Effects of Biological Age on Athletic Adaptations to Combined Plyometric and Sprint with Change of Direction with Ball Training in Youth Soccer Players
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedures
2.3.1. Assessment of Linear Sprinting with and without Ball
2.3.2. Assessment of Change of Direction Speed with and without Ball
2.3.3. Assessment of Vertical Jump
2.3.4. Assessment of Dynamic Balance
2.3.5. Assessment of Endurance-Intensive Performance
2.4. Plyometric Training
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer. An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; Garcia, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J.; Monaghan, D. Using sprint velocity decrement to enhance acute sprint performance. J. Strength Cond. Res. 2021, 35, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Mara, J.; Thompson, K.G.; Pumpa, K.L.; Morgan, S. The acceleration and deceleration profiles of elite female soccer players during competitive matches. J. Sci. Med. Sports 2017, 20, 867–872. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring accelerations with GPS in football: Time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Carling, C. Analysis of physical activity profiles when running with the ball in a professional soccer team. J. Sports Sci. 2010, 28, 319–326. [Google Scholar] [CrossRef]
- Hoff, J.; Wisloff, U.; Engen, L.C.; Kemi, J.O.; Helgerud, J. Soccer specific aerobic endurance training. Br. J. Sports Med. 2002, 36, 218–221. [Google Scholar] [CrossRef]
- Rampinini, E.; Impellizzeri, F.M.; Castagna, C.; Coutts, A.J.; Wisløff, U. Technical performance during soccer matches of the Italian Serie Aleague: Effect of fatigue and competitive level. J. Sci. Med. Sport 2009, 12, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T. An ergonomics model of the soccer training process. J. Sports Sci. 2005, 23, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Marzouki, H.; Ouergui, I.; Cherni, B.; Ben Ayed, K.; Bouhlel, E. Effects of different sprint training programs with ball on explosive, high-intensity and endurance-intensive performances in male young soccer players. Int. J. Sports Sci. Coach. 2023, 18, 123–131. [Google Scholar] [CrossRef]
- DelloIacono, A.; Beato, M.; Unnithan, V. Comparativeeffects of game profile-based training and small-sidedgames on physical performance of elite soccer players. J. Strength Cond. Res. 2021, 35, 2810–2817. [Google Scholar] [CrossRef]
- Hill-Haas, S.V.; Dawson, B.; Impellizzeri, F.M.; Coutts, A.J. Physiologyof small-sided games training in football: A systematic review. Sports Med. 2011, 41, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Söhnlein, Q.; Müller, E.; Stöggl, T.L. The effect of 16-week plyometric training on explosive actions in early to mid-puberty elitesoccer players. J. Strength Cond. Res. 2014, 28, 2105–2114. [Google Scholar] [CrossRef]
- Michailidis, Y.; Tabouris, A.; Metaxas, T. Effects of plyometric and directional training on physical fitness parameters in youth soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 392–398. [Google Scholar] [CrossRef]
- Mohr, M.; Draganidis, D.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Castagna, C.; Douroudos, I.; Avloniti, A.; Margeli, A.; Papassotiriou, I.; Flouris, A.D.; et al. Muscle damage, inflammatory, immune and performance responses to three soccer games in 1 week in competitive male players. Eur. J. Appl. Physiol. 2016, 116, 179–193. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Sáez de Villarreal, E.; Requena, B.; Cronin, J.B. The Effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef]
- Round, J.M.; Jones, D.A.; Honour, J.W.; Nevill, A.M. Hormonal factors in the development of differences in strength between boys and girls during adolescence: A longitudinal study. Ann. Hum. Biol. 1999, 26, 49–62. [Google Scholar] [CrossRef]
- McNarry, M.A.; Lloyd, R.S.; Buchheit, M.; Williams, C.A.; Oliver, J.L. The bases expert statement on trainability duringchildhood and adolescence. Sport Exerc. Sci. 2014, 41, 22–23. [Google Scholar]
- Asadi, A.; Arazi, H.; Ramirez-Campillo, R.; Moran, J.; Izquierdo, M. Influence of maturation stage on agility performance gains after plyometric training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Young, J.D.; Whitten, J.H.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; de Lima, C.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength versus power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, J.; Sandercock, G.R.; Ramirez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J. Sports Sci. 2017, 35, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ramirez-Campillo, R.; Arazi, H.; Saez de Villarreal, E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J. Sports Sci. 2018, 36, 2405–2411. [Google Scholar] [CrossRef]
- Vera-Assaoka, T.; Ramirez-Campillo, R.; Alvarez, C.; Garcia-Pinillos, F.; Moran, J.; Gentil, P.; Behm, D. Effects of maturation on physical fitness adaptations to plyometric drop jump training in male youth soccer players. J. Strength Cond. Res. 2020, 34, 2760–2768. [Google Scholar] [CrossRef] [Green Version]
- Drury, B.; Green, T.; Ramirez-Campillo, R.; Moran, J. Influence of maturation status on eccentric hamstring strength improvements in youth male soccer players after the Nordic Hamstring Exercise. Int. J. Sports Physiol. Perform. 2020, 18, 990–996. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Santisteban, J.; Impellizzeri, F.M.; Castagna, C. Fitness determinants of success in men’s and women’s football. J. Sports Sci. 2009, 27, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, M.; Granacher, U.; Makhlouf, I.; Hammami, R.; Behm, G.D.; Chaouachi, A. Within session sequence of balance and plyometric exercises does not affect training adaptations with youth soccer athletes. J. Sports Sci. Med. 2017, 16, 125–136. [Google Scholar] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20-metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Aloui, G.; Hermassi, S.; Khemiri, A.; Bartels, T.; Hayes, L.D.; Bouhafs, E.G.; Souhaiel Chelly, M.; Schwesig, R. An 8-week program of plyometrics and sprints with changes of direction improved anaerobic Fitness in young male soccer players. Int. J. Environ. Res. Public Health 2021, 18, 10446. [Google Scholar] [CrossRef]
- Hammami, M.; Negra, Y.; Shephard, R.J.; Chelly, M.S. The effect of standard strength vs. contrast strength training on the development of sprint, agility, repeated change of direction, and jump in junior male soccer players. J. Strength Cond. Res. 2017, 31, 901–912. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Aloui, G.; Hermassi, S.; Hayes, L.D.; Sanal Hayes, N.E.M.; Bouhafs, E.G.; Chelly, M.S.; Schwesig, R. Effects of Plyometric and Short Sprint with Change-of-Direction Training in Male U17 Soccer Players. Appl. Sci. 2021, 11, 4767. [Google Scholar] [CrossRef]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of agility and plyometric training provides similar training benefits as combined balance and plyometric training in young soccer players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Behm, D.G. Effects of running, static stretching and practice jumps on explosive force production and jumping performance. J. Sports Med. Phys. Fit. 2003, 43, 21–27. [Google Scholar]
- Kibele, A.; Granacher, U.; Muehlbauer, T.; Behm, D.G. Stable, unstable and metastable states of equilibrium: Definitions and applications to human movement. J. Sports Sci. Med. 2015, 14, 885–887. [Google Scholar] [PubMed]
- Ricotti, L.; Rigosa, J.; Niosi, A.; Menciassi, A. Analysis of balance, rapidity, force and reaction times of soccer players at different levels of competition. PLoS ONE 2013, 8, e77264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paillard, T.; Noé, F.; Rivière, T.; Marion, V.; Montoya, R.; Dupui, P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J. Athl. Train. 2006, 41, 172–176. [Google Scholar]
- Marzouki, H.; Ouergui, I.; Doua, N.; Gmada, N.; Bouassida, A.; Bouhlel, E. Effects of 1 vs. 2 sessions per week of equal-volume sprint training on explosive, highintensity and endurance-intensive performances in young soccer players. Biol. Sport 2021, 38, 175–183. [Google Scholar] [CrossRef]
- Baquet, G.; Van Praagh, E.; Berthoin, S. Endurance training and aerobic fitness in young people. Sports Med. 2003, 33, 1127–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Sandercock, G.R.H.; Rumpf, D.; Parry, D.A. Variation in responses to sprint training in male youth athletes: A meta-analysis. Int. J. Sports Med. 2016, 38, 1–11. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal sprint speed in boys of increasing maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef]
Circa-PHV | Post-PHV | |||||||
---|---|---|---|---|---|---|---|---|
Experimental (n =12) | Control (n = 12) | Experimental (n =12) | Control (n = 12) | |||||
Pre-Test | Post-Test | Pre-Test | Post-Test | Pre-Test | Post-Test | Pre-Test | Post-Test | |
Age (years) | 14.2 ± 0.3 | 14.3 ± 0.2 | 14.1 ± 0.2 | 14.3 ± 0.3 | 16.3 ± 0.2 | 16.4 ± 0.2 | 16.2 ± 0.3 | 16.3 ± 0.2 |
Height (cm) | 164.4 ± 4.9 | 165.6 ± 4.9 | 163.6 ± 6.8 | 164.9 ± 6.5 | 176.2 ± 5.7 | 177.1 ± 5.5 | 174.4 ± 3.6 | 175.6 ± 3.7 |
LL (cm) | 85.1 ± 2.4 | 85.5 ± 2.3 | 84.0 ± 3.4 | 84.7 ± 3.4 | 90.0 ± 2.8 | 90.6 ± 2.7 | 89.3 ± 2.4 | 89.8 ± 2.2 |
SH (cm) | 79.1 ± 2.6 | 80.2 ± 2.9 | 79.6 ± 3.7 | 80.3 ± 3.3 | 86.2 ± 3.2 | 86.5 ± 2.9 | 85.2 ± 1.6 | 85.8 ± 1.7 |
Weight (kg) | 48.3 ± 4.5 | 49.1 ± 4.5 | 50.1 ± 8.3 | 49.9 ± 7.6 | 65.0 ± 6.4 | 65.5 ± 5.3 | 64.6 ± 4.9 | 65.3 ± 5.5 |
BMI (kg·m−2) | 17.6 ± 1.3 | 17.9 ± 1.3 | 19.3 ± 2.4 | 18.3 ± 2.4 | 21.0 ± 2.6 | 21.0 ± 2.2 | 21.3 ± 1.8 | 21.2 ± 2.2 |
APHV (years) | 14.8 ± 0.4 | - | 14.7 ± 0.4 | - | 14.9 ± 0.5 | - | 15.0 ± 0.3 | - |
Predicted years from APHV | −0.6 ± 0.3 | - | −0.6 ± 0.5 | - | 1.4 ± 0.4 | - | 1.2 ± 0.2 | - |
Week Days | Objectives | Time | Duration (min) |
---|---|---|---|
Monday | Day off: physical and mental recovery | - | - |
Tuesday | Aerobic training and technical–tactical drills | 18:00–20:00 | 85–90 |
Wednesday | Small-sided games and technical–tactical drills | 18:00–20:00 | 85–90 |
Thursday | Power anaerobic training and technical–tactical drills | 18:00–20:00 | 85–90 |
Friday | Speed training, technical drills, and simulated competitive games | 18:00–20:00 | 85–90 |
Saturday | Reaction speed and technical–tactical drills | 14:00–15:30 | 60–70 |
Sunday | Official match | - | - |
Experimental | Control | ANCOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | ES (p Value), 95 %CI | Δ | Pre-Test | Post-Test | ES (p Value), 95 %CI | Δ | |||
S10 (s) | Circa-PHV | 1.73 ± 0.10 | 1.64 ± 0.09 † | 0.946 (<0.0001), 0.07–0.10 | −4.94 ± 1.42 ‡ | 1.77 ± 0.09 | 1.71 ± 0.09 † | 0.667 (<0.0001), 0.03–0.07 | −2.96 ± 1.56 | Condition: F = 40.407; p < 0.0001; ES = 0.935 Maturation: F = 0.567; p = 0.455; ES = 0 Interaction: F = 0.085; p = 0.722; ES = 0 |
Post-PHV | 1.70 ± 0.07 | 1.62 ± 0.06 † | 1.227 (<0.0001), 0.06–0.09 | −4.58 ± 1.45 ‡ | 1.72 ± 0.09 | 1.68 ± 0.08 † | 0.532 (=0.0005), 0.02–0.05 | −2.14 ± 1.63 | ||
S20 (s) | Circa-PHV | 3.32 ± 0.18 | 3.18 ± 0.17 † | 0.8 (<0.0001), 0.12–0.16 | −4.31 ± 0.91 ‡ | 3.39 ± 0.17 | 3.32 ± 0.16 † | 0.424 (<0.0001), 0.06–0.09 | −2.20 ± 0.73 | Condition: F = 121.457; p < 0.0001; ES = 1.636 Maturation: F = 0.645; p = 0.426; ES = 0 Interaction: F = 0.672; p = 0.417; ES = 0 |
Post-PHV | 3.26 ± 0.14 | 3.10 ± 0.14 † | 1.143 (<0.0001), 0.14–0.16 | −4.69 ± 0.58 ‡ | 3.29 ± 0.17 | 3.22 ± 0.17 † | 0.412 (<0.0001), 0.06–0.08 | −2.19 ± 0.66 | ||
Ball-S10 (s) | Circa-PHV | 2.36 ± 0.32 | 2.22 ± 0.29 † | 0.458 (<0.0001), 0.11–0.17 | −5.84 ± 1.37 ‡ | 2.50 ± 0.27 | 2.44 ± 0.25 † | 0.231(<0.0001), 0.04–0.07 | −2.24 ± 0.82 | Condition: F = 95.003; p < 0.0001; ES = 1.445 Maturation: F = 0.392; p = 0.534; ES = 0 Interaction: F = 0.778; p = 0.384; ES = 0 |
Post-PHV | 2.24 ± 0.34 | 2.10 ± 0.33 † | 0.418 (<0.0001), 0.10–0.15 | −5.89 ± 1.53 ‡ | 2.19 ± 0.25 | 2.14 ± 0.25 † | 0.2 (<0.0001), 0.04–0.07 | −2.48 ± 0.88 | ||
Ball-S20 (s) | Circa-PHV | 4.46 ± 0.62 | 4.21 ± 0.59 † | 0.413 (<0.0001), 0.22–0.28 | −5.64 ± 0.91 ‡ | 4.59 ± 0.35 | 4.49 ± 0.35 † | 0.286 (<0.0001), 0.08–0.012 | −2.19 ±0.56 | Condition: F = 180.211; p < 0.0001; ES = 1.995 Maturation: F = 1.820; p = 0.184; ES = 0.134 Interaction: F = 1.579; p = 0.216; ES = 0.113 |
Post-PHV | 4.10 ± 0.54 | 3.89 ± 0.53 † | 0.393 (<0.0001), 0.18–0.24 | −5.19 ± 1.10 ‡ | 4.14 ± 0.43 | 4.05 ± 0.42 † | 0.212 (<0.0001), 0.06–0.10 | −2.04 ± 0.73 | ||
COD−15 m (s) | Circa-PHV | 4.34 ± 0.47 | 4.09 ± 0.43 † | 0.555 (<0.0001), 0.20–0.29 | −5.68 ± 1.14 ‡ | 4.50 ± 0.43 | 4.41 ± 0.39 † | 0.219 (=0.004), 0.03–0.14 | −1.87 ±1.58 | Condition: F = 127.510; p < 0.0001; ES = 1.676 Maturation: F = 3.757; p = 0.059; ES = 0.247 Interaction: F = 1.048; p = 0.312; ES = 0.032 |
Post-PHV | 3.83 ± 0.26 | 3.60 ± 0.25 † | 0.902 (<0.0001), 0.19–0.27 | −6.02 ± 1.50 ‡ | 3.89 ± 0.27 | 3.81 ± 0.27 † | 0.296 (<0.0001), 0.07–0.10 | −2.14 ± 0.62 | ||
Ball−15 m (s) | Circa-PHV | 5.60 ± 0.62 | 5.21 ± 0.56 † | 0.66 (<0.0001), 0.28–0.49 | −6.86 ± 2.57 ‡ | 5.76 ± 0.85 | 5.60 ± 0.75 † | 0.2 (=0.0112), 0.04–0.26 | −2.48 ±2.71 | Condition: F = 50.174; p < 0.0001; ES = 1.045 Maturation: F = 2.877; p = 0.097; ES = 0.204 Interaction: F = 0.557; p = 0.459; ES = 0.013 |
Post-PHV | 5.18 ± 0.42 | 4.81 ± 0.38 † | 0.924 (<0.0001), 0.31–0.43 | −7.11 ± 1.69 ‡ | 5.08 ± 0.63 | 4.93 ± 0.55 † | 0.254 (=0.0003), 0.09–0.21 | −2.87 ± 1.43 | ||
CMJ (cm) | Circa-PHV | 24.6 ± 2.9 | 27.7 ± 3.0 † | 1.051 (<0.0001), 2.30–3.94 | 12.9 ± 5.9 ‡ | 26.5 ± 3.4 | 28.2 ± 3.7 † | 0.478 (<0.0001), 1.17–2.19 | 6.3 ±2.8 | Condition: F = 44.619; p < 0.0001; ES = 0.984 Maturation: F = 2.555; p = 0.117; ES = 0.185 Interaction: F = 3.011; p = 0.090; ES = 0.211 |
Post-PHV | 31.9 ± 4.0 | 35.8 ± 3.5 † | 1.038 (<0.0001), 2.45–4.40 | 12.7 ± 4.0 ‡ | 31.1 ± 3.6 | 32.8 ± 3.7 † | 0.466 (<0.0001), 1.06–2.17 | 5.3 ± 3.1 | ||
Balance scores (%) | Circa-PHV | 101.2 ± 5.4 | 104.4 ± 5.2 † | 0.604 (<0.0001), 2.40–3.93 | 3.2 ± 1.2 | 99.8 ± 9.2 | 102.1 ± 9.1 † | 0.251 (<0.0001), 1.83–2.84 | 2.4 ±0.9 | Condition: F = 3.833; p = 0.057; ES = 0.250 Maturation: F = 0.204; p = 0.654; ES = 0 Interaction: F = 0.025; p = 0.875; ES = 0 |
Post-PHV | 90.6 ± 5.3 | 93.7 ± 5.0 † | 0.602 (<0.0001), 2.30–3.91 | 3.5 ± 1.5 | 91.7 ± 4.3 | 94.1 ± 4.9 † | 0.521 (=0.0004), 1.39–3.51 | 2.7 ± 1.8 | ||
MAV (km·h−1) | Circa-PHV | 10.9 ± 0.8 | 12.0 ± 0.8 † | 1.375 (<0.0001), 0.93–1.32 | 10.4 ± 2.9 | 10.6 ± 0.5 | 11.5 ± 0.5 † | 1.8 (<0.0001), 0.73–1.10 | 8.7 ± 2.8 | Condition: F = 3.648; p = 0.063; ES = 0.242 Maturation: F = 0.646; p = 0.426; ES = 0 Interaction: F = 0.226; p = 0.637; ES = 0 |
Post-PHV | 12.2 ± 0.6 | 13.4 ± 0.7 † | 1.841 (<0.0001), 1.08–1.41 | 10.3 ± 2.1 | 12.0 ± 1.0 | 13.0 ± 0.9 † | 1.0 (<0.0001), 0.67–1.24 | 8.5 ± 4.2 | ||
VO2max (mL·min−1·kg−1) | Circa-PHV | 43.8 ± 4.3 | 49.8 ± 4.4 † | 1.379 (<0.0001), 4.86–7.01 | 13.7 ± 4.1 | 42.4 ± 3.1 | 47.1 ± 3.0 † | 1.541 (<0.0001), 3.60–5.83 | 11.3 ± 4.3 | Condition: F = 3.940; p = 0.054; ES = 0.255 Maturation: F = 0.085; p = 0.773; ES = 0 Interaction: F = 0.239; p = 0.627; ES = 0 |
Post-PHV | 47.9 ± 3.3 | 55.0 ± 4.1 † | 1.908 (<0.0001), 6.12–8.03 | 14.8 ± 3.0 | 47.1 ± 5.9 | 52.7 ± 5.4 † | 0.914 (<0.0001), 3.61–7.05 | 12.3 ± 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzouki, H.; Sbai, S.; Ouergui, I.; Selmi, O.; Andrade, M.S.; Bouhlel, E.; Thuany, M.; Weiss, K.; Nikolaidis, P.T.; Knechtle, B. Effects of Biological Age on Athletic Adaptations to Combined Plyometric and Sprint with Change of Direction with Ball Training in Youth Soccer Players. Biology 2023, 12, 120. https://doi.org/10.3390/biology12010120
Marzouki H, Sbai S, Ouergui I, Selmi O, Andrade MS, Bouhlel E, Thuany M, Weiss K, Nikolaidis PT, Knechtle B. Effects of Biological Age on Athletic Adaptations to Combined Plyometric and Sprint with Change of Direction with Ball Training in Youth Soccer Players. Biology. 2023; 12(1):120. https://doi.org/10.3390/biology12010120
Chicago/Turabian StyleMarzouki, Hamza, Samar Sbai, Ibrahim Ouergui, Okba Selmi, Marilia S. Andrade, Ezdine Bouhlel, Mabliny Thuany, Katja Weiss, Pantelis T. Nikolaidis, and Beat Knechtle. 2023. "Effects of Biological Age on Athletic Adaptations to Combined Plyometric and Sprint with Change of Direction with Ball Training in Youth Soccer Players" Biology 12, no. 1: 120. https://doi.org/10.3390/biology12010120
APA StyleMarzouki, H., Sbai, S., Ouergui, I., Selmi, O., Andrade, M. S., Bouhlel, E., Thuany, M., Weiss, K., Nikolaidis, P. T., & Knechtle, B. (2023). Effects of Biological Age on Athletic Adaptations to Combined Plyometric and Sprint with Change of Direction with Ball Training in Youth Soccer Players. Biology, 12(1), 120. https://doi.org/10.3390/biology12010120