Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Diabetes as a Risk Factor for PDAC Development
1.2. Nutraceuticals-Based Treatment Strategies
2. Methods
3. Results
3.1. Participants’ and Studies’ Characteristics
3.2. Interventions
3.3. Outcome Measures
3.4. Safety Issues
4. Discussion
4.1. Mechanisms of Action
4.2. Intervention’s Quality and Safety
4.3. Clinical Perspectives
4.4. Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer—World Health Organisation. World Cancer Report—Cancer Research for Cancer Prevention; World Health Organisation: Geneva, Switzerland, 2020.
- Iovanna, J.; Mallmann, M.C.; Gonçalves, A.; Turrini, O.; Dagorn, J.-C. Current Knowledge on Pancreatic Cancer. Front. Oncol. 2012, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef]
- Falcinelli, M.; Thaker, P.H.; Lutgendorf, S.K.; Conzen, S.D.; Flaherty, R.L.; Flint, M.S. The Role of Psychologic Stress in Cancer Initiation: Clinical Relevance and Potential Molecular Mechanisms. Cancer Res. 2021, 81, 5131–5140. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Ng, K.; Bao, Y.; Kraft, P.; Stampfer, M.J.; Michaud, D.S.; Ma, J.; Buring, J.E.; Sesso, H.D.; Lee, I.-M.; et al. Plasma 25-Hydroxyvitamin D and Risk of Pancreatic Cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bian, X.; Wei, S.; He, M.; Yang, Y. The relationship between pancreatic cancer and type 2 diabetes: Cause and consequence. Cancer Manag. Res. 2019, 11, 8257–8268. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Andersen, D.K. Diabetes and pancreatic cancer. Endocr.-Relat. Cancer 2012, 19, F9–F26. [Google Scholar] [CrossRef]
- Ben, Q.; Xu, M.; Ning, X.; Liu, J.; Hong, S.; Huang, W.; Zhang, H.; Li, Z. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur. J. Cancer 2011, 47, 1928–1937. [Google Scholar] [CrossRef]
- Pannala, R.; Leirness, J.B.; Bamlet, W.R.; Basu, A.; Petersen, G.M.; Chari, S.T. Prevalence and Clinical Profile of Pancreatic Cancer–Associated Diabetes Mellitus. Gastroenterology 2008, 134, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.J.; Roddam, A.W.; Beral, V. Pancreatic cancer in type 1 and young-onset diabetes: Systematic review and meta-analysis. Br. J. Cancer 2007, 96, 507–509. [Google Scholar] [CrossRef]
- Li, D.; Tang, H.W.; Hassan, M.M.; Holly, E.A.; Bracci, P.M.; Silverman, D.T. Diabetes and risk of pancreatic cancer: A pooled analysis of three large case–control studies. Cancer Causes Control 2011, 22, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, A.; Siegel, E.; Makhoul, I. Pancreatic cancer and diabetes mellitus: A retrospective cohort study. J. Clin. Oncol. 2011, 29, 4102. [Google Scholar] [CrossRef]
- Teucher, B.; Rohrmann, S.; Kaaks, R. Obesity: Focus on all-cause mortality and cancer. Maturitas 2010, 65, 112–116. [Google Scholar] [CrossRef]
- Li, D. Diabetes and pancreatic cancer. Mol. Carcinog. 2012, 51, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mravec, B.; Horvathova, L.; Hunakova, L. Neurobiology of Cancer: The Role of β-Adrenergic Receptor Signaling in Various Tumor Environments. Int. J. Mol. Sci. 2020, 21, 7958. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.-Z.; Fehsenfeld, D.M.; Murphy, L.O.; Permert, J.; Adrian, T.E. Physiological Concentrations of Insulin Augment Pancreatic Cancer Cell Proliferation and Glucose Utilization By Activating MAP Kinase, PI3 Kinase and Enhancing GLUT-1 Expression. Pancreas 2000, 21, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Mutgan, A.C.; Besikcioglu, H.E.; Wang, S.; Friess, H.; Ceyhan, G.O.; Demir, I.E. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol. Cancer 2018, 17, 66. [Google Scholar] [CrossRef] [Green Version]
- Grote, V.A.; Rohrmann, S.; Nieters, A.; Dossus, L.; Tjønneland, A.; Halkjær, J.; Overvad, K.; Fagherazzi, G.; Boutron-Ruault, M.C.; Morois, S.; et al. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: A study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia 2011, 54, 3037–3046. [Google Scholar] [CrossRef] [Green Version]
- Menini, S.; Iacobini, C.; de Latouliere, L.; Manni, I.; Ionta, V.; Fantauzzi, C.B.; Pesce, C.; Cappello, P.; Novelli, F.; Piaggio, G.; et al. The advanced glycation end-product N()-carboxymethyllysine promotes progression of pancreatic cancer: Implications for diabetes-associated risk and its prevention. J. Pathol. 2018, 245, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, G.; Pellegatta, M.; Crippa, S.; Lena, M.S.; Belfiori, G.; Doglioni, C.; Taveggia, C.; Falconi, M. Nerves and Pancreatic Cancer: New Insights into A Dangerous Relationship. Cancers 2019, 11, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udumyan, R.; Montgomery, S.; Fang, F.; Almroth, H.; Valdimarsdottir, U.; Ekbom, A.; Smedby, K.E.; Fall, K. Beta-Blocker Drug Use and Survival among Patients with Pancreatic Adenocarcinoma. Cancer Res. 2017, 77, 3700–3707. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Tuorkey, M.J. Cancer Therapy with Phytochemicals: Present and Future Perspectives. Biomed. Environ. Sci. 2015, 28, 808–819. [Google Scholar] [CrossRef]
- Yue, Q.; Gao, G.; Zou, G.; Yu, H.; Zheng, X. Natural Products as Adjunctive Treatment for Pancreatic Cancer: Recent Trends and Advancements. BioMed Res. Int. 2017, 2017, 8412508. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Leung, P.S. Use of herbal medicines and natural products: An alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int. J. Biochem. Cell Biol. 2014, 53, 224–236. [Google Scholar] [CrossRef]
- Edwards, L.; Guilliams, T.G. Chronic Stress and the HPA Axis: Clinical Assessment and Therapeutic Considerations. Standard 2010, 9, 1–12. [Google Scholar]
- Rahman, M.; Islam, R.; Shohag, S.; Hossain, E.; Rahaman, S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris, A.M.; et al. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022, 27, 1713. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, J.K.; Triantafyllidi, E.; Sideris, M.; Pittaras, T.; Papalois, A.E. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022, 14, 619. [Google Scholar] [CrossRef] [PubMed]
- Katz, P.S.; Trask, A.J.; Lucchesi, P.A. Curcuminoids: Spicing up sympathovagal tone. Nutrition 2009, 25, 879–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beheshti, F.; Khazaei, M.; Hosseini, M. Neuropharmacological effects of Nigella sativa. Avicenna J. Phytomed. 2016, 6, 104–116. [Google Scholar]
- Dai, C.-X.; Hu, C.-C.; Shang, Y.-S.; Xie, J. Role of Ginkgo biloba extract as an adjunctive treatment of elderly patients with depression and on the expression of serum S100B. Medicine 2018, 97, e12421. [Google Scholar] [CrossRef]
- Prieto Gratacós, E.; Alvarez, R.; Redal, M.A.; Amador, V.; Sosa, I.; Laguzzi, M.; Pérez, L. Metabolic Therapy of Pancreatic Cancer. Clin. Oncol. 2018, 3, 1534. [Google Scholar]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef]
- Weber, D.D.; Aminazdeh-Gohari, S.; Kofler, B. Ketogenic diet in cancer therapy. Aging 2018, 10, 164–165. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.G.; Bhatia, S.K.; Anderson, C.M.; Eichenberger-Gilmore, J.M.; Sibenaller, Z.A.; Mapuskar, K.A.; Schoenfeld, J.D.; Buatti, J.M.; Spitz, D.R.; Fath, M.A. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol. 2014, 2, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.V.; Joensson, E.A. Low-carbohydrate diet in type 2 diabetes: Stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr. Metab. 2008, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Guldbrand, H.; Dizdar, B.; Bunjaku, B.; Lindström, T.; Bachrach-Lindström, M.; Fredrikson, M.; Östgren, C.J.; Nystrom, F.H. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 2012, 55, 2118–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.A.; Mathew, T.C.; Dashti, A.A.; Asfar, S.; Al-Zaid, N.; Dashti, H.M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition 2012, 28, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Luscombe-Marsh, N.; Thompson, C.H.; Noakes, M.; Buckley, J.; Wittert, G.; Yancy, W.S., Jr.; Brinkworth, G.D. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Polito, R.; Valenzano, A.; Monda, V.; Cibelli, G.; Monda, M.; Messina, G.; Villano, I.; Messina, A. Heart Rate Variability and Sympathetic Activity Is Modulated by Very Low-Calorie Ketogenic Diet. Int. J. Environ. Res. Public Health 2022, 19, 2253. [Google Scholar] [CrossRef]
- Majerova, K.; Zvarik, M.; Ricon-Becker, I.; Hanalis-Miller, T.; Mikolaskova, I.; Bella, V.; Mravec, B.; Hunakova, L. Increased sympathetic modulation in breast cancer survivors determined by measurement of heart rate variability. Sci. Rep. 2022, 12, 14666. [Google Scholar] [CrossRef]
- De Couck, M.; Maréchal, R.; Moorthamers, S.; Van Laethem, J.-L.; Gidron, Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol. 2016, 40, 47–51. [Google Scholar] [CrossRef]
- Wang, S.-J.; Chang, Y.-C.; Hu, W.-Y.; Chang, Y.-M.; Lo, C. The Comparative Effect of Reduced Mindfulness-Based Stress on Heart Rate Variability among Patients with Breast Cancer. Int. J. Environ. Res. Public Health 2022, 19, 6537. [Google Scholar] [CrossRef]
- Park, H.; Oh, S.; Noh, Y.; Kim, J.Y.; Kim, J.-H. Heart Rate Variability as a Marker of Distress and Recovery: The Effect of Brief Supportive Expressive Group Therapy With Mindfulness in Cancer Patients. Integr. Cancer Ther. 2018, 17, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Gidron, Y.; De Couck, M.; Schallier, D.; De Greve, J.; Van Laethem, J.L.; Maréchal, R. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers. J. Immunol. Res. 2018, 2018, 4874193. [Google Scholar] [CrossRef] [Green Version]
- Jentzsch, V.; Davis, J.; Djamgoz, M. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Cancers 2020, 12, 3096. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Sun, X.; Lu, S.; Liu, S. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine 2018, 97, e0114. [Google Scholar] [CrossRef] [PubMed]
- Pannala, R.; Basu, A.; Petersen, G.M.; Chari, S.T. New-onset diabetes: A potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009, 10, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Lowery, R.P.; Calvanese, A.V.; Joy, J.M.; Purpura, M.; Wilson, J.M. Comparative absorption of curcumin formulations. Nutr. J. 2014, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Res. Treat. 2014, 46, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Saadat, A.; Beiraghdar, F.; Sahebkar, A. Adjuvant Therapy with Bioavailability-Boosted Curcuminoids Suppresses Systemic Inflammation and Improves Quality of Life in Patients with Solid Tumors: A Randomized Double-Blind Placebo-Controlled Trial. Phytother. Res. 2014, 28, 1461–1467. [Google Scholar] [CrossRef]
- Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II Trial of Curcumin in Patients with Advanced Pancreatic Cancer. Clin. Cancer Res. 2008, 14, 4491–4499. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, R.; Schaffer, M.; Vizel, B.; Badmaev, V.; Bar-Sela, G. Curcumin and Gemcitabine in Patients With Advanced Pancreatic Cancer. Nutr. Cancer 2010, 62, 1137–1141. [Google Scholar] [CrossRef]
- Pastorelli, D.; Fabricio, A.S.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res. 2018, 132, 72–79. [Google Scholar] [CrossRef]
- Kanai, M.; Yoshimura, K.; Asada, M.; Imaizumi, A.; Suzuki, C.; Matsumoto, S.; Nishimura, T.; Mori, Y.; Masui, T.; Kawaguchi, Y.; et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol. 2011, 68, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amri, A.M.; Bamosa, A.O. Phase I Safety and Clinical Activity Study of Thymoquinone in Patients with Advanced Refractory Malignant Disease. Shiraz E-Med. J. 2009, 10, 107–111. [Google Scholar]
- Löhr, J.-M.; Karimi, M.; Omazic, B.; Kartalis, N.; Verbeke, C.S.; Berkenstam, A.; Frödin, J.-E. A phase I dose escalation trial of AXP107-11, a novel multi-component crystalline form of genistein, in combination with gemcitabine in chemotherapy-naive patients with unresectable pancreatic cancer. Pancreatology 2016, 16, 640–645. [Google Scholar] [CrossRef] [PubMed]
- El-Rayes, B.F.; Philip, P.A.; Sarkar, F.H.; Shields, A.F.; Ferris, A.M.; Hess, K.; Kaseb, A.O.; Javle, M.M.; Varadhachary, G.R.; Wolff, R.A.; et al. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Investig. New Drugs 2011, 29, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Hauns, B.; Häring, B.; Köhler, S.; Mross, K.; Robben-Bathe, P.; Unger, C. Phase II Study with 5-Fluorouracil and Ginkgo biloba Extract (GBE 761 ONC) in Patients with Pancreatic Cancer. Arzneimittelforschung 1999, 49, 1030–1034. [Google Scholar] [CrossRef]
- Adibian, M.; Hodaei, H.; Nikpayam, O.; Sohrab, G.; Hekmatdoost, A.; Hedayati, M. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2019, 33, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, H.R.; Mohammadpour, A.H.; Dastani, M.; Jaafari, M.R.; Abnous, K.; Mobarhan, M.G.; Oskuee, R.K. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna J. Phytomed. 2016, 6, 567–577. [Google Scholar] [CrossRef]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Majeed, M.; Sahebkar, A.; Simental-Mendía, L. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res. 2018, 68, 403–409. [Google Scholar] [CrossRef]
- Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadi, S.; Mirmiran, P.; Daryabeygi-Khotbesara, R.; Hadi, V. Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: A randomized, double-blind, placebo controlled trial. Prog. Nutr. 2018, 20, 127–133. [Google Scholar] [CrossRef]
- Hosseini, M.; Mirkarimi, S.; Amini, M.; Mohtashami, R.; Kianbakht, S.; Fallah Huseini, H. Effects of Nigella sativa L. Seed Oil in Type II Diabetic Patients: A Randomized, Double-Blind, Placebo—Controlled Clinical Trial. J. Med. Plants 2013, 12, 93–99. [Google Scholar]
- Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa Improves Glycemic Control and Ameliorates Oxidative Stress in Patients with Type 2 Diabetes Mellitus: Placebo Controlled Participant Blinded Clinical Trial. PLoS ONE 2015, 10, e0113486. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Amandeep, A.; Chauhan, E.S. Antidiabetic and lipid lowering extenuating impact of Glycine max leaves (soyabean) in type II diabetes mellitus subjects. Int. J. Pharm. Sci. Res. 2019, 10, 2280–2284. [Google Scholar] [CrossRef]
- Choi, M.-S.; Ryu, R.; Seo, Y.R.; Jeong, T.-S.; Shin, D.-H.; Park, Y.B.; Kim, S.R.; Jung, U.J. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: A randomized placebo controlled trial. Food Funct. 2014, 5, 1621–1630. [Google Scholar] [CrossRef]
- Kudolo, G.B. The Effect of 3-Month Ingestion of Ginkgo biloba Extract (EGb 761) on Pancreatic β-Cell Function in Response to Glucose Loading in Individuals with Non-Insulin-Dependent Diabetes Mellitus. J. Clin. Pharmacol. 2001, 41, 600–611. [Google Scholar] [CrossRef]
- Aziz, T.A.; Hussain, S.A.; Mahwi, T.O.; Ahmed, Z.A.; Rahman, H.S.; Rasedee, A. The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: A double-blind, randomized, placebo-controlled trial. Drug Des. Dev. Ther. 2018, 12, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Ok, J.H.; Lee, H.; Chung, H.-Y.; Lee, S.H.; Choi, E.J.; Kang, C.M.; Lee, S.M. The Potential Use of a Ketogenic Diet in Pancreatobiliary Cancer Patients After Pancreatectomy. Anticancer Res. 2018, 38, 6519–6527. [Google Scholar] [CrossRef] [Green Version]
- Tan-Shalaby, J.L.; Carrick, J.; Edinger, K.; Genovese, D.; Liman, A.D.; Passero, V.A.; Shah, R.B. Modified Atkins diet in advanced malignancies—Final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr. Metab. 2016, 13, 52. [Google Scholar] [CrossRef] [Green Version]
- Zahra, A.; Fath, M.A.; Opat, E.; Mapuskar, K.A.; Bhatia, S.K.; Ma, D.C.; Iii, S.N.R.; Snyders, T.P.; Chenard, C.A.; Eichenberger-Gilmore, J.M.; et al. Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials. Radiat. Res. 2017, 187, 743–754. [Google Scholar] [CrossRef]
- Hagihara, K.; Kajimoto, K.; Osaga, S.; Nagai, N.; Shimosegawa, E.; Nakata, H.; Saito, H.; Nakano, M.; Takeuchi, M.; Kanki, H.; et al. Promising Effect of a New Ketogenic Diet Regimen in Patients with Advanced Cancer. Nutrients 2020, 12, 1473. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.C.; Yancy, W.S.; Mavropoulos, J.C.; Marquart, M.; McDuffie, J.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. 2008, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter, J.P.; Phinney, S.D.; et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myette-Côté, É.; Durrer, C.; Neudorf, H.; Bammert, T.D.; Botezelli, J.D.; Johnson, J.D.; DeSouza, C.A.; Little, J.P. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: A randomized trial. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R1210–R1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saslow, L.R.; Mason, A.E.; Kim, S.; Goldman, V.; Ploutz-Snyder, R.; Bayandorian, H.; Daubenmier, J.; Hecht, F.M.; Moskowitz, J.T. An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e36. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, C.E.; Phinney, S.D.; Fernandez, M.L.; Quann, E.E.; Wood, R.J.; Bibus, D.M.; Kraemer, W.J.; Feinman, R.D.; Volek, J.S. Comparison of Low Fat and Low Carbohydrate Diets on Circulating Fatty Acid Composition and Markers of Inflammation. Lipids 2008, 43, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Rull, A.; Camps, J.; Alonso-Villaverde, C.; Joven, J. Insulin resistance, inflammation, and obesity: Role of monocyte chemoattractant protein-1 (or CCL2) in the regulation of metabolism. Mediators Inflamm. 2010, 326580. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, J.; Zhang, C.; Li, X.; Meng, W.; Mo, X.; Zhang, Q.; Liu, Q.; Ren, K.; Du, R.; et al. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cell. Physiol. Biochem. 2016, 39, 2439–2450. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef]
- Ravindran, J.; Prasad, S.; Aggarwal, B.B. Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively? AAPS J. 2009, 11, 495–510. [Google Scholar] [CrossRef]
- Bimonte, S.; Barbieri, A.; Leongito, M.; Piccirillo, M.; Giudice, A.; Pivonello, C.; de Angelis, C.; Granata, V.; Palaia, R.; Izzo, F. Curcumin AntiCancer Studies in Pancreatic Cancer. Nutrients 2016, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Lev-Ari, S.; Starr, A.; Vexler, A.; Karaush, V.; Loew, V.; Greif, J.; Fenig, E.; Aderka, D.; Ben-Yosef, R. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res. 2006, 26, 4423–4430. [Google Scholar] [PubMed]
- Na, L.-X.; Li, Y.; Pan, H.-Z.; Zhou, X.-L.; Sun, D.-J.; Meng, M.; Li, X.-X.; Sun, C.-H. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double-blind, placebo-controlled trial. Mol. Nutr. Food Res. 2013, 57, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Kawahito, S.; Kitahata, H.; Oshita, S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. 2009, 15, 4137–4142. [Google Scholar] [CrossRef]
- Robertson, R.P.; Harmon, J.; Tran, P.O.T.; Poitout, V. Beta-Cell Glucose Toxicity, Lipotoxicity, and Chronic Oxidative Stress in Type 2 Diabetes. Diabetes 2004, 53 (Suppl. S1), S119–S124. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology 2017, 25, 25–31. [Google Scholar] [CrossRef]
- Hassan, F.U.; Rehman, M.S.-U.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Morel, D.; Jeffery, D.; Aspeslagh, S.; Almouzni, G.; Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—Past lessons and future promise. Nat. Rev. Clin. Oncol. 2020, 17, 91–107. [Google Scholar] [CrossRef]
- Tang, C.; Liu, Y.; Liu, S.; Yang, C.; Chen, L.; Tang, F.; Wang, F.; Zhan, L.; Deng, H.; Zhou, W.; et al. Curcumin and Its Analogs as Potential Epigenetic Modulators: Prevention of Diabetes and Its Complications. Pharmacology 2022, 107, 1–13. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Alam Khan, S.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 2009, 11, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Abdelmeguid, N.E.; Fakhoury, R.; Kamal, S.M.; Al Wafai, R.J. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic beta-cells of streptozotocin-induced diabetic rats. J. Diabetes 2010, 2, 256–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H. Genistein, an epigenome modifier during cancer prevention. Epigenetics 2011, 6, 888–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008, 269, 226–242. [Google Scholar] [CrossRef]
- Li, Y.; Ellis, K.-L.; Ali, S.; El-Rayes, B.F.; Nedeljkovic-Kurepa, A.; Kucuk, O.; Philip, P.A.; Sarkar, F.H. Apoptosis-Inducing Effect of Chemotherapeutic Agents Is Potentiated by Soy Isoflavone Genistein, a Natural Inhibitor of NF-kappaB in BxPC-3 Pancreatic Cancer Cell Line. Pancreas 2004, 28, e90–e95. [Google Scholar] [CrossRef]
- Banerjee, S.; Zhang, Y.; Ali, S.; Bhuiyan, M.; Wang, Z.; Chiao, P.J.; Philip, P.A.; Abbruzzese, J.; Sarkar, F.H. Molecular Evidence for Increased Antitumor Activity of Gemcitabine by Genistein In vitro and In vivo Using an Orthotopic Model of Pancreatic Cancer. Cancer Res. 2005, 65, 9064–9072. [Google Scholar] [CrossRef] [Green Version]
- Braxas, H.; Rafraf, M.; Hasanabad, S.K.; Jafarabadi, M.A. Effectiveness of Genistein Supplementation on Metabolic Factors and Antioxidant Status in Postmenopausal Women With Type 2 Diabetes Mellitus. Can. J. Diabetes 2019, 43, 490–497. [Google Scholar] [CrossRef]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the Metabolic Syndrome: Results of a Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.-L.; Elasy, T.; Zheng, W.; Shue, X.O. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.-P.; Kim, C.-S.; Ahn, Y.; Park, S.-J.; Kim, Y.-J.; Park, J.K.; Lim, Y.-K.; Yoo, K.-Y.; Kim, S.S. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: Results from the Korean Genome and Epidemiology Study. Diabetologia 2015, 58, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-S. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci. 2006, 79, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. Soy Isoflavones Exert Antidiabetic and Hypolipidemic Effects through the PPAR Pathways in Obese Zucker Rats and Murine RAW 264.7 Cells. J. Nutr. 2003, 133, 1238–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, R.P.A.; Gustafsson, J.Å. Estrogen Receptors and the Metabolic Network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, B.G.; Nagaoka, M.; Yonezawa, T.; Tanabe, R.; Woo, J.T.; Kato, H.; Chung, U.-I.; Yagasaki, K. Regulatory mechanism for the stimulatory action of genistein on glucose uptake in vitro and in vivo. J. Nutr. Biochem. 2012, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Choi, J.S.; Kim, M.H.; Jung, M.H.; Lee, Y.S.; Song, J. Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets. Nutrition 2006, 22, 956–964. [Google Scholar] [CrossRef]
- Sedaghat, A.; Shahbazian, H.; Rezazadeh, A.; Haidari, F.; Jahanshahi, A.; Latifi, S.M.; Shirbeigi, E. The effect of soy nut on serum total antioxidant, endothelial function and cardiovascular risk factors in patients with type 2 diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1387–1391. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, S.W. Systemic Chemotherapy in Advanced Pancreatic Cancer. Gut Liver 2016, 10, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Kirste, T.; Hauns, B.; Eichelmann, A.; Brinkmann, R.; Beller, J.; Mross, K.; Unger, C. Complete Remission in Patients with Pancreatic Cancer: A Rare but Sometimes Achievable Event. Oncol. Res. Treat. 1998, 21, 64–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, A.Y.; Li, M.; Chen, C.; Yao, Q. Ginkgo biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells. J. Surg. Res. 2008, 148, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Duan, W.; Han, S.; Lei, J.; Xu, Q.; Chen, X.; Jiang, Z.; Nan, L.; Li, J.; Chen, K.; et al. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget 2015, 6, 20993–21003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Swierczynski, J.; Hebanowska, A.; Sledzinski, T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J. Gastroenterol. 2014, 20, 2279–2303. [Google Scholar] [CrossRef]
- Cheng, D.; Liang, B.; Li, Y. Antihyperglycemic Effect of Ginkgo biloba Extract in Streptozotocin-Induced Diabetes in Rats. BioMed Res. Int. 2013, 2013, 162724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H. Hypocholesterolemic Effect of Ginkgo biloba Seeds Extract from High Fat Diet Mice. Biomed. Sci. Lett. 2017, 23, 138–143. [Google Scholar] [CrossRef]
- Kudolo, G.B.; Wang, W.; Elrod, R.; Barrientos, J.; Haase, A.; Blodgett, J. Short-term ingestion of Ginkgo biloba extract does not alter whole body insulin sensitivity in non-diabetic, pre-diabetic or type 2 diabetic subjects—A randomized double-blind placebo-controlled crossover study. Clin. Nutr. 2006, 25, 123–134. [Google Scholar] [CrossRef]
- Gresele, P.; Guglielmini, G.; De Angelis, M.; Ciferri, S.; Ciofetta, M.; Falcinelli, E.; Lalli, C.; Ciabattoni, G.; Davì, G.; Bolli, G.B. Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J. Am. Coll. Cardiol. 2003, 41, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.M.; Perry, K.; Hart, R.H.; Berry, S.L.; Bikman, B.T. Improvement in Glycemic and Lipid Profiles in Type 2 Diabetics with a 90-Day Ketogenic Diet. J. Diabetes Res. 2019, 2019, 8681959. [Google Scholar] [CrossRef] [Green Version]
- Bhanpuri, N.H.; Hallberg, S.J.; Williams, P.T.; McKenzie, A.L.; Ballard, K.D.; Campbell, W.W.; McCarter, J.P.; Phinney, S.D.; Volek, J.S. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study. Cardiovasc. Diabetol. 2018, 17, 56. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, Y.; Vangipurapu, J.; Cederberg, H.; Stančáková, A.; Pihlajamäki, J.; Soininen, P.; Kangas, A.J.; Paananen, J.; Civelek, M.; Saleem, N.K.; et al. Association of Ketone Body Levels With Hyperglycemia and Type 2 Diabetes in 9398 Finnish Men. Diabetes 2013, 62, 3618–3626. [Google Scholar] [CrossRef] [Green Version]
- Momi, N.; Kaur, S.; Krishn, S.R.; Batra, S.K. Discovering the route from inflammation to pancreatic cancer. Minerva Gastroenterol. Dietol. 2012, 58, 283–297. [Google Scholar] [PubMed]
- Aykin-Burns, N.; Ahmad, I.M.; Zhu, Y.; Oberley, L.W.; Spitz, D.R. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem. J. 2009, 418, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J.-I. ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis. Science 2008, 320, 661–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perticone, M.; Maio, R.; Sciacqua, A.; Suraci, E.; Pinto, A.; Pujia, R.; Zito, R.; Gigliotti, S.; Sesti, G.; Perticone, F. Ketogenic Diet-Induced Weight Loss is Associated with an Increase in Vitamin D Levels in Obese Adults. Molecules 2019, 24, 2499. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.-I.; Guarente, L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2016, 2, 16017. [Google Scholar] [CrossRef]
- Imai, S.-I.; Yoshino, J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes. Metab. 2013, 15 (Suppl. 3), 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 2019, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.-Y.; Park, Y.K. Rationale, Feasibility and Acceptability of Ketogenic Diet for Cancer Treatment. J. Cancer Prev. 2017, 22, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, A.; Kumada, T.; Nozaki, F.; Hiejima, I.; Miyajima, T.; Fujii, T. Changes in serum levels of selenium, zinc and copper in patients on a ketogenic diet using Ketonformula. No Hattatsu 2013, 45, 288–293. [Google Scholar]
- Westerterp-Plantenga, M.; Nieuwenhuizen, A.; Tomé, D.; Soenen, S.; Westerterp, K. Dietary Protein, Weight Loss, and Weight Maintenance. Annu. Rev. Nutr. 2009, 29, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med. 2012, 20, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, E. Synergy in Herbal Medicines: Part 1. J. Restor. Med. 2015, 4, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Morris-Natschke, S.L.; Lee, K.-H. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Med. Res. Rev. 2016, 36, 32–91. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sarkar, I.N. Bioinformatics opportunities for identification and study of medicinal plants. Brief. Bioinform. 2013, 14, 238–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Wang, Y.; Wu, A.; Ding, Z.; Liu, X. Influence Factors of the Pharmacokinetics of Herbal Resourced Compounds in Clinical Practice. Evid.-Based Complement. Altern. Med. 2019, 2019, 1983780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurian, G.A.; Manjusha, V.; Nair, S.S.; Varghese, T.; Padikkala, J. Short-term effect of G-400, polyherbal formulation in the management of hyperglycemia and hyperlipidemia conditions in patients with type 2 diabetes mellitus. Nutrition 2014, 30, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Lasaite, L.; Spadiene, A.; Savickiene, N.; Skesters, A.; Silova, A. The Effect of Ginkgo biloba and Camellia sinensis Extracts on Psychological State and Glycemic Control in Patients with Type 2 Diabetes Mellitus. Nat. Prod. Commun. 2014, 9, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Zarvandi, M.; Rakhshandeh, H.; Abazari, M.; Shafiee-Nick, R.; Ghorbani, A. Safety and efficacy of a polyherbal formulation for the management of dyslipidemia and hyperglycemia in patients with advanced-stage of type-2 diabetes. Biomed. Pharmacother. 2017, 89, 69–75. [Google Scholar] [CrossRef]
- Sagar, S.; Yance, D.; Wong, R. Natural Health Products That Inhibit Angiogenesis: A Potential Source for Investigational New Agents to Treat Cancer—Part 1. Curr. Oncol. 2006, 13, 14–26. [Google Scholar] [CrossRef]
- Lo, T.W. Screening for Pancreatic Cancer in Individuals With New-onset Diabetes Mellitus. J. Nurse Pract. 2018, 14, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Iyikesici, M.S. Long-Term Survival Outcomes of Metabolically Supported Chemotherapy with Gemcitabine-Based or FOLFIRINOX Regimen Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Metastatic Pancreatic Cancer. Complement. Med. Res. 2020, 27, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ayre, S.; Bellon, D.Y.; Garcia, D.P., Jr. Insulin, chemotherapy, and the mechanisms of malignancy: The design and the demise of cancer. Med. Hypotheses 2000, 55, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Iyikesici, M.S.; Slocum, A.; Turkmen, E.; Akdemir, O.; Slocum, A.K.; Ipek, T.; Eyuboglu, E.S.; Berkarda, F.B. Long-Term Outcomes of the Treatment of Unresectable (Stage III–IV) Ductal Pancreatic Adenocarcinoma Using Metabolically Supported Chemotherapy (MSCT): A Retrospective Study. J. Pancreas 2016, 17, 52387124. [Google Scholar]
- Ohguri, T.; Imada, H.; Narisada, H.; Yahara, K.; Morioka, T.; Nakano, K.; Miyaguni, Y.; Korogi, Y. Systemic chemotherapy using paclitaxel and carboplatin plus regional hyperthermia and hyperbaric oxygen treatment for non-small cell lung cancer with multiple pulmonary metastases: Preliminary results. Int. J. Hyperth. 2009, 25, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Zoul, Z.; Filip, S.; Melichar, B.; Petera, J.; Odrážka, K.; Dvorak, J. Weekly Paclitaxel Combined with Local Hyperthermia in the Therapy of Breast Cancer Locally Recurrent after Mastectomy—A Pilot Experience. Oncol. Res. Treat. 2004, 27, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Dobiasch, S.; Nguyen, L.; Schilling, D.; Combs, S.E. Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines. Sci. Rep. 2020, 10, 3815. [Google Scholar] [CrossRef] [Green Version]
- Gosmanov, A.R.; Umpierrez, G.E. Management of hyperglycemia during enteral and parenteral nutrition therapy. Curr. Diabetes Rep. 2013, 13, 155–162. [Google Scholar] [CrossRef]
- Bruera, E.; Chiu, L.; Chow, S.; Chiu, N.; Lam, H.; McDonald, R.; De Angelis, C.; Vuong, S.; Ganesh, V.; Chow, R. Enteral and parenteral nutrition in cancer patients: A systematic review and meta-analysis. Ann. Palliat. Med. 2016, 5, 30–41. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Hu, X.; Yang, X.; Zhang, M. The Prognostic Role of Glycemia in Patients With Pancreatic Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 780909. [Google Scholar] [CrossRef]
- Vaisman, N.; Lansink, M.; Rouws, C.H.; van Laere, K.M.; Segal, R.; Niv, E.; Bowling, T.E.; Waitzberg, D.L.; Morley, J.E. Tube feeding with a diabetes-specific feed for 12 weeks improves glycaemic control in type 2 diabetes patients. Clin. Nutr. 2009, 28, 549–555. [Google Scholar] [CrossRef]
- Pohl, M.; Mayr, P.; Mertl-Roetzer, M.; Lauster, F.; Lerch, M.; Eriksen, J.; Haslbeck, M.; Rahlfs, V.W. Glycaemic control in type II diabetic tube-fed patients with a new enteral formula low in carbohydrates and high in monounsaturated fatty acids: A randomised controlled trial. Eur. J. Clin. Nutr. 2005, 59, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Elia, M.; Ceriello, A.; Laube, H.; Sinclair, A.J.; Engfer, M.; Stratton, R.J. Enteral Nutritional Support and Use of Diabetes-Specific Formulas for Patients With Diabetes: A systematic review and meta-analysis. Diabetes Care 2005, 28, 2267–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakovenko, A.; Cameron, M.; Trevino, J.G. Molecular therapeutic strategies targeting pancreatic cancer induced cachexia. World J. Gastrointest. Surg. 2018, 10, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Clarke, L.; Goldberg, A.; Bishop, K.S. Pancreatic Cancer Cachexia: The Role of Nutritional Interventions. Healthcare 2019, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckerling, A.; Ricon-Becker, I.; Sorski, L.; Sandbank, E.; Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nat. Rev. Cancer 2021, 21, 767–785. [Google Scholar] [CrossRef]
- Bhattacharyya, G.S.; Babu, K.G.; Bondarde, S.A.; Biswas, G.; Ranade, A.; Parikh, P.M.; Bascomb, N.F.; Malhotra, H. Effect of coadministered beta blocker and COX-2 inhibitor to patients with pancreatic cancer prior to receiving albumin-bound (Nab) paclitaxel. J. Clin. Oncol. 2015, 33, 302. [Google Scholar] [CrossRef]
- Kulkarni, S.; Dhir, A. An overview of curcumin in neurological disorders. Indian J. Pharm. Sci. 2010, 72, 149–154. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Khazdair, M.R. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity. J. Toxicol. 2015, 841823. [Google Scholar] [CrossRef] [Green Version]
- Alsmadi, A.M.; Tawalbeh, L.I.; Gammoh, O.S.; Shawagfeh, M.Q.; Zalloum, W.; Ashour, A.; Attarian, H. The effect of Ginkgo biloba and psycho-education on stress, anxiety and fatigue among refugees. Proc. Singap. Healthc. 2017, 27, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-S.; Bang, J.H.; Lee, J.; Han, J.-S.; Baik, T.G.; Jeon, W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine 2016, 23, 1356–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polito, R.; Messina, G.; Valenzano, A.; Scarinci, A.; Villano, I.; Monda, M.; Cibelli, G.; Porro, C.; Pisanelli, D.; Monda, V.; et al. The Role of Very Low Calorie Ketogenic Diet in Sympathetic Activation through Cortisol Secretion in Male Obese Population. J. Clin. Med. 2021, 10, 4230. [Google Scholar] [CrossRef]
- Kloter, E.; Barrueto, K.; Klein, S.D.; Scholkmann, F.; Wolf, U. Heart Rate Variability as a Prognostic Factor for Cancer Survival—A Systematic Review. Front. Physiol. 2018, 9, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch, J.B.; Ginsberg, J.P.; McLain, A.C.; Franco, R.; Stokes, S.; Susko, K.; Hendry, W.; Crowley, E.; Christ, A.; Hanna, J.; et al. Symptom Management Among Cancer Survivors: Randomized Pilot Intervention Trial of Heart Rate Variability Biofeedback. Appl. Psychophysiol. Biofeedback 2020, 45, 99–108. [Google Scholar] [CrossRef] [PubMed]
Author | Study Design, Duration, Quality | Participants (Sample Size, Diagnosis) | Intervention Preparation Used | Outcome Measures | Results | Adverse Events |
---|---|---|---|---|---|---|
Curcuma longa L./Curcumin | ||||||
Dhillon et al., 2008 [60] | Open-label non-randomized phase II clinical trial 8 weeks, up to 18 months Jadad score: 4 | N = 25 Patients with pancreatic adenocarcinoma M = 13; F = 12; Median age: 65 years (range 43–77) Prior therapy: surgery, radiotherapy, gemcitabine -/+ other chemotherapy, erlotinib, no therapy Healthy volunteers N = 48–62 (depending on the cytokine being measured) | Curcumin (1 capsule—1000 mg/1 g of curcuminoids: 900 mg curcumin, 80 mg desmethoxycurcumin, 20 mg bisdesmethoxycurcumin)
| Cytokine levels: IL-6,-8,-10, IL-1RA/receptor antagonist Nuclear factor-κB/NF-kB (p65) Cyclo-oxygenase 2/ COX-2 Phosphorylated signal transducer and activator of transcription 3 (PSTAT3) | ∙ Patients
| No serious side effects reported |
Epelbaum et al., 2010 [61] | Open-label non-randomized phase II clinical trial 1 week to 12 months Jadad score: 3 | N = 17 Patients with pancreatic adenocarcinoma (locally advanced or metastatic) M = 10; F = 7; Median age: 69 years (range 54–78) | Curcumin (1 capsule—500 mg of curcuminoids: curcumin 450 mg, desmethoxycurcumin 40 mg, bisdesmethoxycurcumin 10 mg)
| Overall survival (OS) Tumor response rate Clinical benefit rate (CBR) Time to tumor progression (TTP) CA 19-9 serum levels Toxicity profile |
|
|
Pastorelli et al., 2018 [62] | Single arm prospective phase II clinical trial 9 cycles +, cycle—every 28 days Jadad score: 4 | N = 44 Patients with pancreatic adenocarcinoma (locally advanced or metastatic) M = 29; F = 15; Median age: 66 years (range 42–87) Prior treatment: dexamethasone 8 mg or metoclopramide 10 mg, i.v. | Curcumin (Meriva®—phytosome/phospholipids complex of curcumin, one capsule—500 mg)
| Tumor response rate Progression-free survival (PFS) Overall survival (OS) Quality of life assessment Inflammation markers (CRP; sCD40L; cytokines IL-8,-6, MIP-1; adhesion molecules) Full blood counts CA19-9 serum levels Toxicity profile |
|
|
Kanai et al., 2011 [63] | Open-label phase I–II clinical trial (2 centers) >6 months Jadad score: 4 | N = 21 Patients with pancreatic adenocarcinoma M = 13; F = 8; Median age: 67 (range 44–79) Prior treatment: surgery, radiotherapy, chemotherapy (Gemcitabine/S-1, Gemcitabine alone) | Curcumin (complex of curcuminoids: curcumin 73%, demethoxycurcumin 22%, bisdemethoxycurcumin 4%)
| phase I: Safety, Treatment completion rate (TCR) phase II: Tumor response rate Overall survival (OS) Compliance rate of curcumin Blood cell count CEA (carcinoembryonic antigen), CA19-9 Toxicity profile Plasma curcumin levels |
| Hematological toxicity:
|
Adibian et al., 2019 [68] | Randomized, double-blind, placebo controlled clinical trial 10 days Jadad score: 7 | N = 44 Patients with type 2 diabetes Curcumin group N = 21 M = 13; F = 8; Mean ± SD age 58± Control group N = 23 M = 9; F = 14; Mean ± SD age: 60 ± 7 | Curcumin (1 capsule 500 mg of curcuminoids: curcumin 347 mg, demethoxycurcumin 84 mg, bisdemethoxycurcumin 9 mg, turmeric oil 38 mg)
| Lipid profile (triglyceride) total, HDL, LDL, cholesterol high-sensitivity C-reactive protein (HS-CRP), adiponectin (anti-inflammatory cytokine) Anthropometric parameters: weight, height, waist, hip circumferences, BMI | Mean change ± SD in curcumin group and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| Not provided |
Rahimi et al., 2016 [69] | Randomized double-blind placebo controlled clinical trial 3 months Jadad score: 6 | N = 70 Patients with type 2 diabetes Curcumin group N = 35 M = 17; F = 18; Mean ± SD age: 56.34 ± 11.17 Control group N = 35 M = 14; F = 21; Mean ± SD age: 60.95 ± 10.77 | Curcumin (Nano-curcumin/SinaCurcumin®—80 mg of curcumin in the form of nano-micelle)
| Fasting blood glucose (FBG) Glycated hemoglobin (HbA1C) Estimated average glucose (eAG) Lipid profile (total cholesterol (TC), HDL, LDL cholesterol, triglyceride (TG) BMI | Mean baseline and post-treatment in Curcumin group and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| Not provided |
Panahi et al., 2018 [70] | Randomized double-blind placebo controlled clinical trial 3 months Jadad score: 5 | N = 100 Patients with type 2 diabetes Curcumin group N = 50 M = 25; F = 25; Mean ± SD age: 43 ± 8 Control group N = 50 M = 26; F = 24; Mean ± SD age: 41 ± 7 | Curcumin (Curcumin C3 Complex ®, curcuminoids: curcumin, demethoxycurcumin, bisdemethoxycurcumin + Bioperine ®)
| Fasting insulin (FI) Fasting glucose (FG) Glycated hemoglobin (HbA1c) High-sensitivity C-reactive protein (hs-CRP) Aspartate aminotransferase (AST) Alanine aminotransferase (ALT) Homeostatic model assessments of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β) BMI, weight | Mean change ± SD in curcumin and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No side effects reported |
Hodaei et al., 2019 [71] | Randomized double-blind placebo controlled clinical trial 10 weeks Jadad score: 7 | N = 44 Patients with type 2 diabetes Curcumin group N = 21 M = 13; F = 8; Mean ± SD age: 58 ± 8 Control group N = 23 M = 9; F = 14; Mean ± SD age: 60 ± 7 | Curcumin (1 capsule 440 mg of curcuminoids:347 mg curcumin, 84 mg desmethoxycurcumin, 9 mg bisdesmethoxycurcumin; and 38 mg of turmeric oil)
| Fasting blood glucose (FBG) Total antioxidant capacity (TAC) Malondialdehyde (MDA) Fasting insulin (FI) HbA1c HOMA-β HOMA-IR Weight, BMI | Mean change ± SD in curcumin and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No serious side effects reported |
Nigella sativa L./Thymoquinone | ||||||
Al-Amri et al., 2009 [64] | Open-label non-randomized phase I clinical study Median 3.71 weeks (range 1–20 weeks) Jadad score: 2 | N = 21 Patients with various types of cancer, including pancreatic adenocarcinoma N = 2 (Others: non-small cell lung carcinoma, prostatic, colonic, gastric, renal cell, hepatocellular carcinoma, leiomyosarcoma, diffuse large B-cells lymphoma M = 11; F = 10; Median age: 56 (range 23–92) | Thymoquinone—dose: 1 mg/kg/day, 6 mg/kg/day, 10 mg/kg/day, p.o. Dose increased up to 2600 mg/day Thymoquinone dose in patients with pancreatic cancer: 85 mg/day, 500 mg/ day | Toxicity profile Complete blood count (CBC) Renal function (RFT) Liver function (LFT) Random blood glucose (RBS) Lipid profile Erythrocyte sedimentation rate Tumor markers (CEA, CA125, CA19-9, CA153, BHCG, AFP, PSA, LDH) Prothrombin time (PT) Partial thromboplastin time (PTT) |
| No side effects reported |
Hadi et al., 2018 [72] | Randomized double-blind placebo controlled clinical trial 8 weeks Jadad score: 6 | N = 43 Patients with type 2 diabetes Nigella sativa group N = 23 M = 10; F = 13; Mean ± SD age: 51.4 ± 9.2 Control group N = 20 M = 10; F = 10; Mean ± SD age: 56 ± 3.4 | Nigella sativa (one capsule 500 mg of N.sativa oil extract)
| Fasting blood glucose (FBG) Pro-inflammatory cytokines: Tumor necrosis factor-α (TNFα) Interleukin 1β (IL-1β) Pro-oxidant biomarkers: Nitric oxide (NO) Malondialdehyde (MDA) Antioxidant biomarkers: Superoxide dismutase (SOD) Catalase (CAT) | Mean change ± SD in Nigella sativa and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No severe side effects reported |
Hosseini et al., 2013 [73] | Randomized double-blind placebo controlled clinical trial 3 months Jadad score: 6.5 | N = 70 Patients with type 2 diabetes Nigella sativa group N = 35 M = 14; F = 21; Mean ± SD age: 48.74 ± 7.33 Control group N = 35 M = 16; F = 19; Mean ± SD age: 50.72 ± 5.69 | Nigella sativa
| Fasting blood glucose (FBG) 2h-postprandial blood glucose (2hppBG) Glycated hemoglobin (HbA1c) Lipid profile (total cholesterol/TC, LDL, HDL, triglyceride) Aspartate transaminase (AST) Alanine transaminase (ALT) Alkaline phosphatase (ALP) Creatinine levels, BMI |
| No serious side effects reported
|
Kaatabi et al., 2015 [74] | Participant-blinded placebo controlled clinical trial 1 year Jadad score: 5.5 | N = 114 ∙Patients with type 2 diabetes (on standard hypoglycemic medication: sulfonylureas, metformin) Nigella sativa group N = 57 M = 33; F = 24; Mean ± SE age: 46.82 ± 1.14 Control group N = 57 M = 30; F = 27; Mean ± SE age: 46.12 ± 0.85 | Nigella sativa (1 capsule 500 mg of N.sativa seed powder)
| Fasting blood glucose (FBG) Glycated hemoglobin (HbA1c) C-peptide Total antioxidant capacity (TAC) Superoxide dismutase (SOD) Catalase (CAT) Glutathione thiobarbituric acid-reactive substances (TBARS) Insulin resistance β-cell function | Mean baseline and 12-month treatment in Nigella sativa and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No side effects reported |
Glycine max (L.)/Genistein/Soy isoflavones | ||||||
Lohr et al., 2016 [65] | Open-label phase Ib clinical trial 13.2 months Jadad score: 4 | N = 16 Patients with pancreatic carcinoma (metastatic or locally advanced, no prior treatment) M = 12; F = 4; Median age: 61 years (range 35–73) | Genistein/AXP107-11 (multi-component crystalline form of genisteine)
| Pharmacokinetics (PK) Toxicity profile Maximum tolerated dose (MTD) Efficacy of AXP107-11 and Gemcitabine combination Response Time to progression (TTP) Progression-free survival (PFS) Overall survival (OS) CA19-9 |
| No toxic adverse effects during AXP107-11 monotherapy (1st 2 weeks)
|
El-Rayes et al., 2011 [66] | Open-label phase II clinical trial 23 months Jadad score: 4 | N = 20 Patients with pancreatic adenocarcinoma (locally advanced unresectable or metastatic, no prior chemo-/radiotherapy) M = 12; F = 8; Median age: 58 years (range 39–75) | Soy isoflavones (Novasoy®: genistin, daidzin, glycitin in 1.3:1.0:0.3 ratio)
| Tumor response rate Progression-free survival (PFS) Overall survival (OS) Toxicity profile Immunohistochemistry for Akt and NF-κB |
|
|
Sharma et al., 2019 [75] | Randomized placebo controlled clinical trial 60 days Jadad score: 3.5 | N = 20 Patients with type 2 diabetes Glycine max group N = 10 Control group N = 10 Age range: 40–60 years | Glycine max leaves
| Fasting blood glucose (FBG) Postprandial blood glucose (PBG) Glycated hemoglobin (HbA1c) Lipid profile: total cholesterol (TC), LDL, HDL, VLDL cholesterol, triglyceride | Mean change in Glycine max and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No adverse effects reported |
Choi et al., 2014 [76] | Randomized, double-blind placebo controlled clinical trial 12 weeks Jadad score: 6 | N = 45 Patients with pre-type 2 diabetes Glycine max group N = 15 M = 7; F = 8; Mean ± SE age 49.71 ± 3.48 Control group N = 15 M = 9; F = 6; Mean ± SE age: 49.33 ± 4.15 Lagerstroemia speciosa (Banaba) group N = 15 M = 6; F = 9; Mean ± SE age: 47.00 ± 4.01 | Glycine max (70% ethanol leaf extract, concentrated in vacuo and lyophilized to powder)
| Fasting blood glucose (FBG) Glycated hemoglobin (HbA1c) HOMA-IR (insulin resistance) Transaminase levels (AST, ALT) Total cholesterol (TC), LDL, HDL cholesterol Triglyceride Atherogenic Index (AI) Systolic, diastolic blood pressure (BP) | Mean baseline and post-treatment in Glycine max and placebo group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No serious adverse effects reported |
Ginkgo biloba L. | ||||||
Hauns et al., 1999 [67] | Open-label prospective phase II clinical trial Duration of evaluation—until progression Jadad score: 3.5 | N = 32 Patients with pancreatic carcinoma (locally advanced or metastatic; prior treatment: surgery, chemo-/radio-/immunotherapy, none, other) M = 18; F = 14; Mean ± SD age: 58.2 ± 8.4 | Ginkgo biloba (parenteral GBE 761 ONC/Ginkgo biloba leaves special extract EGb 761; one capsule 175 mg: 42 mg ginkgo flavone glycosides, 10.5 mg terpene lactones (ginkgolides, bilobalide)
| Tumor response rate Overall survival (OS) Efficacy Tolerability Toxicity profile Quality of life |
| All adverse events related to 5-FU, disease progression, other medication
|
Kudolo, 2001 [77] | Open-label follow-up controlled clinical trial 3 months Jadad score: 2.5 | N = 20 Patients with type 2 diabetes Hyperinsulinemia group N = 12
| Ginkgo biloba (EGb 761—50:1 standardized Ginkgo biloba extract: 24% Ginkgo flavone glycosides, 6% terpenes)
| Pancreatic β-cell function Fasting insulin (FI) Fasting C-peptide Fasting blood glucose (FBG) Fibrinogen Coagulation: Prothrombin time (PT), Partial thromboplastin time (PTT) Lipid profile (total cholesterol (TC), LDL, HDL cholesterol, triglyceride) Liver function (AST, ALT) Lactate dehydrogenase (LDH) | Mean baseline and post-treatment in hyperinsulinemic group of diet controlled and on medication and pancreatic exhaustion group, respectively (↓↓/↑↑ p < 0.05, significant difference):
| No adverse effects reported
|
Aziz et al., 2018 [78] | Randomized double-blind placebo controlled clinical trial (multicenter) 90 days Jadad score: 6 | N = 47 Patients with type 2 diabetes (Prior/current treatment: Metformin 500 or 850 mg) Ginkgo biloba group N = 27 M = 1; F = 26; Mean ± SD age 48.7 ± 9.6 Control group N = 20 M = 1; F = 19; Mean ± SD age 48.2 ± 10.3 | Ginkgo biloba (extract as the standard powder (EGb761))
| Blood glycated hemoglobin (HbA1c) Fasting serum glucose (FSG) Serum insulin (SI) Body mass index (BMI) Insulin resistance (IR) Visceral adiposity index (VAI) Liver enzymes activity (AST, ALT, ALP) Urea Creatinine Hematocrit (Hct), Hemoglobin (Hb) Red/white blood cells Platelets | Mean baseline and post-treatment in Ginkgo biloba and placebo group, respectively, (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No serious adverse effects observed |
Author | Study Design, Duration, Quality | Participants (Sample Size, Diagnosis) | Intervention Preparation Used | Outcome Measures | Results | Adverse Events |
---|---|---|---|---|---|---|
Ok et al., 2018 [79] | Prospective controlled intervention study 6 months Jadad score: 4 | N = 19 Patients with pancreatobiliary cancer after pancreatectomy (solely pancreatic cancer N = 6) Ketogenic diet group N = 10 M = 6; F = 4; Mean age: 59 years (range 49–70) Control group N = 9 M = 6; F = 3; Mean age: 66 years (range 54–79) | Ketogenic diet (KD) (3–6% energy as carbohydrates, 1 g/kg of protein, 70–80% of energy as fats→ketogenic ratio 1.05–1.75 (fat): 1 (carb + protein) General diet (carbohydrate:protein:fat (C:P:F) ratio—55–65:7–20:15–30 | Dietary intake Meal satisfaction score Energy intake rate Lipid profile (total cholesterol (TC), HDL, LDL, total triglyceride (TG) C-reactive protein (CRP) Urine ketone (UK) Body composition (body weight (BW); body cell mass/BCM; body fat mass (BFM); skeletal muscle mass (SMM)) | Mean ± SD values in KD and control group, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| Frequency of meal intake-related adverse effects (percentage of patients) in KD and control group, respectively:
|
Tan-Shalaby et al., 2016 [80] | Open-label interventional phase I clinical trial 16 weeks Jadad score: 4 | N = 11 Patients with solid cancer (advanced, metastatic, and unresectable; including pancreatic cancer N = 2; Other types: melanoma, brain, lung, prostate, renal, colon, head and neck, liver cancer; with prior treatment or without: four patients) M = 11; Mean age: 65 years (range 42–87) Two pancreatic adenocarcinoma patients: age 65 and 54 years | Ketogenic diet (modified Atkins diet; restriction on high carbohydrate foods/liquids e.g., cereal, bread, rice, pasta, potatoes, all fruits; no restriction on calories, protein or fats) | Toxicity profile Quality of life BMI, body weight Complete blood count Cholesterol profile Fasting glucose Serum ketone/beta-hydroxybutyrate (BHB) Serum creatinine Liver enzyme activity (ALT/alanine transferase) Tumor response rate | Mean ± SD of baseline and post-treatment, respectively (↓↓/↑↑ p < 0.05 in the intervention group, significant difference):
| No significant adverse effects observed
|
Zahra et al., 2017 [81] | Open-label interventional phase I clinical trial 5 weeks (1 year follow-up) Jadad score: 4 | N = 2 Patients with pancreatic cancer N = 1, F, age 69 years N = 1, M, age 67 years N = 7 Patients with non-small cell lung cancer | Ketogenic diet (KD) (4:1 ratio of fat(g): protein + carbohydrate(g); 90% of calories from fat, 8% from protein, 2% from carbohydrate) + Radiation (25 fractions of a total dose of 50 Gy) Chemotherapy (Gemcitabine 600 mg/m2 weekly, 5-FU) | Safety profile Ketone levels Blood glucose Oxidative stress Progression free survival (PFS) Overall survival (OS) |
Serum glucose ↓ Serum ketone levels ↑ Tumor progression, PFS 2 months, Secondary response—biliary obstruction and sepsis, OS 2 months
Secondary response—ascites, OS 10 months | Treatment-related events and completed KD N = 1
|
Hagihara et al., 2020 [82] | Case series clinical study 3 months Jadad score: 4 | N = 37 Patients with stage IV cancer, including pancreatic adenocarcinoma (Others: colorectal, non-small cell lung, breast, head and neck, bone and soft tissue, ovarian and peritoneal, endometrial, bladder, brain, biliary tract, gastric, prostate cancer) M = 15; F = 22; Mean age: 54.8 years Pancreatic adenocarcinoma patients (N = 4) M = 1 (age 48); F = 3 (age: 76, 74, 62 years) Prior treatment: Gemcitabine, Nab-Paclitaxel, S-1, FOLFIRINOX, Irreversible electroporation | Ketogenic diet (KD)
| Fasting blood glucose (FBG) β-hydroxybutyrate (BHB) Glucose ketone index (GKI) Tumor response rate Overall survival (OS) Safety profile | Baseline and post-treatment values in four patients with pancreatic cancer respectively (↓↓/↑↑ p < 0.05 significant difference):
| 868 adverse events related to chemotherapy/disease progression (all cancers) 275 events related to KD Grade 1–2 adverse events:
|
Westman et al., 2008 [83] | Open-label randomized controlled clinical trial 24 weeks Jadad score: 7.5 | N = 50 Patients with type 2 diabetes Low-carbohydrate ketogenic diet group N = 21 M = 7; F = 14; Mean ± SD age: 51.2 ± 6.1 Control/low-glycemic diet group N = 29 M = 6; F = 23; Mean ± SD age: 50 ± 8.4 (Prior treatment: insulin, metformin, rosiglitazone, pioglitazone, glimepiride) | Low-carbohydrate ketogenic diet (LCKD) (<20 g of carbohydrate/day without explicit caloric restriction; unlimited amounts of animal foods, limited amounts of cheese and vegetables) Low-glycemic reduced-calorie diet (LGID) (~55% carbohydrate; energy intake 500 kcal—less than calculated energy intake for weight maintenance)
| Glycosylated hemoglobin (HbA1c) Fasting glucose (FG) Fasting insulin (FI) BMI Body weight (BW) Lipid profile (total cholesterol (TC), HDL, LDL, triglycerides, VLDL) Blood pressure (BP) Diabetes medication use | Mean change in KD and control group, respectively (↓↓/↑↑ p < 0.05 within groups, * between groups; significant difference):
| No serious adverse effects reported
|
Hallberg et al., 2018 [84] | Open-label, non-randomized interventional controlled clinical trial 1 year Jadad score: 3.5 | N = 296 Patients with type 2 diabetes Continuous care intervention (CCI) group N = 218 M = 76; F = 142; Mean ± SD age: 54 ± 8 (92% obese, 88% on diabetic medication) Usual care (UC) group N = 78 M = 31; F = 47; Mean ± SD age: 52 ± 10 (82% obese, 87% on diabetic medication) Prior/current medication: metformin, insulin, sulfonylurea, thiazolidinedione, sodium-glucose cotransporter-2 (SGLT2) inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor (GLP-1) agonists | Ketogenic diet (KD) (Instructions: carbohydrates <30 g/day; protein < 1.5 g kg−1 of reference body weight; fats- the rest of dietary intake; 3–5 servings of non-starchy vegetable) Recommendation: 1000–2000 IU vitamin D3, up to 1000 mg omega-3/day; 500 mg magnesium oxide or 200 mg magnesium chloride (if magnesium depletion); nutritional ketosis goal: 0.5–3.0 mmol L-1 blood BHB (β-hydroxybutyrate) | Glycated hemoglobin (HbA1c) Weight Medication use Fasting serum glucose (FSG) Fasting serum insulin (FSI) HOMA-IR Lipid/lipoprotein profile (total cholesterol (TC), LDL, HDL, Apo B, Triglyceride) High-sensitivity C-reactive protein (hs-CRP) Liver function (ALT, AST, ALP) Kidney function (serum creatinine, blood urea nitrogen (BUN)) | Mean change ± SE in CCI vs. UC group, respectively (↓↓/↑↑ p < 0.05 in the CCI vs. UC group, significant difference):
| No serious adverse events reported in the CCI
|
Myette-Côté et al., 2018 [85] | Open-label randomized crossover controlled clinical trial Three 4-day interventions with a washout period of 9–14 days between interventions Jadad score: 6.5 | N = 11 Patients with type 2 diabetes M = 4; F = 7; Mean ± SD age: 64 ± 8 Low-carbohydrate, high-fat diet/ketogenic diet group (LC) LC with post-meal walks group (LC + Ex) Low-fat low-glycemic index diet group (GL) Prior treatment: metformin, sulfonylurea, glucagon-like-peptide-1, dipeptidyl peptidase-4, statin, antihypertensive >3 days of structured exercise per week | Low-carbohydrate high-fat diet/ketogenic diet (LC) (carbohydrate 10%, protein 25%, fat 65%; saturated fat 15%, polyunsaturated fat 11%, monounsaturated fat 39%) LC with 15-min 3 daily post-meal walks (LC + Ex) Low-fat low-glycemic index diet (GL) (carbohydrate 55%, protein 25%, fat 20%; saturated fat 5%, polyunsaturated fat 5%, monounsaturated fat 10%; mean glycemic index: 40) | Fasting glucose (FG) Triglycerides Fasting insulin (FI) Active proinsulin C-peptide Inflammatory markers (tumor necrosis factor-α/TNF-α, monocyte chemoattractant protein-1/MCP-1, interleukin-6 (IL-6), IL-10, IL-18) Monocyte and leukocyte-derived microparticles (MMPs, LMPs) p-JNK/phosphorylated c-Jun NH 2 -terminal kinase Toll-like receptor (TLR, median fluorescence intensity) Granulocytes (Gr), Lymphocytes (Ly), Monocytes (Mo) | Mean baseline and post-treatment in LC, LC + Ex, GL group, respectively (↓↓/↑↑ p < 0.05 in the LC/LC + Ex group, significant difference):
| Not provided |
Saslow et al., 2017 [86] | Interventional randomized controlled clinical trial 32 weeks Jadad score: 7 | N = 25 Patients with type 2 diabetes Ketogenic diet group N = 12 M = 6; F = 6; Mean ± SD age: 53 ± 10.2 Control group N = 13 M = 4; F = 9; Mean ± SD age 58.2 ± 6.7 (Prior medication: none or metformin) | Very low-carbohydrate ketogenic diet (KD), (20–50 g carbohydrate daily) + Lifestyle recommendation (mental wellbeing, physical activity, sleep) “Create your plate” diet (low-fat diet; half a plate of nonstarchy vegetables; quarter plate of carbohydrates; quarter plate of lean proteins) | Glycated hemoglobin (HbA1c) Body weight (BW) Lipid profile (triglycerides, HDL, LDL) Diabetes-related distress Depression Vitality | Mean change in KD/intervention and control group, respectively (↓↓/↑↑ p < 0.05, between groups, significant difference):
| Not provided Physical self-report:
|
Forsythe et al., 2008 [87] | Interventional randomized controlled clinical trial 12 weeks Jadad score: 4 | N = 40 Patients with type 2 diabetes Age: 18–55 years Ketogenic diet group N = 20 Control group N = 20 | Very low carbohydrate ketogenic diet (VLCKD) (1504 kcal: % carbohydrate:fat:protein = 12:59:28) Low fat diet (LFD) (1478 kcal: % carbohydrate:fat:protein = 56:24:20) (the multivitamin /mineral complex giving micronutrients at levels ≤100% of the recommended dietary allowance) |
| Mean baseline and post-treatment in KD and control group, respectively (↓↓/↑↑ p < 0.05 within intervention/KD group, * between groups, significant difference):
| Not provided |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolaskova, I.; Crnogorac-Jurcevic, T.; Smolkova, B.; Hunakova, L. Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. Biology 2023, 12, 158. https://doi.org/10.3390/biology12020158
Mikolaskova I, Crnogorac-Jurcevic T, Smolkova B, Hunakova L. Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. Biology. 2023; 12(2):158. https://doi.org/10.3390/biology12020158
Chicago/Turabian StyleMikolaskova, Iveta, Tatjana Crnogorac-Jurcevic, Bozena Smolkova, and Luba Hunakova. 2023. "Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review" Biology 12, no. 2: 158. https://doi.org/10.3390/biology12020158
APA StyleMikolaskova, I., Crnogorac-Jurcevic, T., Smolkova, B., & Hunakova, L. (2023). Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. Biology, 12(2), 158. https://doi.org/10.3390/biology12020158