Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sample Collection
Biomass and Sediment Sampling
2.3. Laboratory Analyses
2.4. Trace Metal Determination
2.4.1. Bio-Concentration and Translocation Factors
2.4.2. Geoaccumulation Index
2.5. Statistical Analysis
3. Results
3.1. Plant Biological Characteristics and Biomass Contents
3.2. Soil Physicochemical Properties
3.3. Soil Trace Metal Pools
3.4. Evaluation of Trace Metal Pollution Using Sediment Quality Guidelines (SQGs)
3.5. Geoaccumulation Index
3.6. Bio-Concentration and Translocation Factors
4. Discussion
4.1. Relationships between Trace Metals and Selected Soil Properties
4.2. Identification of Trace Metal Sources
4.3. Reclamation versus Invasion Context of Trace Metal Dynamics in Coastal Wetlands
5. Conclusions
Management Implications and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cadier, C.; Bayraktarov, E.; Piccolo, R.; Adame, M.F. Indicators of Coastal Wetlands Restoration Success: A Systematic Review. Front. Mar. Sci. 2020, 7, 1017. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Yue, Q. China’s Coastal Wetlands: Ecological Challenges, Restoration, and Management Suggestions. Reg. Stud. Mar. Sci. 2020, 37, 101337. [Google Scholar] [CrossRef]
- Li, J.; Leng, Z.; Wu, Y.; Li, G.; Ren, G.; Wu, G.; Jiang, Y.; Yuguda, T.K.; Du, D. The Impact of Sea Embankment Reclamation on Greenhouse Gas GHG Fluxes and Stocks in Invasive Spartina Alterniflora and Native Phragmites Australis Wetland Marshes of East China. Sustainability 2021, 13, 12740. [Google Scholar] [CrossRef]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s New Great Wall. Science (1979) 2014, 346, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Peterson, C.H.; Jackson, J.B.C. Depletion Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science (1979) 2006, 312, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, L.; Balata, D.; Beck, M.W. The Gray Zone: Relationships between Habitat Loss and Marine Diversity and Their Applications in Conservation. J. Exp. Mar. Biol. Ecol. 2008, 366, 8–15. [Google Scholar] [CrossRef]
- Choi, C.Y.; Jackson, M.V.; Gallo-Cajiao, E.; Murray, N.J.; Clemens, R.S.; Gan, X.; Fuller, R.A. Biodiversity and China’s New Great Wall. Divers. Distrib. 2018, 24, 137–143. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Ouyang, N.; Mu, F.; Yan, F.; Zhang, Y.; Huang, X. Analyzing Coastal Wetland Degradation and Its Key Restoration Technologies in the Coastal Area of Jiangsu, China. Wetlands 2018, 38, 525–537. [Google Scholar] [CrossRef]
- Tangen, B.A.; Bansal, S. Soil Organic Carbon Stocks and Sequestration Rates of Inland, Freshwater Wetlands: Sources of Variability and Uncertainty. Sci. Total Environ. 2020, 749, 141444. [Google Scholar] [CrossRef]
- Jaiswal, D.; Pandey, J. Carbon Dioxide Emission Coupled Extracellular Enzyme Activity at Land-Water Interface Predict C-Eutrophication and Heavy Metal Contamination in Ganga River, India. Ecol. Indic. 2019, 99, 349–364. [Google Scholar] [CrossRef]
- Jaiswal, D.; Pandey, J. An Ecological Response Index for Simultaneous Prediction of Eutrophication and Metal Pollution in Large Rivers. Water Res. 2019, 161, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, S.; Tang, L.; Pan, X.; Pu, X.; Li, R.; Shen, C. Contribution of Heavy Metal in Driving Microbial Distribution in a Eutrophic River. Sci. Total Environ. 2020, 712, 136295. [Google Scholar] [CrossRef]
- Ru, F.; Yin, A.; Jin, J.; Zhang, X.; Yang, X.; Zhang, M.; Gao, C. Prediction of Cadmium Enrichment in Reclaimed Coastal Soils by Classification and Regression Tree. Estuar. Coast. Shelf Sci. 2016, 177, 1–7. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, W.; Sun, T.; Yang, Z.; Li, M. Effects of Seashore Reclamation Activities on the Health of Wetland Ecosystems: A Case Study in the Yellow River Delta, China. Ocean Coast. Manag. 2016, 123, 44–52. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, H.; Huang, Q.; Zhang, Y.; Hu, M.; Niu, Y.; Zhu, J. Characterization and Environmental Impact Analysis of Sea Land Reclamation Activities in China. Ocean Coast. Manag. 2016, 130, 128–137. [Google Scholar] [CrossRef]
- Zhou, C.; An, S.; Deng, Z.; Yin, D.; Zhi, Y.; Sun, Z.; Zhao, H.; Zhou, L.; Fang, C.; Qian, C. Sulfur Storage Changed by Exotic Spartina Alterniflora in Coastal Saltmarshes of China. Ecol. Eng. 2009, 35, 536–543. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Tian, L.; He, T.; Li, J.; Wang, J.; Wang, H.; Chen, B. Effects of Spatial Expansion between Phragmites Australis and Cyperus Malaccensis on Variations of Arsenic and Heavy Metals in Decomposing Litters in a Typical Subtropical Estuary (Min River), China. Chemosphere 2020, 240, 124965. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, J.; He, T.; Tian, L.; Li, J.; Li, X. Bioaccumulation of Heavy Metals by Cyperus Malaccensis and Spartina Alterniflora in a Typical Subtropical Estuary (Min River) of Southeast China. J. Soils Sediments 2019, 19, 2061–2075. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, M.; Jiang, S.; Xin, Y.; Zhang, X.; Zheng, D.; Wu, H. Spartina Alterniflora Invasion Changed Enrichment and Coupling Characteristics of Multiple Elements in Coastal Marsh Sediment of the Yellow River Delta. Appl. Geochem. 2023, 148, 105517. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, Z.; Li, J.; Yan, C.; Wang, X.; Jia, H.; Chen, L.; Zhang, S.; Zheng, X.; Du, D. Sulfur Mediated Heavy Metal Biogeochemical Cycles in Coastal Wetlands: From Sediments, Rhizosphere to Vegetation. Front. Environ. Sci. Eng. 2021, 16, 102. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, Z.; Li, J.; Jia, H.; Yan, C.; Hong, H.; Wang, Q.; Lu, Y.; Du, D. Increased Fluctuation of Sulfur Alleviates Cadmium Toxicity and Exacerbates the Expansion of Spartina Alterniflora in Coastal Wetlands. Environ. Pollut. 2022, 292, 118399. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Hong, H.; Liang, S.; Zhao, W.; Jia, H.; Lu, H.; Li, J.; Yan, C. Coastal Reclamation Mediates Heavy Metal Fractions and Ecological Risk in Saltmarsh Sediments of Northern Jiangsu Province, China. Sci. Total Environ. 2022, 825, 154028. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xia, L.; Zhu, Z.; Jiang, L.; Cheng, X.; An, S. Shift in Soil Organic Carbon and Nitrogen Pools in Different Reclaimed Lands Following Intensive Coastal Reclamation on the Coasts of Eastern China. Sci. Rep. 2019, 9, 5921. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, N.; Leng, X.; Qiao, Y.; Cheng, X.; An, S. The Impact of Sea Embankment Reclamation on Soil Organic Carbon and Nitrogen Pools in Invasive Spartina Alterniflora and Native Suaeda Salsa Salt Marshes in Eastern China. Ecol. Eng. 2016, 97, 582–592. [Google Scholar] [CrossRef]
- Yang, W.; Qiao, Y.; Li, N.; Zhao, H.; Yang, R.; Leng, X.; Cheng, X.; An, S. Seawall Construction Alters Soil Carbon and Nitrogen Dynamics and Soil Microbial Biomass in an Invasive Spartina Alterniflora Salt Marsh in Eastern China. Appl. Soil Ecol. 2017, 110, 1–11. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, W.; Zhao, Y.; Jeelani, N.; Xu, L.; Zhao, H.; Zhang, Y.; An, S.; Leng, X. How Spartina Alterniflora Adapts to a New Environment Created by Embankment Reclamation through C-N-P Stoichiometry in the Coastal Wetlands of Eastern China. Mar. Freshw. Res. 2018, 69, 823–832. [Google Scholar] [CrossRef]
- Zhou, S.; Bi, X. Seawall Effects in a Coastal Wetland Landscape: Spatial Changes in Soil Carbon and Nitrogen Pools. J. Coast. Conserv. 2020, 24, 11. [Google Scholar] [CrossRef]
- Bi, X.; Wen, X.; Yi, H.; Wu, X.; Gao, M. Succession in Soil and Vegetation Caused by Coastal Embankment in Southern Laizhou Bay, China—Flourish or Degradation? Ocean Coast. Manag. 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Feng, H.; Zhao, H.; Xia, L.; Yang, W.; Zhao, Y.; Jeelani, N.; An, S. Nitrogen Cycling in Plant and Soil Subsystems Is Driven by Changes in Soil Salinity Following Coastal Embankment in Typical Coastal Saltmarsh Ecosystems of Eastern China. Ecol. Eng. 2022, 174, 106467. [Google Scholar] [CrossRef]
- Feng, H.; Qiao, Y.; Xia, L.; Yang, W.; Zhao, Y.; Jeelani, N. Alteration of Nutrient Substrates and Absence of Seawater Due to Coastal Embankments Affects Soil Microbial Communities in Salt Marshes of Eastern China. Res. Sq. 2021; preprint. [Google Scholar] [CrossRef]
- Hong, H.; Wu, S.; Wang, Q.; Dai, M.; Qian, L.; Zhu, H.; Li, J.; Zhang, J.; Liu, J.; Li, J.; et al. Fluorescent Dissolved Organic Matter Facilitates the Phytoavailability of Copper in the Coastal Wetlands Influenced by Artificial Topography. Sci. Total Environ. 2021, 790, 147855. [Google Scholar] [CrossRef] [PubMed]
- Critchley, L.P.; Bugnot, A.B.; Dafforn, K.A.; Marzinelli, E.M.; Bishop, M.J. Comparison of Wrack Dynamics between Mangrove Forests with and without Seawalls. Sci. Total Environ. 2021, 751, 141371. [Google Scholar] [CrossRef]
- Andrews, J.E.; Samways, G.; Shimmield, G.B. Historical Storage Budgets of Organic Carbon, Nutrient and Contaminant Elements in Saltmarsh Sediments: Biogeochemical Context for Managed Realignment, Humber Estuary, UK. Sci. Total Environ. 2008, 405, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Dai, M.; Lu, H.; Liu, J.; Zhang, J.; Chen, C.; Xia, K.; Yan, C. Artificial Topography Changes the Growth Strategy of Spartina Alterniflora, Case Study with Wave Exposure as a Comparison. Sci. Rep. 2017, 7, 15768. [Google Scholar] [CrossRef]
- Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10, 338. [Google Scholar] [CrossRef]
- Xie, G.; Wang, B.; Zhao, K.; Li, S.; Zhou, L. Dynamic Changes of Animal Community Composition and Distribution by Spartina Invasion in Yancheng Beach Wetland, China. Clean 2015, 43, 1409–1418. [Google Scholar] [CrossRef]
- Xie, G.; He, F.; Xie, T.; Huang, C.; Tang, B. Influence of Spartina Invasion to Jiangsu Province’s Beach Wetland Animal Community. Dongbei Nongye Daxue Xuebao 2011, 42, 68–76. [Google Scholar]
- Chung, C.H.; Zhuo, R.Z.; Xu, G.W. Creation of Spartina Plantations for Reclaiming Dongtai, China, Tidal Flats and Offshore Sands. Ecol. Eng. 2004, 23, 135–150. [Google Scholar] [CrossRef]
- Lu, W.; Liu, C.; Zhang, Y.; Yu, C.; Cong, P.; Ma, J.; Xiao, J. Carbon Fluxes and Stocks in a Carbonate-Rich Chenier Plain. Agric. Meteorol. 2019, 275, 159–169. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, H.; Chen, X.; Yin, S.; Cheng, X.; An, S. Consequences of Short-Term C4 Plant Spartina Alterniflora Invasions for Soil Organic Carbon Dynamics in a Coastal Wetland of Eastern China. Ecol. Eng. 2013, 61, 50–57. [Google Scholar] [CrossRef]
- Wang, W.; Bai, J.; Zhang, G.; Jia, J.; Wang, X.; Liu, X.; Cui, B. Occurrence, Sources and Ecotoxicological Risks of Polychlorinated Biphenyls (PCBs) in Sediment Cores from Urban, Rural and Reclamation-Affected Rivers of the Pearl River Delta, China. Chemosphere 2019, 218, 359–367. [Google Scholar] [CrossRef]
- Bai, J.; Xiao, R.; Cui, B.; Zhang, K.; Wang, Q.; Liu, X.; Gao, H.; Huang, L. Assessment of Heavy Metal Pollution in Wetland Soils from the Young and Old Reclaimed Regions in the Pearl River Estuary, South China. Environ. Pollut. 2011, 159, 817–824. [Google Scholar] [CrossRef]
- CNMEE. Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural Land Ministry of Ecology and Environment of China. GB 15618-2018; Beijing, China. 2018. Available online: www.chinesestandard.net (accessed on 20 January 2023). (In Chinese).
- Bai, J.; Yang, Z.; Cui, B.; Gao, H.; Ding, Q. Some Heavy Metals Distribution in Wetland Soils under Different Land Use Types along a Typical Plateau Lake, China. Soil Tillage Res. 2010, 106, 344–348. [Google Scholar] [CrossRef]
- Emenike, E.C.; Iwuozor, K.O.; Anidiobi, S.U. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol. Trace Elem. Res. 2021, 200, 4476–4492. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Evaluation of Distribution, Mobility and Binding Behaviour of Heavy Metals in Surficial Sediments of Louro River (Galicia, Spain) Using Chemometric Analysis: A Case Study. Sci. Total Environ. 2004, 330, 115–129. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- AQSIQ. Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Marine Sediment Quality of China (GB 18668-2002); Standards Press of China: Beijing, China, 2002. [Google Scholar]
- Chapman, P.M.; Allard, P.J.; Vigers, G.A. Development of Sediment Quality Values for Hong Kong Special Administrative Region: A Possible Model for Other Jurisdictions. Mar. Pollut. Bull. 1999, 38, 161–169. [Google Scholar] [CrossRef]
- Bjørgesæter, A.; Gray, J.S. Setting Sediment Quality Guidelines: A Simple yet Effective Method. Mar. Pollut. Bull. 2008, 57, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; McLaughlin Library University of Guelph: Guelph, ON, Canada, 1993. [Google Scholar]
- Swartz, R.C. Consensus Sediment Quality Guidelines for Polycyclic Aromatic Hydrocarbon Mixtures. Environ. Toxicol. Chem. 1999, 18, 780–787. [Google Scholar] [CrossRef]
- Batley, G.E. ANZECC Interim Sediment Quality Guidelines. In Prepared for Environmental Research Institute of the Supervising Scientist (Draft); Investigation Report, CET/IR57; Centre for Advanced Analytical Chemistry: Bangor, Australia, 1997; pp. 55p. [Google Scholar]
- Pekey, H.; Karakaş, D.; Ayberk, S.; Tolun, L.; Bakoǧlu, M. Ecological Risk Assessment Using Trace Elements from Surface Sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Mar. Pollut. Bull. 2004, 48, 946–953. [Google Scholar] [CrossRef]
- Zheng, R.; Zhao, J.; Zhou, X.; Ma, C.; Wang, L.; Gao, X. Land Use Effects on the Distribution and Speciation of Heavy Metals and Arsenic in Coastal Soils on Chongming Island in the Yangtze River Estuary, China. Pedosphere 2016, 26, 74–84. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, L.; Yang, L.; Yu, J.; Lv, J.; Meng, M.; Li, G. Heavy Metal Pollution and the Risk from Tidal Flat Reclamation in Coastal Areas of Jiangsu, China. Mar. Pollut. Bull. 2020, 158, 111427. [Google Scholar] [CrossRef]
- Lu, Q.; Bai, J.; Zhang, G.; Wu, J. Effects of Coastal Reclamation History on Heavy Metals in Different Types of Wetland Soils in the Pearl River Delta: Levels, Sources and Ecological Risks. J. Clean. Prod. 2020, 272, 122668. [Google Scholar] [CrossRef]
- Shafie, N.A.; Aris, A.Z.; Haris, H. Geoaccumulation and Distribution of Heavy Metals in the Urban River Sediment. Int. J. Sediment Res. 2014, 29, 368–377. [Google Scholar] [CrossRef]
- Sungur, A.; Özcan, H. Chemometric and Geochemical Study of the Heavy Metal Accumulation in the Soils of a Salt Marsh Area (Kavak Delta, NW Turkey). J. Soils Sediments 2015, 15, 323–331. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Alkredaa, R.S.; Al-Wabel, M.I. Heavy Metal Contamination in Sediments and Mangroves from the Coast of Red Sea: Avicennia Marina as Potential Metal Bioaccumulator. Ecotoxicol. Environ. Saf. 2013, 97, 263–270. [Google Scholar] [CrossRef]
- Qiu, Y.W.; Yu, K.F.; Zhang, G.; Wang, W.X. Accumulation and Partitioning of Seven Trace Metals in Mangroves and Sediment Cores from Three Estuarine Wetlands of Hainan Island, China. J. Hazard. Mater. 2011, 190, 631–638. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Zhang, D.; Lai, J. Speciation and Spatial Distribution of Heavy Metals (Cu and Zn) in Wetland Soils of Poyang Lake (China) in Wet Seasons. Wetlands 2019, 39, 89–98. [Google Scholar] [CrossRef]
- Horckmans, L.; Swennen, R.; Deckers, J. Retention and Release of Zn and Cd in Spodic Horizons as Determined by PHstat Analysis and Single Extractions. Sci. Total Environ. 2007, 376, 86–99. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and Phytotoxicity of Cd in Contaminated Soil Amended with Chicken Manure Compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef]
- Liu, J.J.; Diao, Z.H.; Xu, X.R.; Xie, Q. Effects of Dissolved Oxygen, Salinity, Nitrogen and Phosphorus on the Release of Heavy Metals from Coastal Sediments. Sci. Total Environ. 2019, 666, 894–901. [Google Scholar] [CrossRef]
- Jia, Z.; Li, S.; Liu, Q.; Jiang, F.; Hu, J. Distribution and Partitioning of Heavy Metals in Water and Sediments of a Typical Estuary (Modaomen, South China): The Effect of Water Density Stratification Associated with Salinity. Environ. Pollut. 2021, 287, 117277. [Google Scholar] [CrossRef] [PubMed]
- du Laing, G.; de Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F.M.G.; Verloo, M.G. Effect of Salinity on Heavy Metal Mobility and Availability in Intertidal Sediments of the Scheldt Estuary. Estuar. Coast. Shelf Sci. 2008, 77, 589–602. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy Metals in Agricultural Soils from a Typical Township in Guangdong Province, China: Occurrences and Spatial Distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xiao, R.; Zhao, Q.; Lu, Q.; Wang, J.; Ramesh Reddy, K. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime. PLoS ONE 2014, 9, e107738. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, W.; Jiang, F.; Qiao, Y.; Yan, Y.; An, S.; Leng, X. Effects of Reclamation on Heavy Metal Pollution in a Coastal Wetland Reserve. J. Coast. Conserv. 2016, 22, 209–215. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Zhao, X.; Wang, Y.; Deng, W. Sources of Heavy Metal Pollution in Agricultural Soils of a Rapidly Industrializing Area in the Yangtze Delta of China. Ecotoxicol. Environ. Saf. 2014, 108, 161–167. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination Assessment and Source Apportionment of Heavy Metals in Agricultural Soil through the Synthesis of PMF and GeogDetector Models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef]
- Grybos, M.; Davranche, M.; Gruau, G.; Petitjean, P. Is Trace Metal Release in Wetland Soils Controlled by Organic Matter Mobility or Fe-Oxyhydroxides Reduction? J. Colloid Interface Sci. 2007, 314, 490–501. [Google Scholar] [CrossRef]
- Otte, M.L. Contamination of Coastal Wetlands with Heavy Metals: Factors Affecting Uptake of Heavy Metals by Salt Marsh Plants. Ecol. Responses Environ. Stress. 1990, 22, 125–133. [Google Scholar] [CrossRef]
- Wang, L.; Yan, B.X.; Zhu, L.; Ou, Y. The Effect of Reclamation on the Distribution of Heavy Metals in Saline–Sodic Soil of Songnen Plain, China. Environ. Earth Sci. 2015, 73, 1083–1090. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in Heavy Metal Mobility and Availability from Contaminated Wetland Soil Remediated with Combined Biochar-Compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Wen, J.; Li, Z.; Luo, N.; Huang, M.; Yang, R.; Zeng, G. Investigating Organic Matter Properties Affecting the Binding Behavior of Heavy Metals in the Rhizosphere of Wetlands. Ecotoxicol. Environ. Saf. 2018, 162, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Kosolapov, D.B.; Kuschk, P.; Vainshtein, M.B.; Vatsourina, A.V.; Wießner, A.; Kästner, M.; Müller, R.A. Microbial Processes of Heavy Metal Removal from Carbon-Deficient Effluents in Constructed Wetlands. Eng. Life Sci. 2004, 4, 403–411. [Google Scholar] [CrossRef]
- Windham, L.; Weis, J.S.; Weis, P. Uptake and Distribution of Metals in Two Dominant Salt Marsh Macrophytes, Spartina Alterniflora (Cordgrass) and Phragmites Australis (Common Reed). Estuar. Coast. Shelf Sci. 2003, 56, 63–72. [Google Scholar] [CrossRef]
- Baldantoni, D.; Bellino, A. On the Capability of the Epigeous Organs of Phragmites Australis to Act as Metal Accumulators in Biomonitoring Studies. Sustainability 2021, 13, 7745. [Google Scholar] [CrossRef]
- Li, J.; Pu, L.; Zhu, M.; Zhang, J.; Li, P.; Dai, X.; Xu, Y.; Liu, L. Evolution of Soil Properties Following Reclamation in Coastal Areas: A Review. Geoderma 2014, 226–227, 130–139. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing Heavy Metal Sources in Agricultural Soils of an European Mediterranean Area by Multivariate Analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Simultaneous Sorption and Desorption of Cd, Cr, Cu, Ni, Pb, and Zn in Acid Soils: II. Soil Ranking and Influence of Soil Characteristics. J. Hazard. Mater. 2007, 147, 862–870. [Google Scholar] [CrossRef]
- Caçador, I.; Duarte, B. Chromium Phyto-Transformation in Salt Marshes: The Role of Halophytes. In Phytoremediation: Management of Environmental Contaminants, Volume 2; Springer: Cham, Switzerland, 2015; pp. 211–217. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity Increases Mobility of Heavy Metals in Soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in Soil Using Amendments—A Review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Nouri, J.; Khorasani, A.N.; Lorestani, A.B.; Karami, A.M.; Hassani, A.A.H.; Yousefi, A.N. Accumulation of Heavy Metals in Soil and Uptake by Plant Species with Phytoremediation Potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
- Tong, C.; Wang, W.Q.; Huang, J.F.; Gauci, V.; Zhang, L.H.; Zeng, C.S. Invasive Alien Plants Increase CH4 Emissions from a Subtropical Tidal Estuarine Wetland. Biogeochemistry 2012, 111, 677–693. [Google Scholar] [CrossRef]
- De Moura, M.C.S.; Moita, G.C.; Neto, J.M.H.M. Analysis and Assessment of Heavy Metals in Urban Surface Soils of Teresina, Piauí State, Brazil: A Study Based on Multivariate Analysis. Comun. Sci. 2010, 1, 120–127. [Google Scholar]
- Baker, A.J.M. Accumulators and Excluders—Strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Redondo-Gómez, S. Bioaccumulation of Heavy Metals in Spartina. Funct. Plant Biol. 2013, 40, 913–921. [Google Scholar] [CrossRef]
- Marinho, C.H.; Giarratano, E.; Esteves, J.L.; Narvarte, M.A.; Gil, M.N. Hazardous Metal Pollution in a Protected Coastal Area from Northern Patagonia (Argentina). Environ. Sci. Pollut. Res. 2017, 24, 6724–6735. [Google Scholar] [CrossRef]
- Negrin, V.L.; Botté, S.E.; La Colla, N.S.; Marcovecchio, J.E. Uptake and Accumulation of Metals in Spartina Alterniflora Salt Marshes from a South American Estuary. Sci. Total Environ. 2019, 649, 808–820. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, B.; Zhang, K. Heavy Metal Distribution of Natural and Reclaimed Tidal Riparian Wetlands in South Estuary, China. J. Environ. Sci. 2011, 23, 1937–1946. [Google Scholar] [CrossRef]
- Ma, C.; Zheng, R.; Zhao, J.; Han, X.; Wang, L.; Gao, X.; Zhang, C. Relationships between Heavy Metal Concentrations in Soils and Reclamation History in the Reclaimed Coastal Area of Chongming Dongtan of the Yangtze River Estuary, China. J. Soils Sediments 2015, 15, 139–152. [Google Scholar] [CrossRef]
- Ma, Z.; Gan, X.; Choi, C.Y.; Li, B. Effects of Invasive Cordgrass on Presence of Marsh Grassbird in an Area Where It Is Not Native. Conserv. Biol. 2014, 28, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Costanza, R.; Kubiszewski, I.; Xu, N.; Yuan, M.; Geng, R. The Value of China’s Coastal Wetlands and Seawalls for Storm Protection. Ecosyst. Serv. 2019, 36, 100905. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of Coastal Reclamation on Wetlands: Loss, Resilience, and Sustainable Management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
Depth (cm) | Moisture (%) | BD (g cm−3) | Salinity (%) | PH | SOM (g kg−1) | |
---|---|---|---|---|---|---|
USA | 0–10 | 63.86 ± 1.36 b | 0.89 ± 0.04 a | 1.76 ± 0.05 a | 8.53 ± 0.05 a | 33.04 ± 1.48 a |
10–20 | 51.20 ± 2.04 b | 0.97 ± 0.02 a | 1.53 ± 0.04 a | 8.47 ± 0.08 a | 27.43 ± 0.96 b | |
20–30 | 44.61 ± 1.24 a | 1.32 ± 0.05 b | 1.41 ± 0.05 a | 8.37 ± 0.04 a | 21.49 ± 0.86 b | |
RSA | 0–10 | 35.66 ± 1.46 b | 1.13 ± 0.05 a | 0.67 ± 0.03 b | 9.04 ± 0.03 a | 18.75 ± 0.34 a |
10–20 | 28.80 ± 1.05 a | 1.27 ± 0.10 a | 0.52 ± 0.03 b | 9.18 ± 0.03 a | 13.59 ± 3.26 a | |
20–30 | 25.94 ± 0.80 a | 1.33 ± 0.12 a | 0.47 ± 0.02 b | 9.26 ± 0.05 a | 10.11 ± 2.22 a | |
UPA | 0–10 | 21.07 ± 1.14 a | 0.88 ± 0.08 a | 0.97 ± 0.08 a | 8.47 ± 0.07 a | 28.44 ± 1.05 a |
10–20 | 22.34 ± 1.08 a | 1.53 ± 0.08 b | 0.93 ± 0.05 a | 8.66 ± 0.05 a | 22.43 ± 0.88 a | |
20–30 | 22.22 ± 0.93 a | 1.57 ± 0.10 b | 0.84 ± 0.05 a | 8.89 ± 0.07 a | 18.66 ± 0.87 b | |
RPA | 0–10 | 17.56 ± 0.78 b | 1.18 ± 0.08 a | 0.73 ± 0.02 a | 8.91 ± 0.03 a | 15.63 ± 4.10 a |
10–20 | 12.45 ± 1.25 a | 1.56 ± 0.09 a | 0.69 ± 0.02 a | 8.98 ± 0.03 a | 12.15 ± 4.06 a | |
20–30 | 10.55 ± 0.87 a | 1.58 ± 0.16 b | 0.64 ± 0.01 a | 9.06 ± 0.02 a | 8.62 ± 3.36 b |
Depth (cm) | Cr (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Zn (mg kg−1) | |
---|---|---|---|---|---|
USA | 0–10 | 50.77 ± 0.59 a | 12.32 ± 0.42 a | 13.33 ± 0.58 a | 40.81 ± 0.25 a |
10–20 | 67.89 ± 0.54 a | 16.32 ± 0.58 a | 18.65 ± 0.87 a | 53.68 ± 0.66 a | |
20–30 | 80.48 ± 0.21 a | 23.29 ± 0.48 a | 23.82 ± 0.68 a | 63.62 ± 0.75 a | |
RSA | 0–10 | 65.25 ± 0.28 a | 21.39 ± 0.55 b | 18.45 ± 0.44 a | 56.29 ± 0.48 a |
10–20 | 84.05 ± 0.77 a | 26.27 ± 0.58 b | 24.53 ± 0.27 a | 65.58 ± 0.98 a | |
20–30 | 112.65 ± 0.84 b | 32.56 ± 0.12 b | 32.34 ± 0.84 b | 90.69 ± 0.14 b | |
UPA | 0–10 | 22.55 ± 0.87 a | 7.52 ± 0.54 a | 6.25 ± 0.28 a | 33.47 ± 0.02 a |
10–20 | 33.04 ± 0.32 a | 8.86 ± 0.58 a | 8.63 ± 0.58 a | 44.21 ± 0.96 a | |
20–30 | 41.98 ± 0.54 a | 12.45 ± 0.19 a | 13.43 ± 0.89 a | 55.97 ± 0.33 a | |
RPA | 0–10 | 37.87 ± 0.54 b | 11.93 ± 0.05 b | 9.21 ± 0.96 a | 51.70 ± 0.87 b |
10–20 | 51.08 ± 0.45 b | 14.73 ± 0.26 b | 13.20 ± 0.87 a | 60.74 ± 0.05 a | |
20–30 | 66.75 ± 0.39 b | 18.22 ± 0.45 a | 19.62 ± 0.99 a | 78.71 ± 0.95 a |
SQG | Cr | Cu | Pb | Zn | Reference | |
---|---|---|---|---|---|---|
CB | TEC | 43.4 | 31.6 | 35.8 | 121 | [47] |
China SEPA | MSQG | 80 | 35 | 60 | 150 | [48] |
Hong kong ISQVs | ISQV-low | 80 | 65 | 75 | 200 | [49] |
ISQV-high | 370 | 270 | 218 | 410 | [49] | |
NOAA | ERL | 81 | 34 | 46.7 | 150 | [50] |
Ontario guidelines | LEL | 26 | 16 | 31 | 120 | [51] |
SEL | 110 | 110 | 250 | 820 | [51] | |
SQAV | TEL | 36 | 28 | 37 | 98 | [52] |
SQO Netherlands | Target | - | 36 | 85 | 140 | [53] |
US EPA | Non-polluted | <25 | <25 | <40 | <90 | [54] |
Moderate-polluted | 25–75 | 25–50 | 40–60 | 90–200 | [54] | |
Heavily-polluted | >75 | >50 | >60 | >200 | [54] |
Location | Cr | Cu | Pb | Zn | References |
---|---|---|---|---|---|
Yangtze River Delta China | 68.3 | 13 | 16.6 | 81.2 | [22] |
Yangtze River Estuary, China | 69.4 | 38.4 | 28.2 | 99.5 | [55] |
Tidal flat of Jiangsu, China | 51.4 | 15.68 | 11.77 | 51.62 | [56] |
Pearl River Delta, China | - | 70.0 | 48.3 | 156.8 | [57] |
Kavak Delta, Turkey | 163.0 | 37.5 | 26.5 | 84.2 | [59] |
Langat River, Malaysia | 2.68 | - | 15.5 | 29.7 | [58] |
Dongtai estuary, Jiangsu China | 112.6 | 32.6 | 32.3 | 90.7 | This study |
Saltmarsh | Biomass | Trace Metals (mg kg−1) | |||
---|---|---|---|---|---|
Cr | Cu | Pb | Zn | ||
USA | Leaves | 30.86 | 13.46 | 7.63 | 37.52 |
Stem | 10.31 | 7.12 | 3.00 | 19.45 | |
Roots | 13.69 | 26.62 | 7.05 | 56.81 | |
RSA | Leaves | 18.68 | 4.02 | 5.35 | 21.84 |
Stem | 7.19 | 7.81 | 2.43 | 13.34 | |
Roots | 52.04 | 17.52 | 18.4 | 51.17 | |
UPA | Leaves | 15.94 | 8.40 | 4.00 | 36.31 |
Stem | 6.23 | 5.71 | 3.17 | 24.92 | |
Roots | 3.87 | 13.3 | 3.00 | 47.61 | |
RPA | Leaves | 5.73 | 2.29 | 2.96 | 26.41 |
Stem | 4.14 | 4.35 | 3.22 | 18.33 | |
Roots | 26.36 | 10.25 | 3.82 | 28.81 |
Variation Source | Cr (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Zn (mg kg−1) |
---|---|---|---|---|
Community | 2312.13 *** | 625.43 *** | 660.08 *** | 1858.06 *** |
Reclamation | 961.52 *** | 277.58 *** | 289.57 *** | 775.22 *** |
Depth | 691.94 *** | 202.87 *** | 210.62 *** | 564.23 *** |
Community × Reclamation | 1340.02 *** | 362.47 *** | 382.56 *** | 1076.86 *** |
Community × Depth | 1046.02 *** | 282.94 *** | 298.62 *** | 840.59 *** |
Reclamation × Depth | 670.32 ** | 181.31 ** | 191.36 ** | 538.65 ** |
Community × Reclamation × Depth | 229.39 ** | 62.04 ** | 65.48 ** | 184.33 ** |
Location | Reclamation Type | Invasion Type | Trace Metals | Reclamation/Invasion Effect | References |
---|---|---|---|---|---|
United States of America | - | Phragmites australis invasion | Cr, Cu, Hg, Pb, Zn | Significantly negative on (Cu and Zn) | [79] |
China | Unspecified wetland reclamation | - | Cd, Cr, Cu, Ni, Pb, and Zn | Significantly negative on (Cd, Cr, Cu, Ni, Pb, and Zn) | [94] |
China | Agriculturalland conversion | - | Fe, Mn, Cd, Cr, Cu, Ni, Pb, and Zn | Significantly negative on (Cd, Cu, Pb, and Zn) | [42] |
China | Unspecified wetland reclamation | - | Al, Fe, Mn, Cu, Cr, Ni, Zn, and Pb | Significantly negative on (Cu, Cr, Zn, and Pb) | [95] |
China | Agricultural land conversion | - | As, Cd, Zn, Cu, and Pb | Significantly negative on (As, Cd, Zn, Cu, and Pb) | [57] |
China | Unspecified wetland reclamation | Spartina alterniflora invasion | Fe, Mn, Al, Cu, Zn, Cd, Pb, Cr, Ni, and As | Significantly negative on Cd, Pb, Zn, and Ni | [22] |
China | Sea embankment | Spartina alterniflora invasion | Cr, Cu, Pb, and Zn | Significantly negative on (Cr, Cu, Pb, and Zn) | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Leng, Z.; Jia, H.; Wei, L.; Yuguda, T.K.; Du, D. Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China. Biology 2023, 12, 253. https://doi.org/10.3390/biology12020253
Li J, Leng Z, Jia H, Wei L, Yuguda TK, Du D. Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China. Biology. 2023; 12(2):253. https://doi.org/10.3390/biology12020253
Chicago/Turabian StyleLi, Jian, Zhanrui Leng, Hui Jia, Lili Wei, Taitiya Kenneth Yuguda, and Daolin Du. 2023. "Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China" Biology 12, no. 2: 253. https://doi.org/10.3390/biology12020253
APA StyleLi, J., Leng, Z., Jia, H., Wei, L., Yuguda, T. K., & Du, D. (2023). Effect of Seawall Embankment Reclamation on the Distribution of Cr, Cu, Pb and Zn Pollution in Invasive Spartina alterniflora and Native Phragmites australis Coastal Saltmarshes of East China. Biology, 12(2), 253. https://doi.org/10.3390/biology12020253