Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Assays
2.1.1. Symbiotic Efficiency Tests
2.1.2. Nodulation Competitiveness Tests
2.2. Rhizobia Genomic DNA Extraction, Amplification, and Sequencing
2.2.1. Amplification and Sequencing of ITS Region, 16S rRNA, Housekeeping, and Symbiotic Genes
2.2.2. Phylogenies of ITS, 16S rRNA, Housekeeping, and Symbiotic Genes
2.2.3. U204 and U268 Whole-Genome Sequencing
2.3. Statistical Analysis
3. Results
3.1. Symbiotic Efficiency of Autochthonous Strains on White Clover
3.2. Nodulation Competitiveness of Efficient, Intermediate, and Parasitic Strains in White Clover
3.3. Phylogenetic Relationship between Rhizobia with Different Symbiotic Efficiencies
3.4. Draft Genome of U204 and U268 Strains
3.5. Comparative Genomic Analysis of Strains with Different Symbiotic Efficiency in Clover
4. Discussion
4.1. Competitiveness of Rhizobia with Different Symbiotic Efficiencies in White Clover
4.2. Phylogenetic Relationships and Genome Comparison between Rhizobia Strains with Variable Symbiotic Efficiency
4.3. Identification of Putative hrrP and sapA Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labandera, C.A.; Vincent, J.M. Competition between an introduced strain and native Uruguayan strains of Rhizobium trifolii. Plant Soil 1975, 42, 327–347. [Google Scholar] [CrossRef]
- Batista, L.; Irisarri, P.; Rebuffo, M.; Cuitiño, M.J.; Sanjuan, J.; Monza, J. Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biol. Fertil. Soils 2014, 51, 11–20. [Google Scholar] [CrossRef]
- Irisarri, P.; Cardozo, G.; Tartaglia, C.; Reyno, R.; Gutiérrez, P.; Lattanzi, F.A.; Rebuffo, M.; Monza, J. Selection of Competitive and Efficient Rhizobia Strains for White Clover. Front. Microbiol. 2019, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Reeve, W.; O’Hara, G.; Chain, P.; Ardley, J.; Brau, L.; Nandesena, K.; Tiwari, R.; Copeland, A.; Nolan, M.; Han, C.; et al. Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers. Stand. Genom. Sci. 2010, 2, 347–356. [Google Scholar] [CrossRef]
- Reeve, W.; O’Hara, G.; Chain, P.; Ardley, J.; Brau, L.; Nandesena, K.; Tiwari, R.; Malfatti, S.; Kiss, H.; Lapidus, A.; et al. Complete genome sequence of Rhizobium leguminosarum bv trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. Stand. Genom. Sci. 2010, 2, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Reeve, W.; Terpolilli, J.; Melino, V.; Ardley, J.; Tian, R.; De Meyer, S.; Tiwari, R.; Yates, R.; O’Hara, G.; Howieson, J. Genome sequence of the south American clover-nodulating Rhizobium leguminosarum bv. trifolii strain WSM597. Stand. Genom. Sci. 2013, 9, 385–394. [Google Scholar]
- Tartaglia, C.; Azziz, G.; Lorite, M.; Sanjuán, J.; Monza, J. Phylogenetic relationships among introduced and autochthonous rhizobia nodulating Trifolium spp. in Uruguayan soils. Appl. Soil Ecol. 2019, 139, 40–46. [Google Scholar] [CrossRef]
- Melino, V.J.; Drew, E.A.; Ballard, R.A.; Reeve, W.G.; Thomson, G.; White, R.G.; O’Hara, G.W. Identifying abnormalities in symbiotic development between Trifolium spp. and Rhizobium leguminosarum bv. trifolii leading to sub-optimal and ineffective nodule phenotypes. Ann. Bot. 2012, 110, 1559–1572. [Google Scholar] [CrossRef]
- Crook, M.B.; Lindsay, D.P.; Biggs, M.B.; Bentley, J.S.; Price, J.C.; Clement, S.C.; Clement, M.J.; Long, S.R.; Griffitts, J.S. Rhizobial Plasmids That Cause Impaired Symbiotic Nitrogen Fixation and Enhanced Host Invasion. Mol. Plant-Microbe Interact. 2012, 25, 1026–1033. [Google Scholar] [CrossRef]
- Price, P.A.; Tanner, H.R.; Dillon, B.A.; Shabab, M.; Walker, G.C.; Griffitts, J.S. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl. Acad. Sci. USA 2015, 112, 15244–15249. [Google Scholar] [CrossRef]
- Horváth, B.; Domonkos, A.; Kereszt, A.; Szűcs, A.; Ábrahám, E.; Ayaydin, F.; Bóka, K.; Chen, Y.; Chen, R.; Murray, J.D.; et al. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc. Natl. Acad. Sci. USA 2015, 112, 15232–15237. [Google Scholar] [CrossRef] [Green Version]
- Benedict, A.B.; Ghosh, P.; Scott, S.M.; Griffitts, J.S. A conserved rhizobial peptidase that interacts with host-derived symbiotic peptides. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Yates, R.J.; Howieson, J.G.; Real, D.; Reeve, W.G.; Vivas-Marfisi, A.; O’Hara, G.W. Evidence of selection for effective nodulation in the Trifolium spp. symbiosis with Rhizobium leguminosarum biovar trifolii. Aust. J. Exp. Agric. 2005, 45, 189–198. [Google Scholar] [CrossRef]
- Reeve, W.; Tian, R.; De Meyer, S.; Melino, V.; Terpolilli, J.; Ardley, J.; Tiwari, R.; Howieson, J.; Yates, R.; O’Hara, G.; et al. Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. Stand. Genom. Sci. 2013, 9, 243–253. [Google Scholar] [CrossRef]
- Andrews, M.; De Meyer, S.; James, E.K.; Stępkowski, T.; Hodge, S.; Simon, M.F.; Young, J.P.W. Horizontal Transfer of Symbiosis Genes within and between Rhizobial Genera: Occurrence and Importance. Genes 2018, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.T.; Ronson, C.W. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 1998, 95, 5145–5149. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Li, X.; Wang, E.; Cao, Y.; Chen, W.; Tao, S.; Wei, G. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom. 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J. A manual for the practical study of root-nodule bacteria. In IBP Handbook 15; Blackwell Scientific Publications: Oxford, UK, 1970; p. 164. [Google Scholar]
- Wilson, K.J.; Sessitsch, A.; Corbo, J.C.; Giller, K.E.; Akkermans, A.D.L.; Jefferson, R.A. beta-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 1995, 141, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: Laurel Hollow, NY, USA, 1972; p. 466. [Google Scholar]
- Howieson, J.G.; Dilworth, M.J. Working with Rhizobia; Australian Centre for International Agricultural Research: Canberra, Australia, 2016. [Google Scholar]
- Handberg, K.; Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 1992, 2, 487–496. [Google Scholar] [CrossRef]
- Riviezzi, B.; Cagide, C.; Pereira, A.; Herrmann, C.; Lombide, R.; Lage, M.; Sicardi, I.; Lage, P.; Castro-Sowinski, S.; Morel, M.A. Improved nodulation and seed yield of soybean (Glycine max) with a new isoflavone-based inoculant of Bradyrhizobium elkanii. Rhizosphere 2020, 15, 100219. [Google Scholar] [CrossRef]
- Iteman, I.; Rippka, R.; De Marsac, N.T.; Herdman, M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 2000, 146, 1275–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Gaunt, M.W.; Turner, S.L.; Rigottier-Gois, L.; A Lloyd-Macgilp, S.; Young, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 2001, 51, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, P.; Silva, C.; Werner, D.; Martinez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenetics Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Mauchline, T.; Hayat, R.; Roberts, R.; Powers, S.; Hirsch, P. Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods. Lett. Appl. Microbiol. 2014, 59, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Laguerre, G.; Nour, S.M.; Macheret, V.; Sanjuan, J.; Drouin, P.; Amarger, N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001, 147, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Overbeek, R.; Begley, T.; Butler, R.M.; Choudhuri, J.V.; Chuang, H.Y.; Cohoon, M.; de Crécy-Lagard, V.; Diaz, N.; Disz, T.; Edwards, R.; et al. The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Res. 2005, 33, 5691–5702. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.O.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Giménez, M.; Ferrés, I.; Iraola, G. Improved detection and classification of plasmids from circularized and fragmented assemblies. bioRxiv 2022. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2011; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2014. [Google Scholar]
- Young, J.P.W.; Moeskjær, S.; Afonin, A.; Rahi, P.; Maluk, M.; James, E.; Cavassim, M.; Rashid, M.; Aserse, A.; Perry, B.; et al. Defining the Rhizobium leguminosarum Species Complex. Genes 2021, 12, 111. [Google Scholar] [CrossRef]
- Shi, S.; Villamizar, L.F.; Gerard, E.; Ronson, C.; Wakelin, S.; Ballard, R.; Caradus, J.R.; O’Callaghan, M. Increasing biological nitrogen fixation by white clover-rhizobia symbiosis. J. N. Z. Grassl. 2019, 81, 231–234. [Google Scholar] [CrossRef]
- Duodu, S.; Carlsson, G.; Huss-Danell, K.; Svenning, M. Large genotypic variation but small variation in N2 fixation among rhizobia nodulating red clover in soils of northern Scandinavia. J. Appl. Microbiol. 2007, 102, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Nangul, A.; Moot, D.; Brown, D.; Ridgway, H.; Ridgway, H. Nodule occupancy by Rhizobium leguminosarum strain WSM1325 following inoculation of four annual Trifolium species in Canterbury, New Zealand. N. Z. J. Agric. Res. 2013, 56, 215–223. [Google Scholar] [CrossRef]
- Mendoza-Suárez, M.; Andersen, S.U.; Poole, P.S.; Sánchez-Cañizares, C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. Front. Plant Sci. 2021, 12, 2677. [Google Scholar] [CrossRef]
- Berais-Rubio, A.; Morel Revetria, M.; Gimenez, M.; Signorelli, S.; Monza, J. Competitiveness and Q1 symbiotic efficiency in alfalfa of Rhizobium favelukesii ORY1 strain in which homologous genes of peptidases HrrP and SapA that negatively affect symbiosis were identified. Front. Agron. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- Sachs, J.L.; Ehinger, M.O.; Simms, E.L. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J. Evol. Biol. 2010, 23, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Nandasena, K.G.; O’Hara, G.W.; Tiwari, R.P.; Howieson, J.G. Rapid In Situ Evolution of Nodulating Strains for Biserrula pelecinus L. through Lateral Transfer of a Symbiosis Island from the Original Mesorhizobial Inoculant. Appl. Environ. Microbiol. 2006, 72, 7365–7367. [Google Scholar] [CrossRef] [PubMed]
- Rajnovic, I.; Ramírez-Bahena, M.-H.; Kajic, S.; Igual, J.M.; Peix, A.; Velázquez, E.; Sikora, S. Rhizobium croatiense sp. nov. and Rhizobium redzepovicii sp. nov., two new species isolated from nodules of Phaseolus vulgaris in Croatia. Syst. Appl. Microbiol. 2022, 45, 126317. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wang, D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nat. Plants 2017, 3, 17048. [Google Scholar] [CrossRef] [PubMed]
- Berrabah, F.; Ratet, P.; Gourion, B. Multiple steps control immunity during the intracellular accommodation of rhizobia. J. Exp. Bot. 2015, 66, 1977–1985. [Google Scholar] [CrossRef]
- Haag, A.F.; Baloban, M.; Sani, M.; Kerscher, B.; Pierre, O.; Farkas, A.; Longhi, R.; Boncompagni, E.; Hérouart, D.; Dall’Angelo, S.; et al. Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis. PLoS Biol. 2011, 9, e1001169. [Google Scholar] [CrossRef] [PubMed]
- Wendlandt, C.E.; Roberts, M.; Nguyen, K.T.; Graham, M.L.; Lopez, Z.; Helliwell, E.E.; Friesen, M.L.; Griffitts, J.S.; Price, P.; Porter, S.S. Negotiating mutualism: A locus for exploitation by rhizobia has a broad effect size distribution and context-dependent effects on legume hosts. J. Evol. Biol. 2022, 35, 844–854. [Google Scholar] [CrossRef] [PubMed]
Symbiotic Efficiency | |||||
---|---|---|---|---|---|
Strain | Original Host | Efficient | Intermediate | Inefficient | References |
U314 | T. pratense | T. pratense | [2] | ||
U268 | T. pratense | T. pratense | [2] | ||
U1116 | T. pratense | T. pratense | [2] | ||
UP3 | T. polymorphum | T. polymorphum | T. repens | [7] | |
U204 | Trifolium sp. | T. repens, T. pratense | T. polymorphum | [1] [7] |
Treatment | Ratio | CFU per Seed | |
---|---|---|---|
UP3::gusA:U204 | UP3::gusA | U204 | |
M1 | 1:99 | 6 × 104 | 6 × 106 |
M2 | 99:1 | 4 × 106 | 4 × 104 |
M3 | 1:1 | 8 × 106 | 8 × 106 |
U204 | 8 × 106 | ||
UP3::gusA | 9 × 106 |
Treatments | SDW (mg/Plant) | SDW (%) Compared to +N | Symbiotic Efficiency |
---|---|---|---|
+N | 296 ± 57 a | 100 | |
U204 | 268 ± 40 a | 91 | Efficient |
U268 | 174 ± 74 b | 59 | Intermediate |
U314 | 93 ± 33 c | 31 | Intermediate |
U1116 | 27 ± 11 d | 9 | Intermediate |
UP3 | 2.0 ± 1 e | 0.6 | Parasitic |
−N | 2.0 ± 1 e | 0.6 |
Treatment | (%) Nodule Occupancy byU204::gusA | Total Nodules per Plant | SDW (mg/Plant) |
---|---|---|---|
U204::gusA/UP3 | 60 ab | 15 ± 4 a | 12.6 ± 3.7 a |
U204::gusA/U1116 | 42 b | 13 ± 3 a | 17.8 ± 8.5 a |
U204::gusA/U268 | 25 b | 11 ± 3 a | 17.0 ± 5.6 a |
U204::gusA | 100 a | 12 ± 4 a | 18.2 ± 5.2 a |
UP3 | 0 | 13 ± 5 a | 3.5 ± 0.9 b |
U1116 | 0 | 10 ± 2 a | 10.0 ± 3.0 ab |
U268 | 0 | 13 ± 5 a | 13.0 ± 3.8 a |
Treatment | UP3::gusA/U204 Ratios | (%) Nodule Occupancy by UP3::gusA | Total Nodules per Plant | SDW (mg/Plant) |
---|---|---|---|---|
M1 | 1:99 | 3 d | 10 ± 2 b | 8.3 ± 0.2 a |
M2 | 99:1 | 83 b | 14 ± 2 a | 3.3 ± 0.2 b |
M3 | 1:1 | 68 c | 12 ± 1 b | 7.3 ± 3.9 a |
U204 | - | 0 d | 8 ± 1 b | 9.7 ± 1.8 a |
UP3::gusA | - | 100 a | 18 ± 1 a | 3.2± 1.0 b |
Putative HrrP Query (aa) | Query Cover (%) | Identity (%) | Gene Location |
---|---|---|---|
WSM597_2 (947) | 95 | 84.38 | Chromosomic |
U268_1 (858) | 99 | 87.16 | Plasmidic |
U268_3 (947) | 99 | 84.93 | Chromosomic |
U204_1 (911) | 99 | 87.54 | Plasmidic |
U204_2 (948) | 99 | 84.49 | Chromosomic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morel Revetria, M.A.; Berais-Rubio, A.; Giménez, M.; Sanjuán, J.; Signorelli, S.; Monza, J. Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer. Biology 2023, 12, 243. https://doi.org/10.3390/biology12020243
Morel Revetria MA, Berais-Rubio A, Giménez M, Sanjuán J, Signorelli S, Monza J. Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer. Biology. 2023; 12(2):243. https://doi.org/10.3390/biology12020243
Chicago/Turabian StyleMorel Revetria, María A., Andrés Berais-Rubio, Matías Giménez, Juan Sanjuán, Santiago Signorelli, and Jorge Monza. 2023. "Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer" Biology 12, no. 2: 243. https://doi.org/10.3390/biology12020243
APA StyleMorel Revetria, M. A., Berais-Rubio, A., Giménez, M., Sanjuán, J., Signorelli, S., & Monza, J. (2023). Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer. Biology, 12(2), 243. https://doi.org/10.3390/biology12020243