SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Samples
- Group 1—Control. Three term placentas from women who were not SARS-CoV-2 infected during pregnancy and had no pathologies.
- Group 2—Infection during the first trimester of gestation. Seven term placentas from women who became SARS-CoV-2-infected during the first trimester of pregnancy.
- Group 3—Infection during the second trimester of gestation. Two term placentas from women who became SARS-CoV-2-infected during the second trimester of pregnancy.
- Group 4—Infection during the third trimester of gestation. Seven term placentas from women who became SARS-CoV-2-infected during the third trimester of pregnancy.
2.2. Immunohistochemistry
3. Results
3.1. Correlation between Maternal Symptoms and Histological Changes in the Placenta
3.2. PDPN and CD34 Immunoreactivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, A.D.; Okeagu, C.N.; Tortorich, G.; Pham, A.D.; Ly, E.I.; Brondeel, K.C.; Eng, M.R.; Luedi, M.M.; Urman, R.D.; Cornett, E.M. COVID-19 impact on the renal system: Pathophysiology and clinical outcomes. Best Pr. Res. Clin. Anaesthesiol. 2021, 35, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.J.; Chang, C.W.; Chen, M.J.; Lai, Y.C. Impact of COVID-19 on liver. World J. Clin. Cases 2021, 9, 7998–8007. [Google Scholar] [CrossRef] [PubMed]
- Moccia, F.; Negri, S.; Faris, P.; Perna, A.; De Luca, A.; Soda, T.; Berra-Romani, R.; Guerra, G. Targeting Endolysosomal Two-Pore Channels to Treat Cardiovascular Disorders in the Novel COronaVIrus Disease 2019. Front. Physiol. 2021, 12, 629119. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. The hypothesis that SARS-CoV-2 affects male reproductive ability by regulating autophagy. Med. Hypotheses 2020, 143, 110083. [Google Scholar] [CrossRef]
- Costa, M.L.; de Moraes Nobrega, G.; Antolini-Tavares, A. Key infections in the placenta. Obstet. Gynecol. Clin. 2020, 47, 133–146. [Google Scholar] [CrossRef]
- Blumberg, D.A.; Underwood, M.A.; Hedriana, H.L.; Lakshminrusimha, S. Vertical Transmission of SARS-CoV-2: What is the Optimal Definition? Am. J. Perinatol. 2020, 37, 769–772. [Google Scholar] [CrossRef]
- Ouyang, Y.; Bagalkot, T.; Fitzgerald, W.; Sadovsky, E.; Chu, T.; Martínez-Marchal, A.; Brieño-Enríquez, M.; Su, E.J.; Margolis, L.; Sorkin, A. Term human placental trophoblasts express SARS-CoV-2 entry factors ACE2, TMPRSS2, and furin. MSphere 2021, 6, e00250–e002212021. [Google Scholar] [CrossRef]
- Pique-Regi, R.; Romero, R.; Tarca, A.L.; Luca, F.; Xu, Y.; Alazizi, A. Does the Human Placenta Express the Canonical Cell Entry Mediators for SARS-CoV-2? Elife 2020, 9, e58716. [Google Scholar] [CrossRef]
- Resta, L.; Vimercati, A.; Cazzato, G.; Mazzia, G.; Cicinelli, E.; Colagrande, A.; Fanelli, M.; Scarcella, S.V.; Ceci, O.; Rossi, R. SARS-CoV-2 and Placenta: New Insights and Perspectives. Viruses 2021, 13, 723. [Google Scholar] [CrossRef]
- Ahlberg, M.; Neovius, M.; Saltvedt, S.; Söderling, J.; Pettersson, K.; Brandkvist, C.; Stephansson, O. Association of SARS-CoV-2 test status and pregnancy outcomes. JAMA 2020, 324, 1782–1785. [Google Scholar] [CrossRef] [PubMed]
- Todros, T.; Masturzo, B.; De Francia, S. COVID-19 infection: ACE2, pregnancy and preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 330. [Google Scholar] [CrossRef] [PubMed]
- Ciapponi, A.; Bardach, A.; Comandé, D.; Berrueta, M.; Argento, F.J.; Rodriguez Cairoli, F.; Zamora, N.; Santa María, V.; Xiong, X.; Zaraa, S. COVID-19 and pregnancy: An umbrella review of clinical presentation, vertical transmission, and maternal and perinatal outcomes. PLoS ONE 2021, 16, e0253974. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Von Dadelszen, P.; Draycott, T.; Ugwumadu, A.; O’Brien, P.; Magee, L. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA 2020, 324, 705–706. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Riemma, G.; Torella, M.; Cianci, S.; Savoia, F.; Licciardi, F.; Scida, S.; Morlando, M.; Colacurci, N.; De Franciscis, P. Maternal death related to COVID-19: A systematic review and meta-analysis focused on maternal co-morbidities and clinical characteristics. Int. J. Gynecol. Obstet. 2021, 154, 212–219. [Google Scholar] [CrossRef]
- La Verde, M.; Torella, M.; Riemma, G.; Narciso, G.; Iavarone, I.; Gliubizzi, L.; Palma, M.; Morlando, M.; Colacurci, N.; De Franciscis, P. Incidence of gestational diabetes mellitus before and after the Covid-19 lockdown: A retrospective cohort study. J. Obstet. Gynaecol. Res. 2022, 48, 1126–1131. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Moses, R.G. The diagnosis and management of gestational diabetes mellitus in the context of the COVID-19 pandemic. Diabetes Care 2020, 43, 1433–1434. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Deruelle, P.; Gunier, R.B.; Rauch, S.; García-May, P.K.; Mhatre, M.; Usman, M.A.; Abd-Elsalam, S.; Etuk, S.; Simmons, L.E. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021, 225, 289.e1–289.e17. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. Can. Med Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef]
- Amraei, R.; Rahimi, N. COVID19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020, 9, 1652. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.M.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E. Pre-eclampsia-like syndrome induced by severe COVID-19: A prospective observational study. BJOG: Int. J. Obstet. Gynaecol. 2020, 127, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, D.J.; Rasmussen, S.A. An update on COVID-19 and pregnancy. Am. J. Obstet. Gynecol. 2022, 226, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Resta, L.; Vimercati, A.; Cazzato, G.; Fanelli, M.; Scarcella, S.V.; Ingravallo, G.; Colagrande, A.; Sablone, S.; Stolfa, M.; Arezzo, F.; et al. SARS-CoV-2, Placental Histopathology, Gravity of Infection and Immunopathology: Is There an Association? Viruses 2022, 14, 1330. [Google Scholar] [CrossRef] [PubMed]
- Patberg, E.T.; Adams, T.; Rekawek, P.; Vahanian, S.A.; Akerman, M.; Hernandez, A.; Rapkiewicz, A.V.; Ragolia, L.; Sicuranza, G.; Chavez, M.R. Coronavirus disease 2019 infection and placental histopathology in women delivering at term. Am. J. Obstet. Gynecol. 2021, 224, 382.e1–382.e18. [Google Scholar] [CrossRef]
- Been, J.V.; Ochoa, L.B.; Bertens, L.C.; Schoenmakers, S.; Steegers, E.A.; Reiss, I.K. Impact of COVID-19 mitigation measures on the incidence of preterm birth: A national quasi-experimental study. Lancet Public Health 2020, 5, e604–e611. [Google Scholar] [CrossRef]
- Quintanilla, M.; Montero-Montero, L.; Renart, J.; Martín-Villar, E. Podoplanin in Inflammation and Cancer. Int. J. Mol. Sci. 2019, 20, 707. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Xia, L. Emerging roles of podoplanin in vascular development and homeostasis. Front. Med. 2015, 9, 421–430. [Google Scholar] [CrossRef]
- Lowe, K.L.; Finney, B.A.; Deppermann, C.; Hägerling, R.; Gazit, S.L.; Frampton, J.; Buckley, C.; Camerer, E.; Nieswandt, B.; Kiefer, F.; et al. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 2015, 125, 3769–3777. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, H.; Rayes, J.; Miyashita, T.; Ishii, G.; Retzbach, E.P.; Sheehan, S.A.; Takemoto, A.; Chang, Y.W.; Yoneda, K.; Asai, J.; et al. Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Sci. 2018, 109, 1292–1299. [Google Scholar] [CrossRef]
- Red-Horse, K.; Rivera, J.; Schanz, A.; Zhou, Y.; Winn, V.; Kapidzic, M.; Maltepe, E.; Okazaki, K.; Kochman, R.; Vo, K.C.; et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J. Clin. Invest. 2006, 116, 2643–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Red-Horse, K. Lymphatic vessel dynamics in the uterine wall. Placenta 2008, 29, S55–S59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, B.; Alexander, J.S.; Gu, Y.; Zhang, Y.; Lewis, D.F.; Wang, Y. Expression of lymphatic vascular endothelial hyaluronan receptor-1 (LYVE-1) in the human placenta. Lymphat. Res. Biol. 2006, 4, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, E.; Lucariello, A.; Contieri, M.; Trucillo, M.; Pavese, L.; Guerra, G.; De Falco, M.; De Luca, A.; Perna, A. Differential expression of several factors involved in placental development in normal and abnormal condition. Placenta 2020, 95, 1–8. [Google Scholar] [CrossRef]
- Lucariello, A.; Perna, A.; Sellitto, C.; Baldi, A.; Iannaccone, A.; Cobellis, L.; De Luca, A.; De Falco, M. Modulation of Wolframin Expression in Human Placenta during Pregnancy: Comparison among Physiological and Pathological States. BioMed. Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pardey, J.; Moulden, M.; Redman, C.W. A computer system for the numerical analysis of nonstress tests. Am. J. Obstet. Gynecol. 2002, 186, 1095–1103. [Google Scholar] [CrossRef]
- Anceschi, M.; Piazze, J.; Vozzi, G.; Berretta, A.R.; Figliolini, C.; Vigna, R.; Cosmi, E. Antepartum computerized CTG and neonatal acid-base status at birth. Int. J. Gynecol. Obstet. 1999, 65, 267–272. [Google Scholar] [CrossRef]
- Galazios, G.; Tripsianis, G.; Tsikouras, P.; Koutlaki, N.; Liberis, V. Fetal distress evaluation using and analyzing the variables of antepartum computerized cardiotocography. Arch. Gynecol. Obstet. 2010, 281, 229–233. [Google Scholar] [CrossRef]
- La Verde, M.; Riemma, G.; Torella, M.; Torre, C.; Cianci, S.; Conte, A.; Capristo, C.; Morlando, M.; Colacurci, N.; De Franciscis, P. Impact of Braxton-Hicks contractions on fetal wellbeing; a prospective analysis through computerised cardiotocography. J. Obstet. Gynaecol. 2022, 42, 569–573. [Google Scholar] [CrossRef]
- La Verde, M.; Torella, M.; Lanza, G.; Rapisarda, A.M.C.; Morlando, M.; Cianci, S.; Colacurci, N.; Capristo, C.; Torre, C.; De Franciscis, P.; et al. Objective and quantitative evaluation of fetal hiccups by computerized cardiotocography: A prospective observational study. Ital. J. Gynaecol. Obstet. 2021, 33, 249–255. [Google Scholar] [CrossRef]
- Venceslau, E.M.; Guida, J.P.S.; Nobrega, G.M.; Samogim, A.P.; Parise, P.L.; Japecanga, R.R.; de Toledo-Teixeira, D.A.; Forato, J.; Antolini-Tavares, A.; Souza, A.; et al. Adequate Placental Sampling for the Diagnosis and Characterization of Placental Infection by Zika Virus. Front. Microbiol. 2020, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- De Falco, M.; Cobellis, L.; Giraldi, D.; Mastrogiacomo, A.; Perna, A.; Colacurci, N.; Miele, L.; De Luca, A. Expression and distribution of notch protein members in human placenta throughout pregnancy. Placenta 2007, 28, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Debelenko, L.; Katsyv, I.; Chong, A.M.; Peruyero, L.; Szabolcs, M.; Uhlemann, A.-C. Trophoblast damage with acute and chronic intervillositis: Disruption of the placental barrier by severe acute respiratory syndrome coronavirus 2. Hum. Pathol. 2021, 109, 69–79. [Google Scholar] [CrossRef]
- Garrido-Pontnou, M.; Navarro, A.; Camacho, J.; Crispi, F.; Alguacil-Guillén, M.; Moreno-Baró, A.; Hernandez-Losa, J.; Sesé, M.; Ramón y Cajal, S.; Garcia Ruíz, I. Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associated fetal demise. Mod. Pathol. 2021, 34, 1704–1709. [Google Scholar] [CrossRef]
- Hecht, J.L.; Quade, B.; Deshpande, V.; Mino-Kenudson, M.; Ting, D.T.; Desai, N.; Dygulska, B.; Heyman, T.; Salafia, C.; Shen, D. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: A series of 19 placentas from COVID-19-positive mothers. Mod. Pathol. 2020, 33, 2092–2103. [Google Scholar] [CrossRef]
- Huynh, A.; Sehn, J.K.; Goldfarb, I.T.; Watkins, J.; Torous, V.; Heerema-McKenney, A.; Roberts, D.J. SARS-CoV-2 placentitis and intraparenchymal thrombohematomas among COVID-19 infections in pregnancy. JAMA Netw. Open 2022, 5, e225345. [Google Scholar] [CrossRef]
- Sharps, M.C.; Hayes, D.J.; Lee, S.; Zou, Z.; Brady, C.A.; Almoghrabi, Y.; Kerby, A.; Tamber, K.K.; Jones, C.J.; Waldorf, K.M.A. A structured review of placental morphology and histopathological lesions associated with SARS-CoV-2 infection. Placenta 2020, 101, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Glynn, S.M.; Yang, Y.J.; Thomas, C.; Friedlander, R.L.; Cagino, K.A.; Matthews, K.C.; Riley, L.E.; Baergen, R.N.; Prabhu, M. SARS-CoV-2 and placental pathology: Malperfusion patterns are dependent on timing of infection during pregnancy. Am. J. Surg. Pathol. 2022, 46, 51–57. [Google Scholar] [CrossRef]
- Linehan, L.; O’Donoghue, K.; Dineen, S.; White, J.; Higgins, J.R.; Fitzgerald, B. SARS-CoV-2 placentitis: An uncommon complication of maternal COVID-19. Placenta 2021, 104, 261–266. [Google Scholar] [CrossRef]
- Mascolo, S.; Carleo, M.A.; Contieri, M. SARS-CoV-2 and inflammatory responses: From mechanisms to the potential therapeutic use of intravenous immunoglobulin. J. Med. Virol. 2021, 93, 2654–2661. [Google Scholar] [CrossRef]
- Meijer, W.J.; Wensing, A.M.; Bruinse, H.W.; Nikkels, P.G. High rate of chronic villitis in placentas of pregnancies complicated by influenza A/H1N1 infection. Infect. Dis. Obstet. Gynecol. 2014, 2014, 768380. [Google Scholar] [CrossRef]
- Algarroba, G.N.; Rekawek, P.; Vahanian, S.A.; Khullar, P.; Palaia, T.; Peltier, M.R.; Chavez, M.R.; Vintzileos, A.M. Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. Am. J. Obstet. Gynecol. 2020, 223, 275–278. [Google Scholar] [CrossRef]
- Baergen, R.N.; Heller, D.S. Placental pathology in Covid-19 positive mothers: Preliminary findings. Pediatr. Dev. Pathol. 2020, 23, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.A.; Avvad-Portari, E.; Babál, P.; Baldewijns, M.; Blomberg, M.; Bouachba, A.; Camacho, J.; Collardeau-Frachon, S.; Colson, A.; Dehaene, I. Placental tissue destruction and insufficiency from COVID-19 causes stillbirth and neonatal death from hypoxic-ischemic injury: A study of 68 cases with SARS-CoV-2 placentitis from 12 countries. Arch. Pathol. Lab. Med. 2022, 146, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Gu, Y.; Zhao, S.; Groome, L.J.; Alexander, J.S. D2-40/podoplanin expression in the human placenta. Placenta 2011, 32, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundell, A.-C.; Nordström, I.; Andersson, K.; Lundqvist, C.; Telemo, E.; Nava, S.; Kaipe, H.; Rudin, A. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci. Rep. 2017, 7, 39904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onak Kandemir, N.; Barut, F.; Barut, A.; Birol, İ.E.; Dogan Gun, B.; Ozdamar, S.O. Biological importance of podoplanin expression in chorionic villous stromal cells and its relationship to placental pathologies. Sci. Rep. 2019, 9, 14230. [Google Scholar] [CrossRef] [Green Version]
- Volchek, M.; Girling, J.E.; Lash, G.E.; Cann, L.; Kumar, B.; Robson, S.C.; Bulmer, J.N.; Rogers, P.A. Lymphatics in the human endometrium disappear during decidualization. Hum. Reprod. 2010, 25, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- Loukovaara, S.; Gucciardo, E.; Repo, P.; Lohi, J.; Salven, P.; Lehti, K. A Case of Abnormal Lymphatic-Like Differentiation and Endothelial Progenitor Cell Activation in Neovascularization Associated with Hemi-Retinal Vein Occlusion. Case Rep. Ophthalmol. 2015, 6, 228–238. [Google Scholar] [CrossRef]
- Schacht, V.; Ramirez, M.I.; Hong, Y.K.; Hirakawa, S.; Feng, D.; Harvey, N.; Williams, M.; Dvorak, A.M.; Dvorak, H.F.; Oliver, G.; et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22, 3546–3556. [Google Scholar] [CrossRef]
Group 1 (Total Patients = 3) | Group 2 (Total Patients = 7) | Group 3 (Total Patients = 2) | Group 4 (Total Patients = 7) | |
---|---|---|---|---|
Maternal age, range (years) | 22–31 | 23–40 | 29–36 | 21–40 |
Gestation at delivery, range (weeks) | 38–40 | 38–40 | 37–40 | 37–41 |
Spontaneous delivery (patient numbers) | 2 | 4 | 1 | 4 |
Caesarean section (patient numbers) | 1 | 3 | 1 | 3 |
Smokers (yes/no) | No | No | No | No |
APGAR score 1 min, range APGAR score 5 min, range | 8–9 9–10 | 8–9 9–10 | 8–10 9–10 | 8–9 9–10 |
Birth weight, range (g) | 3340–3780 | 3010–3430 | 2950–4010 | 2760–3550 |
BMI, range | 19–21 | 18–28 | 19–21 | 20–23 |
Duration of infection, range (days) | 0 | 15–21 | 21–22 | 18–33 |
Most common symptoms | ||||
Fever (patient numbers) | 0 | 4 | 2 | 2 |
Rhinitis (patient numbers) | 0 | 1 | 0 | 0 |
Cough (patient numbers) | 0 | 1 | 1 | 1 |
Cephalalgia (patient numbers) | 0 | 1 | 1 | 2 |
Muscle pain (patient numbers) | 0 | 2 | 1 | 2 |
Asthenia (patient numbers) | 0 | 3 | 1 | 3 |
Ageusia/anosmia (patient numbers) | 0 | 1 | 2 | 2 |
Pharyngodynia (patient numbers) | 0 | 0 | 0 | 2 |
Chest pain (patient numbers) | 0 | 1 | 0 | 1 |
Therapy | ||||
Paracetamol (patient numbers) | 0 | 3 | 3 | 2 |
Corticosteroids (patient numbers) | 0 | 3 | 2 | 3 |
Azithromycin (patient numbers) | 0 | 2 | 2 | 4 |
Low-molecular-weight heparin (patient numbers) | 0 | 1 | 1 | 1 |
Group 1 (Total Patients = 3) | Group 2 (Total Patients = 7) | Group 3 (Total Patients = 2) | Group 4 (Total Patients = 7) | |
---|---|---|---|---|
Villous fibrin deposits (patient numbers) | + (2) ++ (1) | + (2) ++ (2) +++ (3) | + (1) +++ (1) | + (1) ++ (3) +++ (3) |
Villous lymphocyte infiltration (patient numbers) | + (2) ++ (1) | + (2) ++ (2) +++ (3) | + (1) ++ (1) | + (4) ++ (3) |
Villous edema (patient numbers) | + (3) | + (3) +++ (4) | + (1) − (1) | + (2) ++ (4) − (1) |
Villous thrombus (patient numbers) | − (3) | ++ (2) +++ (3) − (2) | + (1) − (1) | + (1) ++ (4) − (2) |
Villous Stroma | Decidua Stroma | Endothelium | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 1 | Group 2 | Group 3 | Group 4 | Group 1 | Group 2 | Group 3 | Group 4 | |
CD34 | − | − | − | − | − | − | − | − | +++ | +++ | +++ | +++ |
PDPN | ++ | ++ | ++ | ± | ++ | ++ | ± | + | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perna, A.; Hay, E.; De Blasiis, P.; La Verde, M.; Caprio, F.; Torella, M.; Morlando, M.; Sellitto, C.; Guerra, G.; Lucariello, A.; et al. SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy. Biology 2023, 12, 174. https://doi.org/10.3390/biology12020174
Perna A, Hay E, De Blasiis P, La Verde M, Caprio F, Torella M, Morlando M, Sellitto C, Guerra G, Lucariello A, et al. SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy. Biology. 2023; 12(2):174. https://doi.org/10.3390/biology12020174
Chicago/Turabian StylePerna, Angelica, Eleonora Hay, Paolo De Blasiis, Marco La Verde, Francesca Caprio, Marco Torella, Maddalena Morlando, Carmine Sellitto, Germano Guerra, Angela Lucariello, and et al. 2023. "SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy" Biology 12, no. 2: 174. https://doi.org/10.3390/biology12020174
APA StylePerna, A., Hay, E., De Blasiis, P., La Verde, M., Caprio, F., Torella, M., Morlando, M., Sellitto, C., Guerra, G., Lucariello, A., Baldi, A., & De Luca, A. (2023). SARS-CoV-2 Infection: A Clinical and Histopathological Study in Pregnancy. Biology, 12(2), 174. https://doi.org/10.3390/biology12020174