelet_LHL_glszm_GrayLevelNonUniformity | 0.040 | 0.984 |
Models | Validation Cohort (N = 49) | |||
---|---|---|---|---|
ACC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) | |
XGB | 0.919 (0.846, 1.00) | 0.857 (0.616, 1.00) | 0.963 (0.884, 1.00) | 0.985 (0.926, 1.00) |
RF | 0.946 (0.866, 1.00) | 0.846 (0.606, 1.00) | 1.00 (0.921, 1.00) | 0.991 (0.963, 1.00) |
LG | 0.973 (0.897, 1.00) | 0.917 (0.736, 1.00) | 1.00 (0.923, 1.00) | 0.991 (0.961, 1.00) |
GBDT | 0.919 (0.834, 1.00) | 0.833 (0.594, 1.00) | 0.963 (0.873, 1.00) | 0.984 (0.912, 1.00) |
SVM | 0.946 (0.877, 1.00) | 0.900 (0.696, 1.00) | 0.964 (0.903, 1.00) | 0.993 (0.965, 1.00) |
GNB | 0.946 (0.872, 1.00) | 0.829 (0.604, 1.00) | 1.00 (0.938, 1.00) | 0.987 (0.952, 1.00) |
Models | Internal Testing Cohort (n = 46) | External Testing Cohort (n = 95) | |||
---|---|---|---|---|---|
ACC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) | ACC (95% CI) | |
XGB | 0.935 (0.890, 0.989) | 0.778 (0.583, 0.912) | 1.00 (0.944, 1.00) | 0.982 (0.952, 1.00) | 0.990 (0.883, 1.00) |
RF | 0.935 (0.895, 0.984) | 0.778 (0.612, 0.908) | 1.00 (0.939, 1.00) | 0.982 (0.956, 1.00) | 0.990 (0.858, 1.00) |
LG | 0.978 (0.967, 0.987) | 0.889 (0.861, 0.913) | 1.00 (0.988, 1.00) | 0.991 (0.976, 1.00) | 0.979 (0.824, 1.00) |
GBDT | 0.891 (0.836, 0.943) | 0.667 (0.560, 0.813) | 0.946 (0.881, 0.996) | 0.928 (0.861, 0.981) | 0.979 (0.796, 1.00) |
SVM | 0.957 (0.945, 0.988) | 0.889 (0.888, 0.889) | 0.973 (0.959, 1.00) | 0.997 (0.992, 1.00) | 0.991 (0.937, 1.00) |
GNB | 0.946 (0.971, 0.984) | 0.889 (0.879, 0.899) | 1.00 (0.992, 1.00) | 0.982 (0.962, 0.996) | 0.905 (0.875, 0.922) |
Model | External Testing Cohort (n = 95) | |||
---|---|---|---|---|
Suspicious (n) | Diagnosed (n) | Missed (n) | ACC (95% CI) | |
Radiologist A | 27 | 62 | 18 | 0.7895 (0.708–0.871) |
Radiologist B | 18 | 71 | 6 | 0.9368 (0.888–0.986) |
Radiologists A and B | 14 | 75 | 6 | 0.9368 (0.888–0.986) |
Radiomics-based model | 0 | 94 | 1 | 0.991 (0.937–1.000) |
Radiologist-model diagnosis combination | 6 | 89 | 0 | 1.00 (0.989–1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Jin, L.; Zhang, L.; Yang, Y.; Tang, Y.; Gao, P.; Sun, Y.; Li, M. Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning. Biology 2023, 12, 337. https://doi.org/10.3390/biology12030337
Ma Z, Jin L, Zhang L, Yang Y, Tang Y, Gao P, Sun Y, Li M. Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning. Biology. 2023; 12(3):337. https://doi.org/10.3390/biology12030337
Chicago/Turabian StyleMa, Zhuangxuan, Liang Jin, Lukai Zhang, Yuling Yang, Yilin Tang, Pan Gao, Yingli Sun, and Ming Li. 2023. "Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning" Biology 12, no. 3: 337. https://doi.org/10.3390/biology12030337
APA StyleMa, Z., Jin, L., Zhang, L., Yang, Y., Tang, Y., Gao, P., Sun, Y., & Li, M. (2023). Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning. Biology, 12(3), 337. https://doi.org/10.3390/biology12030337