Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Reagents
2.2. NIR-II Extinction Spectroscopy Measurement System
2.3. NIR-II Dark-Field Microscopic Imaging System
2.4. Calculation of SBR
2.5. One-Pot Synthesis of GNRs
2.6. Polymer Electrolyte Multilayer Coating of GNRs
2.7. Preparation of GNR-Based Nuclear Targeting Probes
2.8. Characterization of GNRs
2.9. Cell Culturing
3. Results
3.1. Dark-Field Scattering Imaging of Colon Cancer Cells
3.2. Dark-Field Scattering Imaging of Colon Cancer Cells in the NIR-II Window
3.3. NIR-II Dark-Field Scattering Imaging of Cells Assisted by GNRs
3.4. NIR-II Dark-Field Scattering Imaging of Nucleus-Specific GNRs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Zhu, B.L.; Zheng, K.F.; He, S.G.; Meng, L.; Song, J.B.; Yang, H.H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front. Bioeng. Biotechnol. 2020, 7, 487. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lim, Y.T.; Soltesz, E.G.; De Grand, A.M.; Lee, J.; Nakayama, A.; Parker, J.A.; Mihaljevic, T.; Laurence, R.G.; Dor, D.M.; et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 2017, 14, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Horton, N.G.; Wang, K.; Kobat, D.; Clark, C.G.; Wise, F.W.; Schaffer, C.B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 2013, 7, 205–209. [Google Scholar] [CrossRef]
- Domaille, D.W.; Que, E.L.; Chang, C.J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 2008, 4, 168–175. [Google Scholar] [CrossRef]
- Leung, C.W.T.; Hong, Y.N.; Chen, S.J.; Zhao, E.G.; Lam, J.W.Y.; Tang, B.Z. A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking. J. Am. Chem. Soc. 2013, 135, 62–65. [Google Scholar] [CrossRef]
- Priest, L.; Peters, J.S.; Kukura, P. Scattering-based Light Microscopy: From Metal Nanoparticles to Single Proteins. Chem. Rev. 2021, 121, 11937–11970. [Google Scholar] [CrossRef]
- Antolovic, V.; Marinovic, M.; Filic, V.; Weber, I. A simple optical configuration for cell tracking by dark-field microscopy. J. Microbiol. Methods 2014, 104, 9–11. [Google Scholar] [CrossRef]
- Liu, H.; Dong, C.Q.; Ren, J.C. Tempo-Spatially Resolved Scattering Correlation Spectroscopy under Dark-Field Illumination and Its Application to Investigate Dynamic Behaviors of Gold Nanoparticles in Live Cells. J. Am. Chem. Soc. 2014, 136, 2775–2785. [Google Scholar] [CrossRef]
- Li, H.B.; Wang, H.L.; Huang, D.S.; Liang, L.J.; Gu, Y.J.; Liang, C.Y.; Xu, S.P.; Xu, W.Q. Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Rev. Sci. Instrum. 2014, 85, 056109. [Google Scholar] [CrossRef]
- Danilatos, G.; Kollia, M.; Dracopoulos, V. Transmission environmental scanning electron microscope with scintillation gaseous detection device. Ultramicroscopy 2015, 150, 44–53. [Google Scholar] [CrossRef] [PubMed]
- La Spina, R.; Antonio, D.C.; Desmet, C.; Valsesia, A.; Bombera, R.; Norlen, H.; Lettieri, T.; Colpo, P. Dark Field Microscopy-Based Biosensors for the Detection of E. coli in Environmental Water Samples. Sensors 2019, 19, 4652. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.M.; Zhao, L.L.; Du, W.L.; Kong, D.X.; Qin, F.L.; Mo, R.W.; Zhang, K.Y. Luminescence Mechanism of Near-Infrared Quantum Dots. Spectrosc. Spectr. Anal. 2016, 36, 2059–2065. [Google Scholar]
- Amiot, C.L.; Xu, S.P.; Liang, S.; Pan, L.Y.; Zhao, J.X.J. Near-infrared fluorescent materials for sensing of biological targets. Sensors 2008, 8, 3082–3105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Li, Y.Y.; Wang, Q.; Lu, X.M.; Fan, Q.L. Activatable NIR-II Probe for Tumor Imaging. Prog. Chem. 2022, 34, 198–206. [Google Scholar]
- Hong, G.S.; Antaris, A.L.; Dai, H.J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, T.; Wu, T.X.; Yu, X.M.; Zhang, Y.H.; Wang, M.; Zheng, J.Y.; Ying, Y.Y.; Chen, S.Y.; Zhou, J.; et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 2021, 10, 197. [Google Scholar] [CrossRef]
- Welsher, K.; Sherlock, S.P.; Dai, H.J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948. [Google Scholar] [CrossRef]
- Bruns, O.T.; Bischof, T.S.; Harris, D.K.; Franke, D.; Shi, Y.; Riedemann, L.; Bartelt, A.; Jaworski, F.B.; Carr, J.A.; Rowlands, C.J.; et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.M.; Zhou, L.; Zhang, F. Epitaxial Seeded Growth of Rare-Earth Nanocrystals with Efficient 800 nm Near-Infrared to 1525 nm Short-Wavelength Infrared Downconversion Photoluminescence for In Vivo Bioimaging. Angew. Chem. Int. Ed. 2014, 53, 12086–12090. [Google Scholar] [CrossRef]
- Chang, K.W.; Sun, X.L.; Qi, Q.F.; Fu, M.Y.; Han, B.; Zhang, Y.; Zhao, W.; Ni, T.J.; Li, Q.; Yang, Z.J.; et al. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. Biosensors 2023, 13, 642. [Google Scholar] [CrossRef]
- Khan, N.U.; Lin, J.; Younas, M.R.; Liu, X.K.; Shen, L.M. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol. 2021, 12, 20. [Google Scholar] [CrossRef]
- Nehl, C.L.; Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415–2419. [Google Scholar] [CrossRef]
- Meng, L.Q.; Zhang, J.S.; Li, H.Q.; Zhao, W.W.; Zhao, T.G. Preparation and Progress in Application of Gold Nanorods. J. Nanomater. 2019, 2019, 4925702. [Google Scholar] [CrossRef]
- Ke, S.L.; Kan, C.X.; Mo, B.; Cong, B.; Zhu, J.J. Research Progress on the Optical Properties of Gold Nanorods. Acta Phys.-Chim. Sin. 2012, 28, 1275–1290. [Google Scholar]
- Link, S.; Mohamed, M.B.; El-Sayed, M.A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077. [Google Scholar] [CrossRef]
- Vigderman, L.; Zubarev, E.R. High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent. Chem. Mat. 2013, 25, 1450–1457. [Google Scholar] [CrossRef]
- Gole, A.; Murphy, C.J. Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization. Chem. Mat. 2005, 17, 1325–1330. [Google Scholar] [CrossRef]
- Pissuwan, D.; Niidome, T. Polyelectrolyte-coated gold nanorods and their biomedical applications. Nanoscale 2015, 7, 59–65. [Google Scholar] [CrossRef]
- Pan, L.M.; Liu, J.A.; Shi, J.L. Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 15952–15961. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Peng, S.; Huang, Z.; Feng, Z.; Liu, W.; Qian, J.; Zhou, W. Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy. Biology 2023, 12, 1391. https://doi.org/10.3390/biology12111391
Shi Y, Peng S, Huang Z, Feng Z, Liu W, Qian J, Zhou W. Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy. Biology. 2023; 12(11):1391. https://doi.org/10.3390/biology12111391
Chicago/Turabian StyleShi, Yifeng, Shiyi Peng, Zhongyu Huang, Zhe Feng, Wen Liu, Jun Qian, and Weidong Zhou. 2023. "Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy" Biology 12, no. 11: 1391. https://doi.org/10.3390/biology12111391
APA StyleShi, Y., Peng, S., Huang, Z., Feng, Z., Liu, W., Qian, J., & Zhou, W. (2023). Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy. Biology, 12(11), 1391. https://doi.org/10.3390/biology12111391